# Copyright (C) 2023 Richard Stiskalek # This program is free software; you can redistribute it and/or modify it # under the terms of the GNU General Public License as published by the # Free Software Foundation; either version 3 of the License, or (at your # option) any later version. # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General # Public License for more details. # # You should have received a copy of the GNU General Public License along # with this program; if not, write to the Free Software Foundation, Inc., # 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. from argparse import ArgumentParser from gc import collect from os.path import join import matplotlib as mpl import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1.inset_locator import inset_axes import numpy import scienceplots # noqa from cache_to_disk import cache_to_disk, delete_disk_caches_for_function from scipy.stats import kendalltau from tqdm import trange, tqdm import plt_utils try: import csiborgtools except ModuleNotFoundError: import sys sys.path.append("../") import csiborgtools ############################################################################### # IC overlap plotting # ############################################################################### def open_cat(nsim): """ Open a CSiBORG halo catalogue. Applies only mass selection. Parameters ---------- nsim : int Simulation index. Returns ------- cat : csiborgtools.read.CSiBORGHaloCatalogue """ paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring) bounds = {"dist": (0, 155), "totpartmass": (1e12, None)} return csiborgtools.read.CSiBORGHaloCatalogue(nsim, paths, bounds=bounds) def plot_mass_vs_pairoverlap(nsim0, nsimx): """ Plot the pair overlap of a reference simulation with a single cross simulation as a function of the reference halo mass. Parameters ---------- nsim0 : int Reference simulation index. nsimx : int Cross simulation index. """ paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring) cat0 = open_cat(nsim0) catx = open_cat(nsimx) reader = csiborgtools.read.PairOverlap(cat0, catx, paths) x = reader.copy_per_match("totpartmass") y = reader.overlap(True) x = numpy.log10(numpy.concatenate(x)) y = numpy.concatenate(y) with plt.style.context(plt_utils.mplstyle): plt.figure() plt.hexbin(x, y, mincnt=1, bins="log", gridsize=50) plt.colorbar(label="Counts in bins") plt.xlabel(r"$\log M_{\rm tot} ~ [M_\odot / h]$") plt.ylabel("Pair overlap") plt.ylim(0., 1.) plt.tight_layout() for ext in ["png"]: fout = join(plt_utils.fout, f"mass_vs_pair_overlap{nsim0}.{ext}") print(f"Saving to `{fout}`.") plt.savefig(fout, dpi=plt_utils.dpi, bbox_inches="tight") plt.close() def plot_mass_vs_maxpairoverlap(nsim0, nsimx): """ Plot the maximum pair overlap of a reference simulation haloes with a single cross simulation. Parameters ---------- nsim0 : int Reference simulation index. nsimx : int Cross simulation index. """ paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring) cat0 = open_cat(nsim0) catx = open_cat(nsimx) reader = csiborgtools.read.PairOverlap(cat0, catx, paths) x = numpy.log10(cat0["totpartmass"]) y = reader.overlap(True) def get_max(y_): if len(y_) == 0: return numpy.nan return numpy.max(y_) y = numpy.array([get_max(y_) for y_ in y]) with plt.style.context(plt_utils.mplstyle): plt.figure() plt.hexbin(x, y, mincnt=1, bins="log", gridsize=50) plt.colorbar(label="Counts in bins") plt.xlabel(r"$\log M_{\rm tot} ~ [M_\odot / h]$") plt.ylabel("Maximum pair overlap") plt.ylim(0., 1.) plt.tight_layout() for ext in ["png"]: fout = join(plt_utils.fout, f"mass_vs_maxpairoverlap{nsim0}.{ext}") print(f"Saving to `{fout}`.") plt.savefig(fout, dpi=plt_utils.dpi, bbox_inches="tight") plt.close() @cache_to_disk(7) def get_overlap(simname, nsim0): """ Calculate the summed overlap and probability of no match for a single reference simulation. Parameters ---------- simname : str Simulation name. nsim0 : int Simulation index. Returns ------- mass : 1-dimensional array Mass of halos in the reference simulation. hindxs : 1-dimensional array Halo indices in the reference simulation. max_overlap : 2-dimensional array Maximum overlap for each halo in the reference simulation. summed_overlap : 2-dimensional array Summed overlap for each halo in the reference simulation. prob_nomatch : 2-dimensional array Probability of no match for each halo in the reference simulation. """ paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring) nsimxs = csiborgtools.read.get_cross_sims(simname, nsim0, paths, smoothed=True) cat0 = open_cat(nsim0) catxs = [] print("Opening catalogues...", flush=True) for nsimx in tqdm(nsimxs): catxs.append(open_cat(nsimx)) reader = csiborgtools.read.NPairsOverlap(cat0, catxs, paths) mass = reader.cat0("totpartmass") hindxs = reader.cat0("index") summed_overlap = reader.summed_overlap(True) max_overlap = reader.max_overlap(True) prob_nomatch = reader.prob_nomatch(True) return mass, hindxs, max_overlap, summed_overlap, prob_nomatch def plot_mass_vsmedmaxoverlap(nsim0): """ Plot the mean maximum overlap of a reference simulation haloes with all the cross simulations. Parameters ---------- nsim0 : int Reference simulation index. """ x, __, max_overlap, __, __ = get_overlap("csiborg", nsim0) for i in trange(max_overlap.shape[0]): if numpy.sum(numpy.isnan(max_overlap[i, :])) > 0: max_overlap[i, :] = numpy.nan x = numpy.log10(x) with plt.style.context(plt_utils.mplstyle): fig, axs = plt.subplots(ncols=3, figsize=(3.5 * 2, 2.625)) im1 = axs[0].hexbin(x, numpy.nanmean(max_overlap, axis=1), gridsize=30, mincnt=1, bins="log") im2 = axs[1].hexbin(x, numpy.nanstd(max_overlap, axis=1), gridsize=30, mincnt=1, bins="log") im3 = axs[2].hexbin(numpy.nanmean(max_overlap, axis=1), numpy.nanstd(max_overlap, axis=1), gridsize=30, C=x, reduce_C_function=numpy.nanmean) axs[0].set_xlabel(r"$\log M_{\rm tot} ~ [M_\odot / h]$") axs[0].set_ylabel(r"Mean max. pair overlap") axs[1].set_xlabel(r"$\log M_{\rm tot} ~ [M_\odot / h]$") axs[1].set_ylabel(r"Uncertainty of max. pair overlap") axs[2].set_xlabel(r"Mean max. pair overlap") axs[2].set_ylabel(r"Uncertainty of max. pair overlap") label = ["Bin counts", "Bin counts", r"$\log M_{\rm tot} / M_\odot$"] ims = [im1, im2, im3] for i in range(3): axins = inset_axes(axs[i], width="100%", height="5%", loc='upper center', borderpad=-0.75) fig.colorbar(ims[i], cax=axins, orientation="horizontal", label=label[i]) axins.xaxis.tick_top() axins.xaxis.set_tick_params(labeltop=True) axins.xaxis.set_label_position("top") fig.tight_layout() for ext in ["png"]: fout = join(plt_utils.fout, f"maxpairoverlap_{nsim0}.{ext}") print(f"Saving to `{fout}`.") fig.savefig(fout, dpi=plt_utils.dpi, bbox_inches="tight") plt.close() def plot_summed_overlap_vs_mass(nsim0): """ Plot the summed overlap of probability of no matching for a single reference simulations as a function of the reference halo mass, along with their comparison. Parameters ---------- nsim0 : int Simulation index. Returns ------- None """ x, __, __, summed_overlap, prob_nomatch = get_overlap("csiborg", nsim0) del __ collect() for i in trange(summed_overlap.shape[0]): if numpy.sum(numpy.isnan(summed_overlap[i, :])) > 0: summed_overlap[i, :] = numpy.nan x = numpy.log10(x) mean_overlap = numpy.nanmean(summed_overlap, axis=1) std_overlap = numpy.nanstd(summed_overlap, axis=1) mean_prob_nomatch = numpy.nanmean(prob_nomatch, axis=1) mask = mean_overlap > 0 x = x[mask] mean_overlap = mean_overlap[mask] std_overlap = std_overlap[mask] mean_prob_nomatch = mean_prob_nomatch[mask] with plt.style.context(plt_utils.mplstyle): fig, axs = plt.subplots(ncols=3, figsize=(3.5 * 2, 2.625)) im1 = axs[0].hexbin(x, mean_overlap, mincnt=1, bins="log", gridsize=30) im2 = axs[1].hexbin(x, std_overlap, mincnt=1, bins="log", gridsize=30) im3 = axs[2].scatter(1 - mean_overlap, mean_prob_nomatch, c=x, s=2, rasterized=True) t = numpy.linspace(0.3, 1, 100) axs[2].plot(t, t, color="red", linestyle="--") axs[0].set_ylim(0.) axs[1].set_ylim(0.) axs[0].set_xlabel(r"$\log M_{\rm tot} ~ [M_\odot / h]$") axs[0].set_ylabel("Mean summed overlap") axs[1].set_xlabel(r"$\log M_{\rm tot} ~ [M_\odot / h]$") axs[1].set_ylabel("Uncertainty of summed overlap") axs[2].set_xlabel(r"$1 - $ mean summed overlap") axs[2].set_ylabel("Mean prob. of no match") label = ["Bin counts", "Bin counts", r"$\log M_{\rm tot} ~ [M_\odot / h]$"] ims = [im1, im2, im3] for i in range(3): axins = inset_axes(axs[i], width="100%", height="5%", loc='upper center', borderpad=-0.75) fig.colorbar(ims[i], cax=axins, orientation="horizontal", label=label[i]) axins.xaxis.tick_top() axins.xaxis.set_tick_params(labeltop=True) axins.xaxis.set_label_position("top") fig.tight_layout() for ext in ["png"]: fout = join(plt_utils.fout, f"overlap_stat_{nsim0}.{ext}") print(f"Saving to `{fout}`.") fig.savefig(fout, dpi=plt_utils.dpi, bbox_inches="tight") plt.close() def plot_mass_vs_separation(nsim0, nsimx, plot_std=False, min_overlap=0.0): """ Plot the mass of a reference halo against the weighted separation of its counterparts. Parameters ---------- nsim0 : int Reference simulation index. nsimx : int Cross simulation index. plot_std : bool, optional Whether to plot thestd instead of mean. min_overlap : float, optional Minimum overlap to consider. Returns ------- None """ paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring) cat0 = open_cat(nsim0) catx = open_cat(nsimx) reader = csiborgtools.read.PairOverlap(cat0, catx, paths, maxdist=155) mass = numpy.log10(reader.cat0("totpartmass")) dist = reader.dist(in_initial=False, norm_kind="r200c") overlap = reader.overlap(True) dist = csiborgtools.read.weighted_stats(dist, overlap, min_weight=min_overlap) mask = numpy.isfinite(dist[:, 0]) mass = mass[mask] dist = dist[mask, :] dist = numpy.log10(dist) if not plot_std: p = numpy.polyfit(mass, dist[:, 0], 1) else: p = numpy.polyfit(mass, dist[:, 1], 1) xrange = numpy.linspace(numpy.min(mass), numpy.max(mass), 1000) txt = r"$m = {}$, $c = {}$".format(*plt_utils.latex_float(*p, n=3)) with plt.style.context(plt_utils.mplstyle): fig, ax = plt.subplots() ax.set_title(txt, fontsize="small") if not plot_std: cx = ax.hexbin(mass, dist[:, 0], mincnt=1, bins="log", gridsize=50) ax.set_ylabel(r"$\log \langle \Delta R / R_{\rm 200c}\rangle$") else: cx = ax.hexbin(mass, dist[:, 1], mincnt=1, bins="log", gridsize=50) ax.set_ylabel( r"$\delta \log \langle \Delta R / R_{\rm 200c}\rangle$") ax.plot(xrange, numpy.polyval(p, xrange), color="red", linestyle="--") fig.colorbar(cx, label="Bin counts") ax.set_xlabel(r"$\log M_{\rm tot} ~ [M_\odot / h]$") ax.set_ylabel(r"$\log \langle \Delta R / R_{\rm 200c}\rangle$") fig.tight_layout() for ext in ["png"]: fout = join(plt_utils.fout, f"mass_vs_sep_{nsim0}_{nsimx}_{min_overlap}.{ext}") if plot_std: fout = fout.replace(f".{ext}", f"_std.