# Copyright (C) 2022 Richard Stiskalek # This program is free software; you can redistribute it and/or modify it # under the terms of the GNU General Public License as published by the # Free Software Foundation; either version 3 of the License, or (at your # option) any later version. # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General # Public License for more details. # # You should have received a copy of the GNU General Public License along # with this program; if not, write to the Free Software Foundation, Inc., # 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. """ A script to fit halos (concentration, ...). The particle array of each CSiBORG realisation must have been split in advance by `runsplit_halos`. """ from argparse import ArgumentParser from datetime import datetime from os.path import join import numpy from mpi4py import MPI from tqdm import tqdm try: import csiborgtools except ModuleNotFoundError: import sys sys.path.append("../") import csiborgtools parser = ArgumentParser() parser.add_argument("--kind", type=str, choices=["halos", "clumps"]) args = parser.parse_args() # Get MPI things comm = MPI.COMM_WORLD rank = comm.Get_rank() nproc = comm.Get_size() paths = csiborgtools.read.CSiBORGPaths(**csiborgtools.paths_glamdring) partreader = csiborgtools.read.ParticleReader(paths) nfwpost = csiborgtools.fits.NFWPosterior() ftemp = join(paths.temp_dumpdir, "fit_clump_{}_{}_{}.npy") cols_collect = [ ("index", numpy.int32), ("npart", numpy.int32), ("totpartmass", numpy.float32), ("vx", numpy.float32), ("vy", numpy.float32), ("vz", numpy.float32), ("conc", numpy.float32), ("rho0", numpy.float32), ("r200c", numpy.float32), ("r500c", numpy.float32), ("m200c", numpy.float32), ("m500c", numpy.float32), ("lambda200c", numpy.float32), ("r200m", numpy.float32), ("m200m", numpy.float32), ] def fit_clump(particles, clump_info, box): """ Fit an object. Can be eithe a clump or a parent halo. """ obj = csiborgtools.fits.Clump(particles, clump_info, box) out = {} out["npart"] = len(obj) out["totpartmass"] = numpy.sum(obj["M"]) for i, v in enumerate(["vx", "vy", "vz"]): out[v] = numpy.average(obj.vel[:, i], weights=obj["M"]) # Overdensity masses out["r200c"], out["m200c"] = obj.spherical_overdensity_mass(200, kind="crit") out["r500c"], out["m500c"] = obj.spherical_overdensity_mass(500, kind="crit") out["r200m"], out["m200m"] = obj.spherical_overdensity_mass(200, kind="matter") # NFW fit if out["npart"] > 10 and numpy.isfinite(out["r200c"]): Rs, rho0 = nfwpost.fit(obj) out["conc"] = Rs / out["r200c"] out["rho0"] = rho0 # Spin within R200c if numpy.isfinite(out["r200c"]): out["lambda200c"] = obj.lambda_bullock(out["r200c"]) return out def load_clump_particles(clumpid, particle_archive): """ Load a clump's particles from the particle archive. If it is not there, i.e clump has no associated particles, return `None`. """ try: part = particle_archive[str(clumpid)] except KeyError: part = None return part def load_parent_particles(clumpid, particle_archive, clumps_cat): """ Load a parent halo's particles. """ indxs = clumps_cat["index"][clumps_cat["parent"] == clumpid] # We first load the particles of each clump belonging to this parent # and then concatenate them for further analysis. clumps = [] for ind in indxs: parts = load_clump_particles(ind, particle_archive) if parts is not None: clumps.append([parts, None]) if len(clumps) == 0: return None return csiborgtools.match.concatenate_parts(clumps, include_velocities=True) # We now start looping over all simulations for i, nsim in enumerate(paths.get_ics(tonew=False)): if rank == 0: print(f"{datetime.now()}: calculating {i}th simulation `{nsim}`.", flush=True) nsnap = max(paths.get_snapshots(nsim)) box = csiborgtools.read.BoxUnits(nsnap, nsim, paths) # Archive of clumps, keywords are their clump IDs particle_archive = numpy.load(paths.split_path(nsnap, nsim)) clumps_cat = csiborgtools.read.ClumpsCatalogue(nsim, paths, maxdist=None, minmass=None, rawdata=True, load_fitted=False) # We check whether we fit halos or clumps, will be indexing over different # iterators. if args.kind == "halos": ismain = clumps_cat.ismain else: ismain = numpy.ones(len(clumps_cat), dtype=bool) ntasks = len(clumps_cat) # We split the clumps among the processes. Each CPU calculates a fraction # of them and dumps the results in a structured array. Even if we are # calculating parent halo this index runs over all clumps. jobs = csiborgtools.fits.split_jobs(ntasks, nproc)[rank] out = csiborgtools.read.cols_to_structured(len(jobs), cols_collect) for i, j in enumerate(tqdm(jobs)) if nproc == 1 else enumerate(jobs): clumpid = clumps_cat["index"][j] out["index"][i] = clumpid # If we are fitting halos and this clump is not a main, then continue. if args.kind == "halos" and not ismain[j]: continue if args.kind == "halos": part = load_parent_particles(clumpid, particle_archive, clumps_cat) else: part = load_clump_particles(clumpid, particle_archive) # We fit the particles if there are any. If not we assign the index, # otherwise it would be NaN converted to integers (-2147483648) and # yield an error further down. if part is not None: _out = fit_clump(part, clumps_cat[j], box) for key in _out.keys(): out[key][i] = _out[key] fout = ftemp.format(str(nsim).zfill(5), str(nsnap).zfill(5), rank) if nproc == 0: print(f"{datetime.now()}: rank {rank} saving to `{fout}`.", flush=True) numpy.save(fout, out) # We saved this CPU's results in a temporary file. Wait now for the other # CPUs and then collect results from the 0th rank and save them. comm.Barrier() if rank == 0: print(f"{datetime.now()}: collecting results for simulation `{nsim}`.", flush=True) # We write to the output array. Load data from each CPU and append to # the output array. out = csiborgtools.read.cols_to_structured(ntasks, cols_collect) clumpid2outpos = {indx: i for i, indx in enumerate(clumps_cat["index"])} for i in range(nproc): inp = numpy.load(ftemp.format(str(nsim).zfill(5), str(nsnap).zfill(5), i)) for j, clumpid in enumerate(inp["index"]): k = clumpid2outpos[clumpid] for key in inp.dtype.names: out[key][k] = inp[key][j] # If we were analysing main halos, then remove array indices that do # not correspond to parent halos. if args.kind == "halos": out = out[ismain] fout = paths.structfit_path(nsnap, nsim, args.kind) print(f"Saving to `{fout}`.", flush=True) numpy.save(fout, out) # We now wait before moving on to another simulation. comm.Barrier()