# Copyright (C) 2023 Richard Stiskalek # This program is free software; you can redistribute it and/or modify it # under the terms of the GNU General Public License as published by the # Free Software Foundation; either version 3 of the License, or (at your # option) any later version. # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General # Public License for more details. # # You should have received a copy of the GNU General Public License along # with this program; if not, write to the Free Software Foundation, Inc., # 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. from os.path import join from argparse import ArgumentParser import matplotlib as mpl import matplotlib.pyplot as plt import numpy from h5py import File import healpy import scienceplots # noqa import plt_utils from cache_to_disk import cache_to_disk, delete_disk_caches_for_function # noqa from tqdm import tqdm try: import csiborgtools except ModuleNotFoundError: import sys sys.path.append("../") import csiborgtools def open_csiborg(nsim): """ Open a CSiBORG halo catalogue. Applies mass and distance selection. Parameters ---------- nsim : int Simulation index. Returns ------- cat : csiborgtools.read.CSiBORGHaloCatalogue """ paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring) bounds = {"totpartmass": (None, None), "dist": (0, 155/0.705)} return csiborgtools.read.CSiBORGHaloCatalogue(nsim, paths, bounds=bounds) def open_quijote(nsim, nobs=None): """ Open a Quijote halo catalogue. Applies mass and distance selection. Parameters ---------- nsim : int Simulation index. nobs : int, optional Fiducial observer index. Returns ------- cat : csiborgtools.read.QuijoteHaloCatalogue """ paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring) cat = csiborgtools.read.QuijoteHaloCatalogue(nsim, paths, nsnap=4) if nobs is not None: cat = cat.pick_fiducial_observer(nobs, rmax=155.5 / 0.705) return cat def plot_mass_vs_ncells(nsim, pdf=False): """ Plot the halo mass vs. number of occupied cells in the initial snapshot. Parameters ---------- nsim : int Simulation index. pdf : bool, optional Whether to save the figure as a PDF file. Returns ------- None """ cat = open_csiborg(nsim) mpart = 4.38304044e+09 with plt.style.context(plt_utils.mplstyle): plt.figure() plt.scatter(cat["totpartmass"], cat["lagpatch_ncells"], s=0.25, rasterized=True) plt.xscale("log") plt.yscale("log") for n in [1, 10, 100]: plt.axvline(n * 512 * mpart, c="black", ls="--", zorder=0, lw=0.8) plt.xlabel(r"$M_{\rm tot} / M_\odot$") plt.ylabel(r"$N_{\rm cells}$") for ext in ["png"] if pdf is False else ["png", "pdf"]: fout = join(plt_utils.fout, f"init_mass_vs_ncells_{nsim}.{ext}") print(f"Saving to `{fout}`.") plt.savefig(fout, dpi=plt_utils.dpi, bbox_inches="tight") plt.close() ############################################################################### # HMF plot # ############################################################################### def plot_hmf(pdf=False): """ Plot the FoF halo mass function of CSiBORG and Quijote. Parameters ---------- pdf : bool, optional Whether to save the figure as a PDF file. Returns ------- None """ print("Plotting the HMF...", flush=True) paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring) # csiborg_nsims = paths.get_ics("csiborg") csiborg_nsims = [7444] print("Loading CSiBORG halo counts.", flush=True) for i, nsim in enumerate(tqdm(csiborg_nsims)): data = numpy.load(paths.halo_counts("csiborg", nsim)) if i == 0: bins = data["bins"] csiborg_counts = numpy.full((len(csiborg_nsims), len(bins) - 1), numpy.nan, dtype=numpy.float32) csiborg_counts[i, :] = data["counts"] print(data["counts"]) print(csiborg_counts) csiborg_counts /= numpy.diff(bins).reshape(1, -1) print("Loading Quijote halo counts.", flush=True) quijote_nsims = paths.get_ics("quijote") for