{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Copyright (C) 2024 Richard Stiskalek\n",
    "# This program is free software; you can redistribute it and/or modify it\n",
    "# under the terms of the GNU General Public License as published by the\n",
    "# Free Software Foundation; either version 3 of the License, or (at your\n",
    "# option) any later version.\n",
    "#\n",
    "# This program is distributed in the hope that it will be useful, but\n",
    "# WITHOUT ANY WARRANTY; without even the implied warranty of\n",
    "# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General\n",
    "# Public License for more details.\n",
    "#\n",
    "# You should have received a copy of the GNU General Public License along\n",
    "# with this program; if not, write to the Free Software Foundation, Inc.,\n",
    "# 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.\n",
    "import numpy as np\n",
    "import matplotlib.pyplot as plt\n",
    "from tqdm import trange\n",
    "from joblib import dump\n",
    "from h5py import File\n",
    "\n",
    "import csiborgtools\n",
    "\n",
    "%matplotlib inline\n",
    "%load_ext autoreload\n",
    "%autoreload 2\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [],
   "source": [
    "fpath = \"/mnt/extraspace/rstiskalek/catalogs/PV_compilation.hdf5\"\n",
    "\n",
    "with File(fpath, 'r') as f:\n",
    "    RA_2MTF = f[\"2MTF/RA\"][...]\n",
    "    DEC_2MTF = f[\"2MTF/DEC\"][...]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 36,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Saving to  /mnt/extraspace/rstiskalek/csiborg_postprocessing/flow_mock/Carrick2MTFmock_seed0.hdf5\n"
     ]
    }
   ],
   "source": [
    "!rm /mnt/extraspace/rstiskalek/csiborg_postprocessing/flow_mock/*\n",
    "\n",
    "\n",
    "reader = csiborgtools.read.Carrick2015Field()\n",
    "velocity = reader.velocity_field()\n",
    "boxsize = csiborgtools.simname2boxsize(\"Carrick2015\")\n",
    "\n",
    "mean_mag = 10.31\n",
    "std_mag = 0.83\n",
    "\n",
    "kmax = 1\n",
    "seed = 53\n",
    "\n",
    "for k in trange(kmax):\n",
    "    mock, truths = csiborgtools.flow.mock_Carrick2MTF(\n",