{ext}") print(f"Saving to `{fout}`.") fig.savefig(fout, dpi=plt_utils.dpi, bbox_inches="tight") plt.close() @cache_to_disk(7) def get_max_key(simname, nsim0, key): """ Get the value of a maximum overlap halo's property. Parameters ---------- simname : str Simulation name. nsim0 : int Reference simulation index. key : str Property to get. Returns ------- mass0 : 1-dimensional array Mass of the reference haloes. key_val : 1-dimensional array Value of the property of the reference haloes. max_overlap : 2-dimensional array Maximum overlap of the reference haloes. stat : 2-dimensional array Value of the property of the maximum overlap halo. """ paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring) nsimxs = csiborgtools.read.get_cross_sims(simname, nsim0, paths, smoothed=True) nsimxs = nsimxs cat0 = open_cat(nsim0) catxs = [] print("Opening catalogues...", flush=True) for nsimx in tqdm(nsimxs): catxs.append(open_cat(nsimx)) reader = csiborgtools.read.NPairsOverlap(cat0, catxs, paths) mass0 = reader.cat0("totpartmass") key_val = reader.cat0(key) max_overlap = reader.max_overlap(True) stat = reader.max_overlap_key(key, True) return mass0, key_val, max_overlap, stat def plot_maxoverlap_mass(nsim0): """ Plot the mass of the reference haloes against the mass of the maximum overlap haloes. Parameters ---------- nsim0 : int Reference simulation index. """ mass0, __, __, stat = get_max_key("csiborg", nsim0, "totpartmass") mu = numpy.mean(stat, axis=1) std = numpy.std(numpy.log10(stat), axis=1) mu = numpy.log10(mu) mass0 = numpy.log10(mass0) with plt.style.context(plt_utils.mplstyle): fig, axs = plt.subplots(ncols=2, figsize=(3.5 * 1.75, 2.625)) im0 = axs[0].hexbin(mass0, mu, mincnt=1, bins="log", gridsize=50) im1 = axs[1].hexbin(mass0, std, mincnt=1, bins="log", gridsize=50) m = numpy.isfinite(mass0) & numpy.isfinite(mu) print("True to expectation corr: ", kendalltau(mass0[m], mu[m])) t = numpy.linspace(*numpy.percentile(mass0, [0, 100]), 1000) axs[0].plot(t, t, color="red", linestyle="--") axs[0].plot(t, t + 0.2, color="red", linestyle="--", alpha=0.5) axs[0].plot(t, t - 0.2, color="red", linestyle="--", alpha=0.5) axs[0].set_xlabel(r"$\log M_{\rm tot} ~ [M_\odot / h]$") axs[1].set_xlabel(r"$\log M_{\rm tot} ~ [M_\odot / h]$") axs[0].set_ylabel( r"Max. overlap mean of $\log M_{\rm tot} ~ [M_\odot / h]$") axs[1].set_ylabel( r"Max. overlap std. of $\log M_{\rm tot} ~ [M_\odot / h]$") ims = [im0, im1] for i in range(2): axins = inset_axes(axs[i], width="100%", height="5%", loc='upper center', borderpad=-0.75) fig.colorbar(ims[i], cax=axins, orientation="horizontal", label="Bin counts") axins.xaxis.tick_top() axins.xaxis.set_tick_params(labeltop=True) axins.xaxis.set_label_position("top") fig.tight_layout() for ext in ["png"]: fout = join(plt_utils.fout, f"max_totpartmass_{nsim0}.{ext}") print(f"Saving to `{fout}`.") fig.savefig(fout, dpi=plt_utils.dpi, bbox_inches="tight") plt.close() def plot_maxoverlapstat(nsim0, key): """ Plot the mass of the reference haloes against the value of the maximum overlap statistic. Parameters ---------- nsim0 : int Reference simulation index. key : str Property to get. """ assert key != "totpartmass" mass0, key_val, __, stat = get_max_key("csiborg", nsim0, key) xlabels = {"lambda200c": r"\log \lambda_{\rm 200c}"} key_label = xlabels.get(key, key) mass0 = numpy.log10(mass0) key_val = numpy.log10(key_val) mu = numpy.mean(stat, axis=1) std = numpy.std(numpy.log10(stat), axis=1) mu = numpy.log10(mu) with plt.style.context(plt_utils.mplstyle): fig, axs = plt.subplots(ncols=3, figsize=(3.5 * 2, 2.625)) im0 = axs[0].hexbin(mass0, mu, mincnt=1, bins="log", gridsize=30) im1 = axs[1].hexbin(mass0, std, mincnt=1, bins="log", gridsize=30) im2 = axs[2].hexbin(key_val, mu, mincnt=1, bins="log", gridsize=30) m = numpy.isfinite(key_val) & numpy.isfinite(mu) print("True to expectation corr: ", kendalltau(key_val[m], mu[m])) axs[0].set_xlabel(r"$\log M_{\rm tot} ~ [M_\odot / h]$") axs[0].set_ylabel(r"Max. overlap mean of ${}$".format(key_label)) axs[1].set_xlabel(r"$\log M_{\rm tot} ~ [M_\odot / h]$") axs[1].set_ylabel(r"Max. overlap std. of ${}$".format(key_label)) axs[2].set_xlabel(r"${}$".format(key_label)) axs[2].set_ylabel(r"Max. overlap mean of ${}$".format(key_label)) ims = [im0, im1, im2] for i in range(3): axins = inset_axes(axs[i], width="100%", height="5%", loc='upper center', borderpad=-0.75) fig.colorbar(ims[i], cax=axins, orientation="horizontal", label="Bin counts") axins.xaxis.tick_top() axins.xaxis.set_tick_params(labeltop=True) axins.xaxis.set_label_position("top") fig.tight_layout() for ext in ["png"]: fout = join(plt_utils.fout, f"max_{key}_{nsim0}.{ext}") print(f"Saving to `{fout}`.") fig.savefig(fout, dpi=plt_utils.dpi, bbox_inches="tight") plt.close() @cache_to_disk(7) def get_expected_mass(simname, nsim0, min_overlap): """ Get the expected mass of a reference halo given its overlap with halos from other simulations. Parameters ---------- simname : str Simulation name. nsim0 : int Reference simulation index. min_overlap : float Minimum overlap to consider between a pair of haloes. Returns ------- mass : 1-dimensional array Mass of the reference haloes. mu : 1-dimensional array Expected mass of the matched haloes. std : 1-dimensional array Standard deviation of the expected mass of the matched haloes. prob_nomatch : 2-dimensional array Probability of not matching the reference halo. """ paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring) nsimxs = csiborgtools.read.get_cross_sims(simname, nsim0, paths, smoothed=True) nsimxs = nsimxs cat0 = open_cat(nsim0) catxs = [] print("Opening catalogues...", flush=True) for nsimx in tqdm(nsimxs): catxs.append(open_cat(nsimx)) reader = csiborgtools.read.NPairsOverlap(cat0, catxs, paths) mass = reader.cat0("totpartmass") mu, std = reader.counterpart_mass(True, overlap_threshold=min_overlap, in_log=False, return_full=False) prob_nomatch = reader.prob_nomatch(True) return mass, mu, std, prob_nomatch def plot_mass_vs_expected_mass(nsim0, min_overlap=0, max_prob_nomatch=1): """ Plot the mass of a reference halo against the expected mass of its counterparts. Parameters ---------- nsim0 : int Reference simulation index. min_overlap : float, optional Minimum overlap between a pair of haloes to consider. max_prob_nomatch : float, optional Maximum probability of no match to consider. """ mass, mu, std, prob_nomatch = get_expected_mass("csiborg", nsim0, min_overlap) std = std / mu / numpy.log(10) mass = numpy.log10(mass) mu = numpy.log10(mu) prob_nomatch = numpy.nanmedian(prob_nomatch, axis=1) mask = numpy.isfinite(mass) & numpy.isfinite(mu) mask &= (prob_nomatch < max_prob_nomatch) with plt.style.context(plt_utils.mplstyle): fig, axs = plt.subplots(ncols=3, figsize=(3.5 * 2, 2.625)) im0 = axs[0].hexbin(mass[mask], mu[mask], mincnt=1, bins="log", gridsize=50,) im1 = axs[1].hexbin(mass[mask], std[mask], mincnt=1, bins="log", gridsize=50) im2 = axs[2].hexbin(1 - prob_nomatch[mask], mass[mask] - mu[mask], gridsize=50, C=mass[mask], reduce_C_function=numpy.nanmedian) axs[2].axhline(0, color="red", linestyle="--", alpha=0.5) axs[0].set_xlabel(r"True $\log M_{\rm tot} ~ [M_\odot / h]$") axs[0].set_ylabel(r"Expected $\log M_{\rm tot} ~ [M_\odot / h]$") axs[1].set_xlabel(r"True $\log M_{\rm tot} ~ [M_\odot / h]$") axs[1].set_ylabel(r"Std. of $\sigma_{\log M_{\rm tot}}$") axs[2].set_xlabel(r"1 - median prob. of no match") axs[2].set_ylabel(r"$\log M_{\rm tot} - \log M_{\rm tot, exp}$") t = numpy.linspace(*numpy.percentile(mass[mask], [0, 100]), 1000) axs[0].plot(t, t, color="red", linestyle="--") axs[0].plot(t, t + 0.2, color="red", linestyle="--", alpha=0.5) axs[0].plot(t, t - 0.2, color="red", linestyle="--", alpha=0.5) ims = [im0, im1, im2] labels = ["Bin counts", "Bin counts", r"$\log M_{\rm tot} ~ [M_\odot / h]$"] for i in range(3): axins = inset_axes(axs[i], width="100%", height="5%", loc='upper center', borderpad=-0.75) fig.colorbar(ims[i], cax=axins, orientation="horizontal", label=labels[i]) axins.xaxis.tick_top() axins.xaxis.set_tick_params(labeltop=True) axins.xaxis.set_label_position("top") fig.tight_layout() for ext in ["png"]: fout = join(plt_utils.fout, f"mass_vs_expmass_{nsim0}_{max_prob_nomatch}.{ext}") print(f"Saving to `{fout}`.") fig.savefig(fout, dpi=plt_utils.dpi, bbox_inches="tight") plt.close() ############################################################################### # Nearest neighbour plotting # ############################################################################### def read_dist(simname, run, kind, kwargs): """ Read PDF/CDF of a nearest neighbour distribution. Parameters ---------- simname : str Simulation name. Must be either `csiborg` or `quijote`. run : str Run name. kind : str Kind of distribution. Must be either `pdf` or `cdf`. kwargs : dict Nearest neighbour reader keyword arguments. Returns ------- dist : 2-dimensional array Distribution of distances in radial and neighbour bins. """ paths = csiborgtools.read.Paths(**kwargs["paths_kind"]) reader = csiborgtools.read.NearestNeighbourReader(**kwargs, paths=paths) fpath = paths.cross_nearest(simname, run, "tot_counts", nsim=0, nobs=0) counts = numpy.load(fpath)["tot_counts"] return reader.build_dist(counts, kind) def pull_cdf(x, fid_cdf, test_cdf): """ Pull a CDF so that it matches the fiducial CDF at 0.5. Rescales the x-axis, while keeping the corresponding CDF values fixed. Parameters ---------- x : 1-dimensional array The x-axis of the CDF. fid_cdf : 1-dimensional array The fiducial CDF. test_cdf : 1-dimensional array The test CDF to be pulled. Returns ------- xnew : 1-dimensional array The new x-axis of the test CDF. test_cdf : 1-dimensional array The new test CDF. """ xnew = x * numpy.interp(0.5, fid_cdf, x) / numpy.interp(0.5, test_cdf, x) return xnew, test_cdf def plot_dist(run, kind, kwargs, runs_to_mass, pulled_cdf=False, r200=None): r""" Plot the PDF or CDF of the nearest neighbour distance for CSiBORG and Quijote. Parameters ---------- run : str Run name. kind : str Kind of distribution. Must be either `pdf` or `cdf`. kwargs : dict Nearest neighbour reader keyword arguments. runs_to_mass : dict Dictionary mapping run names to halo mass range. pulled_cdf : bool, optional Whether to pull the CDFs of CSiBORG and Quijote so that they match (individually) at 0.5. Default is `False`. r200 : float, optional Halo radial size :math:`R_{200}`. If set, the x-axis will be scaled by it. Returns ------- None """ assert kind in ["pdf", "cdf"] print(f"Plotting the {kind} for {run}...", flush=True) reader = csiborgtools.read.NearestNeighbourReader( **kwargs, paths=csiborgtools.read.Paths(**kwargs["paths_kind"])) raddist = reader.bin_centres("radial") r = reader.bin_centres("neighbour") r = r / r200 if r200 is not None else r y_csiborg = read_dist("csiborg", run, kind, kwargs) y_quijote = read_dist("quijote", run, kind, kwargs) with plt.style.context(plt_utils.mplstyle): norm = mpl.colors.Normalize(vmin=numpy.min(raddist), vmax=numpy.max(raddist)) cmap = mpl.cm.ScalarMappable(norm=norm, cmap=mpl.cm.viridis) cmap.set_array([]) fig, ax = plt.subplots() if run != "mass009": ax.set_title(r"${} \leq \log M_{{\rm tot}} / (M_\odot h) < {}$" .format(*runs_to_mass[run]), fontsize="small") else: ax.set_title(r"$\log M_{{\rm tot}} / (M_\odot h) \geq {}$" .format(runs_to_mass[run][0]), fontsize="small") # Plot data nrad = y_csiborg.shape[0] for i in range(nrad): if pulled_cdf: x1, y1 = pull_cdf(r, y_csiborg[0], y_csiborg[i]) x2, y2 = pull_cdf(r, y_quijote[0], y_quijote[i]) else: x1, y1 = r, y_csiborg[i] x2, y2 = r, y_quijote[i] ax.plot(x1, y1, c=cmap.to_rgba(raddist[i]), label="CSiBORG" if i == 0 else None) ax.plot(x2, y2, c="gray", ls="--", label="Quijote" if i == 0 else None) fig.colorbar(cmap, ax=ax, label=r"$R_{\rm dist}~[\mathrm{Mpc} / h]$") ax.grid(alpha=0.5, lw=0.4) # Plot labels if pulled_cdf: if r200 is None: ax.set_xlabel(r"$\tilde{r}_{1\mathrm{NN}}~[\mathrm{Mpc} / h]$") if kind == "pdf": ax.set_ylabel(r"$p(\tilde{r}_{1\mathrm{NN}})$") else: ax.set_ylabel(r"$\mathrm{CDF}(\tilde{r}_{1\mathrm{NN}})$") else: ax.set_xlabel(r"$\tilde{r}_{1\mathrm{NN}} / R_{200c}$") if kind == "pdf": ax.set_ylabel(r"$p(\tilde{r}_{1\mathrm{NN}} / R_{200c})$") else: ax.set_ylabel(r"$\mathrm{CDF}(\tilde{r}_{1\mathrm{NN}} / R_{200c})$") # noqa else: if r200 is None: ax.set_xlabel(r"$r_{1\mathrm{NN}}~[\mathrm{Mpc} / h]$") if kind == "pdf": ax.set_ylabel(r"$p(r_{1\mathrm{NN}})$") else: ax.set_ylabel(r"$\mathrm{CDF}(r_{1\mathrm{NN}})$") else: ax.set_xlabel(r"$r_{1\mathrm{NN}} / R_{200c}$") if kind == "pdf": ax.set_ylabel(r"$p(r_{1\mathrm{NN}} / R_{200c})$") else: ax.set_ylabel(r"$\mathrm{CDF}(r_{1\mathrm{NN}} / R_{200c})$") # noqa if kind == "cdf": xmax = numpy.min(r[numpy.isclose(y_quijote[-1, :], 1.)]) if xmax > 0: ax.set_xlim(0, xmax) ax.set_ylim(0, 1) ax.legend(fontsize="small") fig.tight_layout() for ext in ["png"]: if pulled_cdf: fout = join(plt_utils.fout, f"1nn_{kind}_{run}_pulled.{ext}") else: fout = join(plt_utils.fout, f"1nn_{kind}_{run}.{ext}") print(f"Saving to `{fout}`.") fig.savefig(fout, dpi=plt_utils.dpi, bbox_inches="tight") plt.close() def get_cdf_diff(x, y_csiborg, y_quijote, pulled_cdf): """ Get difference between the two CDFs as a function of radial distance. Parameters ---------- x : 1-dimensional array The x-axis of the CDFs. y_csiborg : 2-dimensional array The CDFs of CSiBORG. y_quijote : 2-dimensional array The CDFs of Quijote. pulled_cdf : bool Whether to pull the CDFs of CSiBORG and Quijote. Returns ------- dy : 2-dimensional array The difference between the two CDFs. """ dy = numpy.full_like(y_csiborg, numpy.nan) for i in range(y_csiborg.shape[0]): if pulled_cdf: x1, y1 = pull_cdf(x, y_csiborg[0], y_csiborg[i]) y1 = numpy.interp(x, x1, y1, left=0., right=1.) x2, y2 = pull_cdf(x, y_quijote[0], y_quijote[i]) y2 = numpy.interp(x, x2, y2, left=0., right=1.) dy[i] = y1 - y2 else: dy[i] = y_csiborg[i] - y_quijote[i] return dy def plot_cdf_diff(runs, kwargs, pulled_cdf, runs_to_mass): """ Plot the CDF difference between Quijote and CSiBORG. Parameters ---------- runs : list of str Run names. kwargs : dict Nearest neighbour reader keyword arguments. pulled_cdf : bool Whether to pull the CDFs of CSiBORG and Quijote. runs_to_mass : dict Dictionary mapping run names to halo mass range. Returns ------- None """ print("Plotting the CDF difference...", flush=True) paths = csiborgtools.read.Paths(**kwargs["paths_kind"]) reader = csiborgtools.read.NearestNeighbourReader(**kwargs, paths=paths) r = reader.bin_centres("neighbour") runs_to_mass = [numpy.mean(runs_to_mass[run]) for run in runs] with plt.style.context(plt_utils.mplstyle): norm = mpl.colors.Normalize(vmin=min(runs_to_mass), vmax=max(runs_to_mass)) cmap = mpl.cm.ScalarMappable(norm=norm, cmap=mpl.cm.viridis) cmap.set_array([]) fig, ax = plt.subplots() for i, run in enumerate(runs): y_quijote = read_dist("quijote", run, "cdf", kwargs) y_csiborg = read_dist("csiborg", run, "cdf", kwargs) dy = get_cdf_diff(r, y_csiborg, y_quijote, pulled_cdf) ax.plot(r, numpy.median(dy, axis=0), c=cmap.to_rgba(runs_to_mass[i])) ax.fill_between(r, *numpy.percentile(dy, [16, 84], axis=0), alpha=0.5, color=cmap.to_rgba(runs_to_mass[i])) fig.colorbar(cmap, ax=ax, ticks=runs_to_mass, label=r"$\log M_{\rm tot} ~ [M_\odot / h]$") ax.set_xlim(0.0, 55) ax.set_ylim(0) ax.grid(alpha=1/3, lw=0.4) # Plot labels if pulled_cdf: ax.set_xlabel(r"$\tilde{r}_{1\mathrm{NN}}~[\mathrm{Mpc} / h]$") else: ax.set_xlabel(r"$r_{1\mathrm{NN}}~[\mathrm{Mpc} / h]$") ax.set_ylabel(r"$\Delta \mathrm{CDF}(r_{1\mathrm{NN}})$") # Plot labels if pulled_cdf: ax.set_xlabel(r"$\tilde{r}_{1\mathrm{NN}}~[\mathrm{Mpc} / h]$") ax.set_ylabel(r"$\Delta \mathrm{CDF}(\tilde{r}_{1\mathrm{NN}})$") else: ax.set_xlabel(r"$r_{1\mathrm{NN}}~[\mathrm{Mpc} / h]$") ax.set_ylabel(r"$\Delta \mathrm{CDF}(r_{1\mathrm{NN}})$") fig.tight_layout() for ext in ["png"]: if pulled_cdf: fout = join(plt_utils.fout, f"1nn_diff_pulled.{ext}") else: fout = join(plt_utils.fout, f"1nn_diff.