i, nsim in enumerate(tqdm(quijote_nsims)): data = numpy.load(paths.halo_counts("quijote", nsim)) if i == 0: bins = data["bins"] nmax = data["counts"].shape[0] quijote_counts = numpy.full( (len(quijote_nsims) * nmax, len(bins) - 1), numpy.nan, dtype=numpy.float32) quijote_counts[i * nmax:(i + 1) * nmax, :] = data["counts"] quijote_counts /= numpy.diff(bins).reshape(1, -1) x = 10**(0.5 * (bins[1:] + bins[:-1])) # Edit lower limits csiborg_counts[:, x < 1e12] = numpy.nan quijote_counts[:, x < 10**(12.4)] = numpy.nan # Edit upper limits csiborg_counts[:, x > 4e15] = numpy.nan quijote_counts[:, x > 4e15] = numpy.nan with plt.style.context(plt_utils.mplstyle): cols = plt.rcParams["axes.prop_cycle"].by_key()["color"] fig, ax = plt.subplots(nrows=2, sharex=True, figsize=(3.5, 2.625 * 1.25), gridspec_kw={"height_ratios": [1, 0.65]}) fig.subplots_adjust(hspace=0, wspace=0) # Upper panel data mean_csiborg = numpy.mean(csiborg_counts, axis=0) std_csiborg = numpy.std(csiborg_counts, axis=0) ax[0].plot(x, mean_csiborg, label="CSiBORG") ax[0].fill_between(x, mean_csiborg - std_csiborg, mean_csiborg + std_csiborg, alpha=0.5) mean_quijote = numpy.mean(quijote_counts, axis=0) std_quijote = numpy.std(quijote_counts, axis=0) ax[0].plot(x, mean_quijote, label="Quijote") ax[0].fill_between(x, mean_quijote - std_quijote, mean_quijote + std_quijote, alpha=0.5) # Lower panel data log_y = numpy.log10(mean_csiborg / mean_quijote) err = numpy.sqrt((std_csiborg / mean_csiborg / numpy.log(10))**2 + (std_quijote / mean_quijote / numpy.log(10))**2) ax[1].plot(x, 10**log_y, c=cols[2]) ax[1].fill_between(x, 10**(log_y - err), 10**(log_y + err), alpha=0.5, color=cols[2]) # Labels and accesories ax[1].axhline(1, color="k", ls=plt.rcParams["lines.linestyle"], lw=0.5 * plt.rcParams["lines.linewidth"], zorder=0) ax[0].set_ylabel(r"$\frac{\mathrm{d} n}{\mathrm{d}\log M_{\rm h}}~\mathrm{dex}^{-1}$") # noqa ax[1].set_xlabel(r"$M_{\rm h}$ [$M_\odot$]") ax[1].set_ylabel(r"$\mathrm{CSiBORG} / \mathrm{Quijote}$") ax[0].set_xscale("log") ax[0].set_yscale("log") ax[1].set_yscale("log") ax[0].legend() fig.tight_layout(h_pad=0, w_pad=0) for ext in ["png"] if pdf is False else ["png", "pdf"]: fout = join(plt_utils.fout, f"hmf_comparison.{ext}") print(f"Saving to `{fout}`.") fig.savefig(fout, dpi=plt_utils.dpi, bbox_inches="tight") plt.close() def plot_hmf_quijote_full(pdf=False): """ Plot the FoF halo mass function of Quijote full run. Parameters ---------- pdf : bool, optional Whether to save the figure as a PDF file. Returns ------- None """ print("Plotting the HMF...", flush=True) paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring) print("Loading Quijote halo counts.", flush=True) quijote_nsims = paths.get_ics("quijote") for i, nsim in enumerate(tqdm(quijote_nsims)): data = numpy.load(paths.halo_counts("quijote_full", nsim)) if i == 0: bins = data["bins"] counts = numpy.full((len(quijote_nsims), len(bins) - 1), numpy.nan, dtype=numpy.float32) counts[i, :] = data["counts"] counts /= numpy.diff(bins).reshape(1, -1) counts /= 1000**3 x = 10**(0.5 * (bins[1:] + bins[:-1])) # Edit lower and upper limits counts[:, x < 10**(12.4)] = numpy.nan counts[:, x > 4e15] = numpy.nan with plt.style.context(plt_utils.mplstyle): cols = plt.rcParams["axes.prop_cycle"].by_key()["color"] fig, ax = plt.subplots(nrows=2, sharex=True, figsize=(3.5, 2.625 * 1.25), gridspec_kw={"height_ratios": [1, 0.65]}) fig.subplots_adjust(hspace=0, wspace=0) # Upper panel data mean = numpy.mean(counts, axis=0) std = numpy.std(counts, axis=0) ax[0].plot(x, mean) ax[0].fill_between(x, mean - std, mean + std, alpha=0.5) # Lower panel data for i in range(counts.shape[0]): ax[1].plot(x, counts[i, :] / mean, c=cols[0]) # Labels and accesories ax[1].axhline(1, color="k", ls=plt.rcParams["lines.linestyle"], lw=0.5 * plt.rcParams["lines.linewidth"], zorder=0) ax[0].set_ylabel(r"$\frac{\mathrm{d}^2 n}{\mathrm{d}\log M_{\rm h} \mathrm{d} V}~[\mathrm{dex}^{-1} (\mathrm{Mpc / h})^{-3}]$", # noqa fontsize="small") ax[1].set_xlabel(r"$M_{\rm h}$ [$M_\odot$]") ax[1].set_ylabel(r"$\mathrm{HMF} / \langle \mathrm{HMF} \rangle$", fontsize="small") ax[0].set_xscale("log") ax[0].set_yscale("log") ax[0].legend() fig.tight_layout(h_pad=0, w_pad=0) for ext in ["png"] if pdf is False else ["png", "pdf"]: fout = join(plt_utils.fout, f"hmf_quijote_full.