    "        velocity, boxsize, RA_2MTF, DEC_2MTF,\n",
    "        mean_mag=mean_mag, std_mag=std_mag,\n",
    "        seed=seed, verbose=True)\n",
    "    seed += 1\n",
    "\n",
    "    fname = f\"/mnt/extraspace/rstiskalek/csiborg_postprocessing/flow_mock/Carrick2MTFmock_seed{k}.hdf5\"  # noqa\n",
    "    print(\"Saving to \", fname)\n",
    "    with File(fname, 'w') as f:\n",
    "        for key in mock.keys():\n",
    "            f.create_dataset(key, data=mock[key])\n",
    "\n",
    "    fname_truths = fname.replace(\".hdf5\", \"_truths.pkl\")\n",
    "    dump(truths, fname_truths)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 31,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGdCAYAAAA44ojeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAiaElEQVR4nO3df1jV9f3/8QeIgL84CMpBCpTM+SOblT8INadJ0nIVi1U2Zr+8ZBVUaktlSytnYa7SS2dSzbCudDa3NNNrdilOvZaIilmZRtowMT24ZpyTOBDl9f3Dr+ezk5Q/OofzAu+36zrXtfN+v8/bJ2/e17j3Pr9CjDFGAAAAFgkN9gAAAADfRqAAAADrECgAAMA6BAoAALAOgQIAAKxDoAAAAOsQKAAAwDoECgAAsE5YsAe4EPX19Tp48KDatWunkJCQYI8DAADOgTFG33zzjRISEhQa+v3XSJpkoBw8eFCJiYnBHgMAAFyAiooKXXrppd+7TZMMlHbt2kk69QNGRUUFeRoAAHAuPB6PEhMTvX/Hv0+TDJTTT+tERUURKAAANDHn8vIMXiQLAACsQ6AAAADrECgAAMA6BAoAALAOgQIAAKxDoAAAAOsQKAAAwDoECgAAsA6BAgAArEOgAAAA6xAoAADAOgQKAACwDoECAACsQ6AAAADrhAV7AADB12XyqoDuf9+MkQHdP4DmhysoAADAOgQKAACwDoECAACsQ6AAAADrECgAAMA6BAoAALAOgQIAAKxDoAAAAOsQKAAAwDoECgAAsA6BAgAArEOgAAAA6xAoAADAOgQKAACwDoECAACsQ6AAAADrECgAAMA6BAoAALAOgQIAAKxDoAAAAOsQKAAAwDoECgAAsA6BAgAArEOgAAAA6xAoAADAOgQKAACwDoECAACsQ6AAAADrECgAAMA6BAoAALDOeQfKxo0bdfPNNyshIUEhISFavny5d11dXZ0mTZqkK6+8Um3atFFCQoLuvvtuHTx40GcfR44cUVZWlqKiohQdHa0xY8bo6NGjP/iHAQAAzcN5B0p1dbX69OmjefPmnbHu2LFj2r59u6ZMmaLt27fr7bffVllZmW655Raf7bKysvTJJ59ozZo1WrlypTZu3Kjs7OwL/ykAAECzEmKMMRf84JAQLVu2TBkZGd+5zdatWzVgwAB98cUXSkpK0u7du9WrVy9t3bpV/fr1kyStXr1aN910kw4cOKCEhISz/rsej0cOh0Nut1tRUVEXOj6A/6/L5FUB3f++GSMDun8ATcP5/P0O+GtQ3G63QkJCFB0dLUkqLi5WdHS0N04kKS0tTaGhoSopKWlwH7W1tfJ4PD43AADQfAU0UGpqajRp0iTddddd3lJyuVyKi4vz2S4sLEwxMTFyuVwN7ic/P18Oh8N7S0xMDOTYAAAgyAIWKHV1dbrjjjtkjNH8+fN/0L7y8vLkdru9t4qKCj9NCQAAbBQWiJ2ejpMvvvhC69at83meKT4+XocPH/bZ/sSJEzpy5Iji4+Mb3