{ext}") print(f"Saving to `{fout}`.") fig.savefig(fout, dpi=plt_utils.dpi, bbox_inches="tight") plt.close() @cache_to_disk(7) def make_kl(simname, run, nsim, nobs, kwargs): """ Calculate the KL divergence between the distribution of nearest neighbour distances of haloes in a reference simulation with respect to Quijote. Parameters ---------- simname : str Simulation name. Must be either `csiborg` or `quijote`. run : str Run name. nsim : int Simulation index. nobs : int Fiducial Quijote observer index. For CSiBORG must be set to `None`. kwargs : dict Nearest neighbour reader keyword arguments. Returns ------- kl : 1-dimensional array KL divergence of the distribution of nearest neighbour distances of each halo in the reference simulation. """ paths = csiborgtools.read.Paths(**kwargs["paths_kind"]) reader = csiborgtools.read.NearestNeighbourReader(**kwargs, paths=paths) # This is the reference PDF. Must be Quijote! pdf = read_dist("quijote", run, "pdf", kwargs) return reader.kl_divergence(simname, run, nsim, pdf, nobs=nobs) @cache_to_disk(7) def make_ks(simname, run, nsim, nobs, kwargs): """ Calculate the KS significance between the distribution of nearest neighbour distances of haloes in a reference simulation with respect to Quijote. Parameters ---------- simname : str Simulation name. Must be either `csiborg` or `quijote`. run : str Run name. nsim : int Simulation index. nobs : int Fiducial Quijote observer index. For CSiBORG must be set to `None`. kwargs : dict Nearest neighbour reader keyword arguments. Returns ------- ks : 1-dimensional array KS significance of the distribution of nearest neighbour distances of each halo in the reference simulation. """ paths = csiborgtools.read.Paths(**kwargs["paths_kind"]) reader = csiborgtools.read.NearestNeighbourReader(**kwargs, paths=paths) # This is the reference CDF. Must be Quijote! cdf = read_dist("quijote", run, "cdf", kwargs) return reader.ks_significance(simname, run, nsim, cdf, nobs=nobs) def get_cumulative_significance(simname, runs, nsim, nobs, kind, kwargs): """ Calculate the cumulative significance of the distribution of nearest neighbours and evaluate it at the same points for all runs. Parameters ---------- simname : str Simulation name. Must be either `csiborg` or `quijote`. runs : list of str Run names. nsim : int Simulation index. nobs : int Fiducial Quijote observer index. For CSiBORG must be set to `None`. kind : str Must be either `kl` (Kullback-Leibler diverge) or `ks` (Kolmogorov-Smirnov p-value). kwargs : dict Nearest neighbour reader keyword arguments. Returns ------- z : 1-dimensional array Points where the cumulative significance is evaluated. cumsum : 2-dimensional array of shape `(len(runs), len(z)))` Cumulative significance of the distribution of nearest neighbours. """ significances = [] for run in runs: if kind == "kl": x = make_kl(simname, run, nsim, nobs, kwargs) else: x = make_ks(simname, run, nsim, nobs, kwargs) x = numpy.log10(x) x = x[numpy.isfinite(x)] x = numpy.sort(x) significances.append(x) z = numpy.hstack(significances).reshape(-1, ) if kind == "ks": zmin, zmax = numpy.percentile(z, [1, 100]) else: zmin, zmax = numpy.percentile(z, [0.0, 99.9]) z = numpy.linspace(zmin, zmax, 1000, dtype=numpy.float32) cumsum = numpy.full((len(runs), z.size), numpy.nan, dtype=numpy.float32) for i, run in enumerate(runs): x = significances[i] y = numpy.linspace(0, 1, x.size) cumsum[i, :] = numpy.interp(z, x, y, left=0, right=1) return z, cumsum def plot_significance(simname, runs, nsim, nobs, kind, kwargs, runs_to_mass): """ Plot cumulative significance of the 1NN distribution. Parameters ---------- simname : str Simulation name. Must be either `csiborg` or `quijote`. runs : list of str Run names. nsim : int Simulation index. nobs : int Fiducial Quijote observer index. For CSiBORG must be set to `None`. kind : str Must be either `kl` (Kullback-Leibler diverge) or `ks` (Kolmogorov-Smirnov p-value). kwargs : dict Nearest neighbour reader keyword arguments. runs_to_mass : dict Dictionary mapping run names to total halo mass range. upper_threshold : bool, optional Returns ------- None """ assert kind in ["kl", "ks"] runs_to_mass = [numpy.mean(runs_to_mass[run]) for run in runs] with plt.style.context(plt_utils.mplstyle): norm = mpl.colors.Normalize(vmin=min(runs_to_mass), vmax=max(runs_to_mass)) cmap = mpl.cm.ScalarMappable(norm=norm, cmap=mpl.cm.viridis) cmap.set_array([]) fig, ax = plt.subplots(figsize=(3.5, 2.625 * 1.2), nrows=2, sharex=True, height_ratios=[1, 0.5]) fig.subplots_adjust(hspace=0, wspace=0) z, cumsum = get_cumulative_significance(simname, runs, nsim, nobs, kind, kwargs) for i in range(len(runs)): ax[0].plot(z, cumsum[i, :], color=cmap.to_rgba(runs_to_mass[i])) dy = cumsum[-1, :] - cumsum[i, :] if kind == "kl": dy *= -1 ax[1].plot(z, dy, color=cmap.to_rgba(runs_to_mass[i])) cbar_ax = fig.add_axes([1.0, 0.125, 0.035, 0.85]) fig.colorbar(cmap, cax=cbar_ax, ticks=runs_to_mass, label=r"$\log M_{\rm tot} ~ [M_\odot / h]$") ax[0].set_xlim(z[0], z[-1]) ax[0].set_ylim(1e-5, 1.) if kind == "ks": ax[1].set_xlabel(r"$\log p$-value of $r_{1\mathrm{NN}}$ distribution") # noqa else: ax[1].set_xlabel(r"$D_{\mathrm{KL}}$ of $r_{1\mathrm{NN}}$ distribution") # noqa ax[0].set_ylabel(r"Cumulative norm. counts") ax[1].set_ylabel(r"$\Delta f$") fig.tight_layout(h_pad=0, w_pad=0) for ext in ["png"]: if simname == "quijote": paths = csiborgtools.read.Paths(**kwargs["paths_kind"]) nsim = paths.quijote_fiducial_nsim(nsim, nobs) nsim = str(nsim).zfill(5) fout = join( plt_utils.fout, f"significance_{kind}_{simname}_{nsim}_{runs}.