{ext}") print(f"Saving to `{fout}`.") fig.savefig(fout, dpi=plt_utils.dpi, bbox_inches="tight") plt.close() def load_field(kind, nsim, grid, MAS, in_rsp=False, smooth_scale=None): r""" Load a single field. Parameters ---------- kind : str Field kind. nsim : int Simulation index. grid : int Grid size. MAS : str Mass assignment scheme. in_rsp : bool, optional Whether to load the field in redshift space. smooth_scale : float, optional Smoothing scale in :math:`\mathrm{Mpc} / h`. Returns ------- field : n-dimensional array """ paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring) return numpy.load(paths.field(kind, MAS, grid, nsim, in_rsp=in_rsp, smooth_scale=smooth_scale)) ############################################################################### # Projected field # ############################################################################### def plot_projected_field(kind, nsim, grid, in_rsp, smooth_scale, MAS="PCS", vel_component=0, highres_only=True, slice_find=None, pdf=False): r""" Plot the mean projected field, however can also plot a single slice. Parameters ---------- kind : str Field kind. nsim : int Simulation index. grid : int Grid size. in_rsp : bool Whether to load the field in redshift space. smooth_scale : float Smoothing scale in :math:`\mathrm{Mpc} / h`. MAS : str, optional Mass assignment scheme. vel_component : int, optional Which velocity field component to plot. highres_only : bool, optional Whether to only plot the high-resolution region. slice_find : float, optional Which slice to plot in fractional units (i.e. 1. is the last slice) pdf : bool, optional Whether to save the figure as a PDF. Returns ------- None """ print(f"Plotting projected field `{kind}`. ", flush=True) paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring) nsnap = max(paths.get_snapshots(nsim)) box = csiborgtools.read.CSiBORGBox(nsnap, nsim, paths) if kind == "overdensity": field = load_field("density", nsim, grid, MAS=MAS, in_rsp=in_rsp, smooth_scale=smooth_scale) density_gen = csiborgtools.field.DensityField(box, MAS) field = density_gen.overdensity_field(field) + 1 elif kind == "borg_density": field = File(paths.borg_mcmc(nsim), 'r') field = field["scalars"]["BORG_final_density"][...] else: field = load_field(kind, nsim, grid, MAS=MAS, in_rsp=in_rsp, smooth_scale=smooth_scale) if kind == "velocity": field = field[vel_component, ...] field = box.box2vel(field) if highres_only: csiborgtools.field.fill_outside(field, numpy.nan, rmax=155.5, boxsize=677.7) start = round(field.shape[0] * 0.27) end = round(field.shape[0] * 0.73) field = field[start:end, start:end, start:end] if kind == "environment": cmap = mpl.colors.ListedColormap( ['red', 'lightcoral', 'limegreen', 'khaki']) else: cmap = "viridis" labels = [r"$y-z$", r"$x-z$", r"$x-y$"] with plt.style.context(plt_utils.mplstyle): fig, ax = plt.subplots(figsize=(3.5 * 2, 2.625), ncols=3, sharey=True, sharex="col") fig.subplots_adjust(hspace=0, wspace=0) for i in range(3): if slice_find is None: img = numpy.nanmean(field, axis=i) else: ii = int(field.shape[i] * slice_find) img = numpy.take(field, ii, axis=i) if i == 0: vmin, vmax = numpy.nanpercentile(img, [1, 99]) im = ax[i].imshow(img, vmin=vmin, vmax=vmax, cmap=cmap) else: ax[i].imshow(img, vmin=vmin, vmax=vmax, cmap=cmap) frad = 155.5 / 677.7 R = 155.5 / 677.7 * grid if slice_find is None: rad = R plot_circle = True elif (not highres_only and 0.5 - frad < slice_find < 0.5 + frad): z = (slice_find - 0.5) * grid rad = R * numpy.sqrt(1 - z**2 / R**2) plot_circle = True else: plot_circle = False if not highres_only and plot_circle: theta = numpy.linspace(0, 2 * numpy.pi, 100) ax[i].plot(rad * numpy.cos(theta) + grid // 2, rad * numpy.sin(theta) + grid // 2, lw=0.75 * plt.rcParams["lines.linewidth"], zorder=1, c="red", ls="--") ax[i].set_title(labels[i]) if highres_only: ncells = end - start size = ncells / grid * 677.7 else: ncells = grid size = 677.7 # Get beautiful ticks yticks = numpy.linspace(0, ncells, 6).astype(int) yticks = numpy.append(yticks, ncells // 2) ax[0].set_yticks(yticks) ax[0].set_yticklabels((yticks * size / ncells - size / 2).astype(int)) ax[0].set_ylabel(r"$x_i ~ [\mathrm{Mpc} / h]$") for i in range(3): xticks = numpy.linspace(0, ncells, 6).astype(int) xticks = numpy.append(xticks, ncells // 2) xticks = numpy.sort(xticks) if i < 2: xticks = xticks[:-1] ax[i].set_xticks(xticks) ax[i].set_xticklabels( (xticks * size / ncells - size / 2).astype(int)) ax[i].set_xlabel(r"$x_j ~ [\mathrm{Mpc} / h]$") cbar_ax = fig.add_axes([0.982, 0.155, 0.025, 0.75], transform=ax[2].transAxes) if slice_find is None: clabel = "Mean projected field" else: clabel = "Sliced field" if kind == "environment": bounds = [0, 1, 2, 3, 4] norm = mpl.colors.BoundaryNorm(bounds, cmap.N) cbar = fig.colorbar( mpl.cm.ScalarMappable(cmap=cmap, norm=norm), cax=cbar_ax, ticks=[0.5, 1.5, 2.5, 3.5]) cbar.ax.set_yticklabels(["knot", "filament", "sheet", "void"], rotation=90, va="center") else: fig.colorbar(im, cax=cbar_ax, label=clabel) fig.tight_layout(h_pad=0, w_pad=0) for ext in ["png"] if pdf is False else ["png", "pdf"]: fout = join( plt_utils.fout, f"field_{kind}_{nsim}_rsp{in_rsp}_hres{highres_only}.{ext}") if smooth_scale is not None and smooth_scale > 0: smooth_scale = float(smooth_scale) fout = fout.replace(f".{ext}", f"_smooth{smooth_scale}.{ext}") print(f"Saving to `{fout}`.") fig.savefig(fout, dpi=plt_utils.dpi, bbox_inches="tight") plt.close() ############################################################################### # Sky distribution # ############################################################################### def get_sky_label(kind, volume_weight): """ Get the sky label for a given field kind. Parameters ---------- kind : str Field kind. volume_weight : bool Whether to volume weight the field. Returns ------- label : str """ if volume_weight: if kind == "density": label = r"$\log \int_{0}^{R} r^2 \rho(r, \mathrm{RA}, \mathrm{dec}) \mathrm{d} r$" # noqa if kind == "overdensity": label = r"$\log \int_{0}^{R} r^2 \left[\delta(r, \mathrm{RA}, \mathrm{dec}) + 1\right] \mathrm{d} r$" # noqa elif kind == "potential": label = r"$\int_{0}^{R} r^2 \phi(r, \mathrm{RA}, \mathrm{dec}) \mathrm{d} r$" # noqa elif kind == "radvel": label = r"$\int_{0}^{R} r^2 v_r(r, \mathrm{RA}, \mathrm{dec}) \mathrm{d} r$" # noqa else: label = None else: if kind == "density": label = r"$\log \int_{0}^{R} \rho(r, \mathrm{RA}, \mathrm{dec}) \mathrm{d} r$" # noqa if kind == "overdensity": label = r"$\log \int_{0}^{R} \left[\delta(r, \mathrm{RA}, \mathrm{dec}) + 1\right] \mathrm{d} r$" # noqa elif kind == "potential": label = r"$\int_{0}^{R} \phi(r, \mathrm{RA}, \mathrm{dec}) \mathrm{d} r$" # noqa elif kind == "radvel": label = r"$\int_{0}^{R} v_r(r, \mathrm{RA}, \mathrm{dec}) \mathrm{d} r$" # noqa else: label = None return label def plot_sky_distribution(field, nsim, grid, nside, smooth_scale=None, MAS="PCS", plot_groups=True, dmin=0, dmax=220, plot_halos=None, volume_weight=True, pdf=False): r""" Plot the sky distribution of a given field kind on the sky along with halos and selected