F9ERIQiIiICMSoAALCQ36+gnI6TPXv2aO3atYqNjfVZn5qaqqqqKpWWlnqXrVu3TvX19UpJSfH3OAAAoAk67ysoR48e1d69e733y8vLtWPHDsXExKhTp076xS9+oe3bt2vlypU6efKk93UlMTExCg8PV8+ePXXjjTdq7NixKigoUF1dnXJzczVq1KhzegcPAABo/s47ULZt26Zhw4Z570+YMEGSdM899+ipp57SihUrJElXXXWVz+P+8Y9/aOjQoZKkRYsWKTc3V8OHD1doaKgyMzM1Z86cC/wRAABAc3PegTJ06FB930ennMvHqsTExGjx4sXn+08DAICLBN/FAwAArEOgAAAA6xAoAADAOgH5HBQA+F981w+A88UVFAAAYB0CBQAAWIeneAA0eTyFBDQ/XEEBAADWIVAAAIB1CBQAAGAdAgUAAFiHQAEAANYhUAAAgHUIFAAAYB0CBQAAWIdAAQAA1iFQAACAdQgUAABgHQIFAABYhy8LBICzCOSXEfJFhEDDuIICAACsQ6AAAADrECgAAMA6BAoAALAOgQIAAKxDoAAAAOsQKAAAwDoECgAAsA6BAgAArEOgAAAA6xAoAADAOgQKAACwDoECAACsQ6AAAADrECgAAMA6BAoAALAOgQIAAKxDoAAAAOsQKAAAwDoECgAAsA6BAgAArHPegbJx40bdfPPNSkhIUEhIiJYvX+6z3hijqVOnqlOnTmrVqpXS0tK0Z88en22OHDmirKwsRUVFKTo6WmPGjNHRo0d/0A8CAACaj/MOlOrqavXp00fz5s1rcP3MmTM1Z84cFRQUqKSkRG3atFF6erpqamq822RlZemTTz7RmjVrtHLlSm3cuFHZ2dkX/lMAAIBmJcQYYy74wSEhWrZsmTIyMiSdunqSkJCgxx57TL/5zW8kSW63W06nUwsXLtSoUaO0e/du9erVS1u3blW/fv0kSatXr9ZNN92kAwcOKCEh4az/rsfjkcPhkNvtVlRU1IWODzQpXSavCvYICIB9M0YGewSg0ZzP32+/vgalvLxcLpdLaWlp3mUOh0MpKSkqLi6WJBUXFys6OtobJ5KUlpam0NBQlZSU+HMcAADQRIX5c2cul0uS5HQ6fZY7nU7vOpfLpbi4ON8hwsIUExPj3ebbamtrVVtb673v8Xj8OTYAALBMk3gXT35+vhwOh/eWmJgY7JEAAEAA+TVQ4uPjJUmVlZU+yysrK73r4uPjdfjwYZ/1J06c0JEjR7zbfFteXp7cbrf3VlFR4c+xAQCAZfwaKMnJyYqPj1dRUZF3mcfjUUlJiVJTUyVJqampqqqqUmlpqXebdevWqb6+XikpKQ3uNyIiQlFRUT43AADQfJ33a1COHj2qvXv3eu+Xl5drx44diomJUVJSksaNG6fp06erW7duSk5O1pQpU5SQkOB9p0/Pnj114403auzYsSooKFBdXZ1yc3M1atSoc3oHDwAAaP7OO1C2bdumYcOGee9PmDBBknTPPfdo4cKFmjhxoqqrq5Wdna2qqioNHjxYq1evVmRkpPcxixYtUm5uroYPH67Q0FBlZmZqzpw5fvhxAABAc/CDPgclWPgcFFyM+BwUXAg+ZwU2CdrnoAAAAPgDgQIAAKxDoAAAAOsQKAAAwDoECgAAsA6BAgAArEOgAAAA6xAoAADAOgQKAACwDoECAACsQ6AAAADrECgAAMA6BAoAALAOgQIAAKxDoAAAAOsQKAAAwDoECgAAsA6BAgAArEOgAAAA6xAoAADAOgQKAACwDoECAACsQ6AAAADrECgAAMA6BAoAALBOWLAHABpLl8mrArr/fTNGBnT/AHAx4QoKAACwDoECAACsQ6AAAADrECgAAMA6BAoAALAO7+IB/CTQ7xICgIsJV1AAAIB1CBQAAGAdAgUAAFiHQAEAANYhUAAAgHUIFAAAYB0CBQAAWIdAAQAA1iFQAACAdQgUAABgHb8HysmTJzVlyhQlJyerVatW6tq1q37/+9/LGOPdxhijqVOnqlOnTmrVqpXS0tK0Z88ef48CAACaKL8HynPPPaf58+frj3/8o3bv3q3nnntOM2fO1Ny5c73bzJw5U3PmzFFBQYFKSkrUpk0bpaenq6amxt/jAACAJsjvXxa4adMm3XrrrRo5cqQkqUuXLvrzn