{ext}") print(f"Saving to `{fout}`.") fig.savefig(fout, dpi=plt_utils.dpi, bbox_inches="tight") plt.close() def make_binlims(run, runs_to_mass, upper_threshold=None): """ Make bin limits for the 1NN distance runs, corresponding to the first half of the log-mass bin. Parameters ---------- run : str Run name. runs_to_mass : dict Dictionary mapping run names to total halo mass range. upper_threshold : float, optional Bin width in dex. If set to `None`, the bin width is taken from the `runs_to_mass` dictionary. Returns ------- xmin, xmax : floats """ xmin, xmax = runs_to_mass[run] if upper_threshold is not None: xmax = xmin + upper_threshold xmin, xmax = 10**xmin, 10**xmax if run == "mass009": xmax = numpy.infty return xmin, xmax def plot_significance_vs_mass(simname, runs, nsim, nobs, kind, kwargs, runs_to_mass, upper_threshold=False): """ Plot significance of the 1NN distance as a function of the total mass. Parameters ---------- simname : str Simulation name. Must be either `csiborg` or `quijote`. runs : list of str Run names. nsim : int Simulation index. nobs : int Fiducial Quijote observer index. For CSiBORG must be set to `None`. kind : str Must be either `kl` (Kullback-Leibler diverge) or `ks` (Kolmogorov-Smirnov p-value). kwargs : dict Nearest neighbour reader keyword arguments. runs_to_mass : dict Dictionary mapping run names to total halo mass range. upper_threshold : bool, optional Whether to enforce an upper threshold on halo mass. Returns ------- None """ print(f"Plotting {kind} significance vs mass.") assert kind in ["kl", "ks"] paths = csiborgtools.read.Paths(**kwargs["paths_kind"]) reader = csiborgtools.read.NearestNeighbourReader(**kwargs, paths=paths) with plt.style.context(plt_utils.mplstyle): plt.figure() xs, ys = [], [] for run in runs: x = reader.read_single(simname, run, nsim, nobs)["mass"] if kind == "kl": y = make_kl(simname, run, nsim, nobs, kwargs) else: y = numpy.log10(make_ks(simname, run, nsim, nobs, kwargs)) xmin, xmax = make_binlims(run, runs_to_mass, upper_threshold) mask = (x >= xmin) & (x < xmax) xs.append(numpy.log10(x[mask])) ys.append(y[mask]) xs = numpy.concatenate(xs) ys = numpy.concatenate(ys) plt.hexbin(xs, ys, gridsize=75, mincnt=1, bins="log") mask = numpy.isfinite(xs) & numpy.isfinite(ys) corr = plt_utils.latex_float(*kendalltau(xs[mask], ys[mask])) plt.title(r"$\tau = {}, p = {}$".format(*corr), fontsize="small") plt.xlabel(r"$\log M_{\rm tot} ~ [M_\odot / h]$") if kind == "ks": plt.ylabel(r"$\log p$-value of $r_{1\mathrm{NN}}$ distribution") plt.ylim(top=0) else: plt.ylabel(r"$D_{\mathrm{KL}}$ of $r_{1\mathrm{NN}}$ distribution") plt.ylim(bottom=0) plt.colorbar(label="Bin counts") plt.tight_layout() for ext in ["png"]: if simname == "quijote": nsim = paths.quijote_fiducial_nsim(nsim, nobs) nsim = str(nsim).zfill(5) fout = f"sgnf_vs_mass_{kind}_{simname}_{nsim}_{runs}.{ext}" if upper_threshold: fout = fout.replace(f".{ext}", f"_upper_threshold.{ext}") fout = join(plt_utils.fout, fout) print(f"Saving to `{fout}`.") plt.savefig(fout, dpi=plt_utils.dpi, bbox_inches="tight") plt.close() def plot_kl_vs_ks(simname, runs, nsim, nobs, kwargs, runs_to_mass, upper_threshold=False): """ Plot Kullback-Leibler divergence vs Kolmogorov-Smirnov statistic p-value. Parameters ---------- simname : str Simulation name. Must be either `csiborg` or `quijote`. runs : str Run names. nsim : int Simulation index. nobs : int Fiducial Quijote observer index. For CSiBORG must be set to `None`. kwargs : dict Nearest neighbour reader keyword arguments. runs_to_mass : dict Dictionary mapping run names to total halo mass range. upper_threshold : bool, optional Whether to enforce an upper threshold on halo mass. Returns ------- None """ paths = csiborgtools.read.Paths(**kwargs["paths_kind"]) reader = csiborgtools.read.NearestNeighbourReader(**kwargs, paths=paths) xs, ys, cs = [], [], [] for run in runs: c = reader.read_single(simname, run, nsim, nobs)["mass"] x = make_kl(simname, run, nsim, nobs, kwargs) y = make_ks(simname, run, nsim, nobs, kwargs) cmin, cmax = make_binlims(run, runs_to_mass) mask = (c >= cmin) & (c < cmax if upper_threshold else True) xs.append(x[mask]) ys.append(y[mask]) cs.append(c[mask]) xs = numpy.concatenate(xs) ys = numpy.log10(numpy.concatenate(ys)) cs = numpy.log10(numpy.concatenate(cs)) with plt.style.context(plt_utils.mplstyle): plt.figure() plt.hexbin(xs, ys, C=cs, gridsize=50, mincnt=0, reduce_C_function=numpy.median) mask = numpy.isfinite(xs) & numpy.isfinite(ys) corr = plt_utils.latex_float(*kendalltau(xs[mask], ys[mask])) plt.title(r"$\tau = {}, p = {}$".format(*corr), fontsize="small") plt.colorbar(label=r"$\log M_{\rm tot} / M_\odot$") plt.xlabel(r"$D_{\mathrm{KL}}$ of $r_{1\mathrm{NN}}$ distribution") plt.ylabel(r"$\log p$-value of $r_{1\mathrm{NN}}$ distribution") plt.tight_layout() for ext in ["png"]: if simname == "quijote": nsim = paths.quijote_fiducial_nsim(nsim, nobs) nsim = str(nsim).zfill(5) fout = join( plt_utils.fout, f"kl_vs_ks_{simname}_{run}_{nsim}_{runs}.{ext}") if upper_threshold: fout = fout.replace(f".{ext}", f"_upper_threshold.