observations. TODO ---- - Add distance for groups. Parameters ---------- field : str Field kind. nsim : int Simulation index. grid : int Grid size. nside : int Healpix nside of the sky projection. smooth_scale : float Smoothing scale in :math:`\mathrm{Mpc} / h`. MAS : str, optional Mass assignment scheme. plot_groups : bool, optional Whether to plot the 2M++ groups. dmin : float, optional Minimum projection distance in :math:`\mathrm{Mpc}/h`. dmax : float, optional Maximum projection distance in :math:`\mathrm{Mpc}/h`. plot_halos : list, optional Minimum halo mass to plot in :math:`M_\odot`. volume_weight : bool, optional Whether to volume weight the field. pdf : bool, optional Whether to save the figure as a pdf. """ paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring) nsnap = max(paths.get_snapshots(nsim)) box = csiborgtools.read.CSiBORGBox(nsnap, nsim, paths) if kind == "overdensity": field = load_field("density", nsim, grid, MAS=MAS, in_rsp=False, smooth_scale=smooth_scale) density_gen = csiborgtools.field.DensityField(box, MAS) field = density_gen.overdensity_field(field) + 1 else: field = load_field(kind, nsim, grid, MAS=MAS, in_rsp=False, smooth_scale=smooth_scale) angpos = csiborgtools.field.nside2radec(nside) dist = numpy.linspace(dmin, dmax, 500) out = csiborgtools.field.make_sky(field, angpos=angpos, dist=dist, box=box, volume_weight=volume_weight) with plt.style.context(plt_utils.mplstyle): label = get_sky_label(kind, volume_weight) if kind in ["density", "overdensity"]: out = numpy.log10(out) healpy.mollview(out, fig=0, title="", unit=label, rot=90) if plot_halos is not None: bounds = {"dist": (dmin, dmax), "totpartmass": (plot_halos, None)} cat = csiborgtools.read.CSiBORGHaloCatalogue(nsim, paths, bounds=bounds) X = cat.position(cartesian=False) healpy.projscatter(numpy.deg2rad(X[:, 2] + 90), numpy.deg2rad(X[:, 1]), s=5, c="red", label="CSiBORG haloes") if plot_groups: groups = csiborgtools.read.TwoMPPGroups(fpath="/mnt/extraspace/rstiskalek/catalogs/2M++_group_catalog.dat") # noqa healpy.projscatter(numpy.deg2rad(groups["DEC"] + 90), numpy.deg2rad(groups["RA"]), s=1, c="blue", label="2M++ groups") if plot_halos is not None or plot_groups: plt.legend(markerscale=5) for ext in ["png"] if pdf is False else ["png", "pdf"]: fout = join(plt_utils.fout, f"sky_{kind}_{nsim}_from_{dmin}_to_{dmax}_vol{volume_weight}.{ext}") # noqa print(f"Saving to `{fout}`.") plt.savefig(fout, dpi=plt_utils.dpi, bbox_inches="tight") plt.close() ############################################################################### # Command line interface # ############################################################################### if __name__ == "__main__": parser = ArgumentParser() parser.add_argument('-c', '--clean', action='store_true') args = parser.parse_args() cached_funcs = ["load_field"] if args.clean: for func in cached_funcs: print(f"Cleaning cache for function {func}.") delete_disk_caches_for_function(func) if False: plot_mass_vs_ncells(7444, pdf=False) if False: plot_hmf(pdf=False) if True: plot_hmf_quijote_full(pdf=False) if False: kind = "overdensity" grid = 1024 plot_sky_distribution(kind, 7444, grid, nside=64, plot_groups=False, dmin=45, dmax=60, plot_halos=5e13, volume_weight=True) if False: kind = "overdensity" grid = 256 smooth_scale = 0 # plot_projected_field("overdensity", 7444, grid, in_rsp=True, # highres_only=False) plot_projected_field(kind, 7444, grid, in_rsp=False, smooth_scale=smooth_scale, slice_find=0.5, MAS="PCS", highres_only=True) if False: paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring) d = csiborgtools.read.read_h5(paths.particles(7444))["particles"] plt.figure() plt.hist(d[:100000, 4], bins="auto") plt.tight_layout() plt.savefig("../plots/velocity_distribution.png", dpi=450, bbox_inches="tight")