/+sLVu2SDp19WT27Nl64okndOutt0qS3njjDTmdTi1fvlyjRo3y90gAAKCJ8fsVlIEDB6qoqEifffaZJOnDDz/UP//5T/30pz+VJJWXl8vlciktLc37GIfDoZSUFBUXF/t7HAAA0AT5/QrK5MmT5fF41KNHD7Vo0UInT57UM888o6ysLEmSy+WSJDmdTp/HOZ1O77pvq62tVW1trfe+x+Px99gAAMAifr+C8pe//EWLFi3S4sWLtX37dr3++ut6/vnn9frrr1/wPvPz8+VwOLy3xMREP04MAABs4/dAefzxxzV58mSNGjVKV155pUaPHq3x48crPz9fkhQfHy9Jqqys9HlcZWWld9235eXlye12e28VFRX+HhsAAFjE74Fy7NgxhYb67rZFixaqr6+XJCUnJys+Pl5FRUXe9R6PRyUlJUpNTW1wnxEREYqKivK5AQCA5svvr0G5+eab9cwzzygpKUlXXHGFPvjgA7344ou6//77JUkhISEaN26cpk+frm7duik5OVlTpkxRQkKCMjIy/D0OAABogvweKHPnztWUKVP00EMP6fDhw0pISNCvf/1rTZ061bvNxIkTVV1drezsbFVVVWnw4MFavXq1IiMj/T0OAABogkLM/37EaxPh8XjkcDjkdrt5ugfnrMvkVcEeAWh0+2aMDPYIgNf5/P3mu3gAAIB1CBQAAGAdAgUAAFiHQAEAANYhUAAAgHUIFAAAYB0CBQAAWIdAAQAA1iFQAACAdQgUAABgHQIFAABYh0ABAADWIVAAAIB1CBQAAGAdAgUAAFiHQAEAANYhUAAAgHXCgj0AACBwukxeFdD975sxMqD7x8WLKygAAMA6BAoAALAOgQIAAKxDoAAAAOsQKAAAwDq8iwcAcMF4lxAChSsoAADAOgQKAACwDoECAACsQ6AAAADrECgAAMA6BAoAALAOgQIAAKxDoAAAAOsQKAAAwDoECgAAsA6BAgAArEOgAAAA6xAoAADAOgQKAACwDoECAACsQ6AAAADrECgAAMA6BAoAALBOQALlyy+/1K9+9SvFxsaqVatWuvLKK7Vt2zbvemOMpk6dqk6dOqlVq1ZKS0vTnj17AjEKAABogvweKF9//bUGDRqkli1b6u9//7t27dqlF154Qe3bt/duM3PmTM2ZM0cFBQUqKSlRmzZtlJ6erpqaGn+PAwAAmqAwf+/wueeeU2JiogoLC73LkpOTvf/bGKPZs2friSee0K233ipJeuONN+R0OrV8+XKNGjXK3yMBAIAmxu9XUFasWKF+/frp9ttvV1xcnK6++mq9+uqr3vXl5eVyuVxKS0vzLnM4HEpJSVFxcXGD+6ytrZXH4/G5AQCA5svvgfKvf/1L8+fPV7du3fTee+/pwQcf1COPPKLXX39dkuRyuSRJTqfT53FOp9O77tvy8/PlcDi8t8TERH+PDQAALOL3QKmvr9c111yjZ599VldffbWys7M1duxYFRQUXPA+8/Ly5Ha7vbeKigo/TgwAAGzj90Dp1KmTevXq5bOsZ8+e2r9/vyQpPj5eklRZWemzTWVlpXfdt0VERCgqKsrnBgAAmi+/B8qgQYNUVlbms+yzzz5T586dJZ16wWx8fLyKioq86z0ej0pKSpSamurvcQAAQBPk93fxjB8/XgMHDtSzzz6rO+64Q1u2bNErr7yiV155RZIUEhKicePGafr06erWrZuSk5M1ZcoUJSQkKCMjw9/jAACAJsjvgdK/f38tW7ZMeXl5mjZtmpKTkzV79mxlZWV5t5k4caKqq6uVnZ2tqqoqDR48WKtXr1ZkZKS/xwEAAE1QiDHGBHuI8+XxeORwOOR2u3k9Cs5Zl8mrgj0CgPO0b8bIYI8APzqfv998Fw8AALAOgQIAAKxDoAAAAOsQKAAAwDoECgAAsA6BAgAArEOgAAAA6xAoAADAOgQKAACwDoECAACsQ6AAAADrECgAAMA6BAoAALAOgQIAAKxDoAAAAOsQKAAAwDoECgAAsA6BAgAArEOgAAAA6xAoAADAOgQKAACwDoECAACsQ6AAAADrECgAAMA6BAoAALBOWLAHAADgu3SZvCpg+943Y2TA9o0fjisoAADAOgQKAACwDoECAACsQ6AAAADrECgAAMA6BAoAALAOgQIAAKxDoAAAAOsQKAAAwDoECgAAsA6BAgAArEOgAAAA6/BlgbBKIL8YDADQdHAFBQAAWIdAAQAA1iFQAACAdQIeKDNmzFBISIjGjRvnXVZTU6OcnBzFxsaqbdu2yszMVGVlZaBHAQAATURAA2Xr1q16+eWX9eMf/9hn+fjx4/Xuu+9q6dKl2rBhgw4ePKjbbrstkKMAAIAmJGDv4jl69KiysrL06quvavr06d7lbrdbCxYs0OLFi3X99ddLkgoLC9WzZ09t3rxZ1157baBGgh/wLhsAQGMI2BWUnJwcjRw5UmlpaT7LS0tLVVdX57O8R48eSkpKUnFxcYP7qq2tlcfj8bkBAIDmKyBXUJYsWaLt27dr69atZ6xzuVwKDw9XdHS0z3Kn0ymXy9Xg/vLz8/X0008HYlQAAGAhv19Bqaio0KOPPqpFixYpMjLSL/vMy8uT2+323ioqKvyyXwAAYCe/B0ppaakOHz6sa665RmFhYQoLC9OGDRs0Z84chYWFyel06vjx46qqqvJ5XGVlpeLj4xvcZ0REhKKionxuAACg+fL7UzzDhw/Xxx9/7LPsvvvuU48ePTRp0iQlJiaqZcuWKioqUmZmpiSprKxM+/fvV2pqqr/HAQAATZDfA6Vdu3bq3bu3z7I2bdooNjbWu3zMmDGaMGGCYmJiFBUVpYcfflipqam8gwcAAEgK0pcFzpo1S6GhocrMzFRtba3S09P10ksvBWMUAABgoRBjjAn2EOfL4/HI4XDI7XbzepRGxuegAGgu9s0YGewRLjrn8/eb7+IBAADWIVAAAIB1CBQAAGAdAgUAAFgnKO/iAQCguQv0mwqa+4t8uYICAACsQ6AAAADr8BRPM8PnlAAAmgOuoAAAAOsQKAAAwDoECgAAsA6BAgAArEOgAAAA6xAoAADAOgQKAACwDoECAACsQ6AAAADrECgAAMA6BAoAALAOgQIAAKxDoAAAAOsQKAAAwDoECgAAsE5YsAcAACAYukxeFewR8D24ggIAAKxDoAAAAOsQKAAAwDoECgAAsA6BAgAArEOgAAAA6xAoAADAOgQKAACwDoECAACsQ6AAAADrECgAAMA6BAoAALAOgQIAAKxDoAAAAOsQKAAAwDoECgAAsA6BAgAArEOgAAAA6/g9UPLz89W/f3+1a9dOcXFxysjIUFlZmc82NTU1ysnJUWxsrNq2bavMzExVVlb6exQAANBE+T1QNmzYoJycHG3evFlr1qxRXV2dRowYoerqau8248eP17vvvqulS5dqw4YNOnjwoG677TZ/jwIAAJqoMH/vcPXq1T73Fy5cqLi4OJWWlmrIkCFyu91asGCBFi9erOuvv16SVFhYqJ49e2rz5s269tpr/T0SAABoYgL+GhS32y1JiomJkSSVlpaqrq5OaWlp3m169OihpKQkFRcXN7iP2tpaeTwenxsAAGi+Ahoo9fX1GjdunAYNGqTevXtLklwul8LDwxUdHe2zrdPplMvlanA/+fn5cjgc3ltiYmIgxwYAAEEW0EDJycnRzp07tWTJkh+0n7y8PLndbu+toqLCTxMCAAAb+f01KKfl5uZq5cqV2rhxoy699FLv8vj4eB0/flxVVVU+V1EqKysVHx/f4L4iIiIUERERqFEBAIBl/H4FxRij3NxcLVu2TOvWrVNycrLP+r59+6ply5YqKiryLisrK9P+/fuVmprq73EAAEAT5PcrKDk5OVq8eLHeeecdtWvXzvu6EofDoVatWsnhcGjMmDGaMGGCYmJiFBUVpYcfflipqam8gwcAAEgKQKDMnz9fkjR06FCf5YWFhbr33nslSbNmzVJoaKgyMzNVW1ur9PR0vfTSS/4eBQAANFF+DxRjzFm3iYyM1Lx58zRv3jx///MAAKAZ4Lt4AACAdQgUAABgHQIFAABYh0ABAADWIVAAAIB1CBQAAGAdAgUAAFgnYN/Fg4Z1mbwq2CMAAGA9rqAAAADrECgAAMA6BAoAALAOgQIAAKxDoAAAAOsQKAAAwDoECgAAsA6BAgAArEOgAAAA6xAoAADAOgQKAACwDoECAACsQ6AAAADrECgAAMA6YcEewEZdJq8K9ggAAFzUuIICAACsQ6AAAADrECgAAMA6BAoAALAOgQIAAKxDoAAAAOsQKAAAwDoECgAAsA6BAgAArEOgAAAA6/BR9wAANEGB/lqWfTNGBnT/Z8MVFAAAYB0CBQAAWIdAAQAA1iFQAACAdQgUAABgHQIFAABYh0ABAADWIVAAAIB1ghoo8+bNU5cuXRQZGamUlBRt2bIlmOMAAABLBC1Q3nrrLU2YMEFPPvmktm/frj59+ig9PV2HDx8O1kgAAMASQQuUF198UWPHjtV9992nXr16qaCgQK1bt9Zrr70WrJEAAIAlgvJdPMePH1dpaany8vK8y0JDQ5WWlqbi4uIztq+trVVtba33vtvtliR5PJ6AzFdfeywg+wUAoKkIxN/Y0/s0xpx126AEyldffaWTJ0/K6XT6LHc6nfr000/P2D4/P19PP/30GcsTExMDNiMAABczx+zA7fubb76Rw+H43m2axLcZ5+XlacKECd779fX1OnLkiGJjYxUSEhLEyS6Mx+NRYmKiKioqFBUVFexxgobjcArH4RSOwykch1M4Dqc0t+NgjNE333yjhISEs24blEDp0KGDWrRoocrKSp/llZWVio+PP2P7iIgIRURE+CyLjo4O5IiNIioqqlmccD8Ux+EUjsMpHIdTOA6ncBxOaU7H4WxXTk4Lyotkw8PD1bdvXxUVFXmX1dfXq6ioSKmpqcEYCQAAWCRoT/FMmDBB99xzj/r166cBAwZo9uzZqq6u1n333ReskQAAgCWCFih33nmn/v3vf2vq1KlyuVy66qqrtHr16jNeONscRURE6MknnzzjaauLDcfhFI7DKRyHUzgOp3AcTrmYj0OIOZf3+gAAADQivosHAABYh0ABAADWIVAAAIB1CBQAAGAdAqURrV+/XiEhIQ3etm7dKknat29fg+s3b94c5On9q0uXLmf8jDNmzPDZ5qOPPtJ1112nyMhIJSYmaubMmUGaNjD27dunMWPGKDk5Wa1atVLXrl315JNP6vjx4z7bXAznw7x589SlSxdFRkYqJSVFW7ZsCfZIAZWfn6/+/furXbt2iouLU0ZGhsrKyny2GTp06Bm/9wceeCBIEwfGU089dcbP2KNHD+/6mpoa5eTkKDY2Vm3btlVmZuYZH/DZHDT0/4chISHKycmRdHGcCw1pEh9131wMHDhQhw4d8lk2ZcoUFRUVqV+/fj7L165dqyuuuMJ7PzY2tlFmbEzTpk3T2LFjvffbtWvn/d8ej0cjRoxQWlqaCgoK9PHHH+v+++9XdHS0srOzgzGu33366aeqr6/Xyy+/rMsvv1w7d+7U2LFjVV1dreeff95n2+Z8Prz11luaMGGCCgoKlJKSotmzZys9PV1lZWWKi4sL9ngBsWHDBuXk5Kh///46ceKEfvvb32rEiBHatWuX2rRp491u7NixmjZtmvd+69atgzFuQF1xxRVau3at935Y2P/9WRo/frxWrVqlpUuXyuFwKDc3V7fddpvef//9YIwaMFu3btXJkye993fu3KkbbrhBt99+u3fZxXAunMEgaI4fP246duxopk2b5l1WXl5uJJkPPvggeIM1gs6dO5tZs2Z95/qXXnrJtG/f3tTW1nqXTZo0yXTv3r0RpguemTNnmuTkZO/9i+F8GDBggMnJyfHeP3nypElISDD5+flBnKpxHT582EgyGzZs8C77yU9+Yh599NHgDdUInnzySdOnT58G11VVVZmWLVuapUuXepft3r3bSDLFxcWNNGFwPProo6Zr166mvr7eGHNxnAsN4SmeIFqxYoX+85//NPjpubfccovi4uI0ePBgrVixIgjTBd6MGTMUGxurq6++Wn/4wx904sQJ77ri4mINGTJE4eHh3mWn/6v666+/Dsa4jcLtdismJuaM5c31fDh+/LhKS0uVlpbmXRYaGqq0tDQVFxcHcbLG5Xa7JemM3/2iRYvUoUMH9e7dW3l5eTp27FgwxguoPXv2KCEhQZdddpmysrK0f/9+SVJpaanq6up8zo0ePXooKSmpWZ8bx48f15tvvqn777/f58twL4Zz4dt4iieIFixYoPT0dF166aXeZW3bttULL7ygQYMGKTQ0VH/729+UkZGh5cuX65ZbbgnitP71yCOP6JprrlFMTIw2bdqkvLw8HTp0SC+++KIkyeVyKTk52ecxpz9l2OVyqX379o0+c6Dt3btXc+fO9Xl6p7mfD1999ZVOnjx5xidIO51Offrpp0GaqnHV19dr3LhxGjRokHr37u1d/stf/lKdO3dWQkKCPvroI02aNEllZWV6++23gzitf6WkpGjhwoXq3r27Dh06pKefflrXXXeddu7cKZfLpfDw8DO+GNbpdMrlcgVn4EawfPlyVVVV6d577/UuuxjOhQYF+xJOczBp0iQj6Xtvu3fv9nlMRUWFCQ0NNX/961/Puv/Ro0ebwYMHB2p8v7mQ43DaggULTFhYmKmpqTHGGHPDDTeY7Oxsn20++eQTI8ns2rUr4D/LD3Ehx+HAgQOma9euZsyYMWfdf1M5H87Fl19+aSSZTZs2+Sx//PHHzYABA4I0VeN64IEHTOfOnU1FRcX3bldUVGQkmb179zbSZI3v66+/NlFRUeZPf/qTWbRokQkPDz9jm/79+5uJEycGYbrGMWLECPOzn/3se7e5GM4FY4zhCoofPPbYYz6125DLLrvM535hYaFiY2PP6b+CU1JStGbNmh8yYqO4kONwWkpKik6cOKF9+/ape/fuio+PP+PV+qfvx8fH+2XeQDnf43Dw4EENGzZMAwcO1CuvvHLW/TeV8+FcdOjQQS1atGjwd23779kfcnNztXLlSm3cuNHnSmpDUlJSJJ260ta1a9fGGK/RRUdH60c/+pH27t2rG264QcePH1dVVZXPVZTmfG588cUXWrt27VmvjFwM54LEUzx+0bFjR3Xs2PGctzfGqLCwUHfffbdatmx51u137NihTp06/ZARG8X5Hof/tWPHDoWGhnrftZGamqrf/e53qqur8x6jNWvWqHv37tY/vXM+x+HLL7/UsGHD1LdvXxUWFio09OwvC2sq58O5CA8PV9++fVVUVKSMjAxJp57yKCoqUm5ubnCHCyBjjB5++GEtW7ZM69evP+PpzIbs2LFDkprN774hR48e1eeff67Ro0erb9++atmypYqKipSZmSlJKisr0/79+5WamhrkSQOjsLBQcXFxGjly5PdudzGcC5J4iicY1q5d+51PdyxcuNAsXrzY7N692+zevds888wzJjQ01Lz22mtBmDQwNm3aZGbNmmV27NhhPv/8c/Pmm2+ajh07mrvvvtu7TVVVlXE6nWb06NFm586dZsmSJaZ169bm5ZdfDuLk/nXgwAFz+eWXm+HDh5sDBw6YQ4cOeW+nXQznw5IlS0xERIRZuHCh2bVrl8nOzjbR0dHG5XIFe7SAefDBB43D4TDr16/3+b0fO3bMGGPM3r17zbRp08y2bdtMeXm5eeedd8xll11mhgwZEuTJ/euxxx4z69evN+Xl5eb99983aWlppkOHDubw4cPGmFNPfyUlJZl169aZbdu2mdTUVJOamhrkqQPj5MmTJikpyUyaNMln+cVyLjSEQAmCu+66ywwcOLDBdQsXLjQ9e/Y0rVu3NlFRUWbAgAE+b7NrDkpLS01KSopxOBwmMjLS9OzZ0zz77LPe15+c9uGHH5rBgwebiIgIc8kll5gZM2YEaeLAKCws/M7XqJx2MZwPxhgzd+5ck5SUZMLDw82AAQPM5s2bgz1SQH3X772wsNAYY8z+/fvNkCFDTExMjImIiDCXX365efzxx43b7Q7u4H525513mk6dOpnw8HBzySWXmDvvvNPndRX//e9/zUMPPWTat29vWrdubX7+85/7BHxz8t577xlJpqyszGf5xXIuNCTEGGOCceUGAADgu/A5KAAAwDoECgAAsA6BAgAArEOgAAAA6xAoAADAOgQKAACwDoECAACsQ6AAAADrECgAAMA6BAoAALAOgQIAAKxDoAAAAOv8PynOiPxX0q37AAAAAElFTkSuQmCC",
      "text/plain": [
       "<Figure size 640x480 with 1 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "plt.figure()\n",
    "plt.hist(mock[\"DEC\"], bins=\"auto\")\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "venv_csiborg",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.4"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}