{ext}") print(f"Saving to `{fout}`.") plt.savefig(fout, dpi=plt_utils.dpi, bbox_inches="tight") plt.close() def plot_kl_vs_overlap(runs, nsim, kwargs, runs_to_mass, plot_std=True, upper_threshold=False): """ Plot KL divergence vs overlap for CSiBORG. Parameters ---------- runs : str Run names. nsim : int Simulation index. kwargs : dict Nearest neighbour reader keyword arguments. runs_to_mass : dict Dictionary mapping run names to total halo mass range. plot_std : bool, optional Whether to plot the standard deviation of the overlap distribution. upper_threshold : bool, optional Whether to enforce an upper threshold on halo mass. Returns ------- None """ paths = csiborgtools.read.Paths(**kwargs["paths_kind"]) nn_reader = csiborgtools.read.NearestNeighbourReader(**kwargs, paths=paths) xs, ys1, ys2, cs = [], [], [], [] for run in runs: nn_data = nn_reader.read_single("csiborg", run, nsim, nobs=None) nn_hindxs = nn_data["ref_hindxs"] mass, overlap_hindxs, __, summed_overlap, prob_nomatch = get_overlap("csiborg", nsim) # noqa # We need to match the hindxs between the two. hind2overlap_array = {hind: i for i, hind in enumerate(overlap_hindxs)} mask = numpy.asanyarray([hind2overlap_array[hind] for hind in nn_hindxs]) summed_overlap = summed_overlap[mask] prob_nomatch = prob_nomatch[mask] mass = mass[mask] x = make_kl("csiborg", run, nsim, nobs=None, kwargs=kwargs) y1 = 1 - numpy.mean(prob_nomatch, axis=1) y2 = numpy.std(prob_nomatch, axis=1) cmin, cmax = make_binlims(run, runs_to_mass, upper_threshold) mask = (mass >= cmin) & (mass < cmax if upper_threshold else True) xs.append(x[mask]) ys1.append(y1[mask]) ys2.append(y2[mask]) cs.append(numpy.log10(mass[mask])) xs = numpy.concatenate(xs) ys1 = numpy.concatenate(ys1) ys2 = numpy.concatenate(ys2) cs = numpy.concatenate(cs) with plt.style.context(plt_utils.mplstyle): plt.figure() plt.hexbin(xs, ys1, C=cs, gridsize=50, mincnt=0, reduce_C_function=numpy.median) mask = numpy.isfinite(xs) & numpy.isfinite(ys1) corr = plt_utils.latex_float(*kendalltau(xs[mask], ys1[mask])) plt.title(r"$\tau = {}, p = {}$".format(*corr), fontsize="small") plt.colorbar(label=r"$\log M_{\rm tot} / M_\odot$") plt.xlabel(r"$D_{\mathrm{KL}}$ of $r_{1\mathrm{NN}}$ distribution") plt.ylabel("1 - mean prob. of no match") plt.tight_layout() for ext in ["png"]: nsim = str(nsim).zfill(5) fout = join(plt_utils.fout, f"kl_vs_overlap_mean_{nsim}_{runs}.{ext}") if upper_threshold: fout = fout.replace(f".{ext}", f"_upper_threshold.{ext}") print(f"Saving to `{fout}`.") plt.savefig(fout, dpi=plt_utils.dpi, bbox_inches="tight") plt.close() if not plot_std: return with plt.style.context(plt_utils.mplstyle): plt.figure() plt.hexbin(xs, ys2, C=cs, gridsize=50, mincnt=0, reduce_C_function=numpy.median) plt.colorbar(label=r"$\log M_{\rm tot} / M_\odot$") plt.xlabel(r"$D_{\mathrm{KL}}$ of $r_{1\mathrm{NN}}$ distribution") plt.ylabel(r"Ensemble std of summed overlap") mask = numpy.isfinite(xs) & numpy.isfinite(ys2) corr = plt_utils.latex_float(*kendalltau(xs[mask], ys2[mask])) plt.title(r"$\tau = {}, p = {}$".format(*corr), fontsize="small") plt.tight_layout() for ext in ["png"]: nsim = str(nsim).zfill(5) fout = join(plt_utils.fout, f"kl_vs_overlap_std_{nsim}_{runs}.{ext}") if upper_threshold: fout = fout.replace(f".{ext}", f"_upper_threshold.{ext}") print(f"Saving to `{fout}`.") plt.savefig(fout, dpi=plt_utils.dpi, bbox_inches="tight") plt.close() ############################################################################### # Command line interface # ############################################################################### if __name__ == "__main__": parser = ArgumentParser() parser.add_argument('-c', '--clean', action='store_true') args = parser.parse_args() neighbour_kwargs = csiborgtools.neighbour_kwargs runs_to_mass = { "mass001": (12.4, 12.8), "mass002": (12.6, 13.0), "mass003": (12.8, 13.2), "mass004": (13.0, 13.4), "mass005": (13.2, 13.6), "mass006": (13.4, 13.8), "mass007": (13.6, 14.0), "mass008": (13.8, 14.2), "mass009": (14.0, 14.4), # There is no upper limit. } # cached_funcs = ["get_overlap", "read_dist", "make_kl", "make_ks"] cached_funcs = ["get_max_key"] if args.clean: for func in cached_funcs: print(f"Cleaning cache for function {func}.") delete_disk_caches_for_function(func) if False: plot_mass_vs_pairoverlap(7444 + 24, 8956 + 24 * 3) if False: plot_mass_vs_maxpairoverlap(7444 + 24, 8956 + 24 * 3) if False: plot_mass_vsmedmaxoverlap(7444) if False: plot_summed_overlap_vs_mass(7444) if True: plot_mass_vs_separation(7444 + 24, 8956 + 24 * 3, min_overlap=0.0) if False: plot_maxoverlap_mass(7444) if False: plot_maxoverlapstat(7444, "lambda200c") if False: plot_maxoverlapstat(7444, "totpartmass") if False: plot_mass_vs_expected_mass(7444, max_prob_nomatch=1.0) # Plot 1NN distance distributions. if False: for i in range(1, 10): run = f"mass00{i}" for pulled_cdf in [True, False]: plot_dist(run, "cdf", neighbour_kwargs, runs_to_mass, pulled_cdf=pulled_cdf,) plot_dist(run, "pdf", neighbour_kwargs, runs_to_mass) # Plot 1NN CDF differences. if False: runs = [f"mass00{i}" for i in range(1, 10)] for pulled_cdf in [True, False]: plot_cdf_diff(runs, neighbour_kwargs, pulled_cdf=pulled_cdf, runs_to_mass=runs_to_mass) if False: runs = [f"mass00{i}" for i in range(1, 9)] for kind in ["kl", "ks"]: plot_significance("csiborg", runs, 7444, nobs=None, kind=kind, kwargs=neighbour_kwargs, runs_to_mass=runs_to_mass) if False: # runs = [[f"mass00{i}"] for i in range(1, 10)] runs = [[f"mass00{i}"] for i in [4]] for runs_ in runs: # runs = ["mass007"] for kind in ["kl"]: plot_significance_vs_mass("csiborg", runs_, 7444, nobs=None, kind=kind, kwargs=neighbour_kwargs, runs_to_mass=runs_to_mass, upper_threshold=100) if False: # runs = [f"mass00{i}" for i in range(1, 10)] runs = ["mass004"] plot_kl_vs_ks("csiborg", runs, 7444, None, kwargs=neighbour_kwargs, runs_to_mass=runs_to_mass, upper_threshold=100) if False: # runs = [f"mass00{i}" for i in range(1, 10)] runs = ["mass007"] plot_kl_vs_overlap(runs, 7444, neighbour_kwargs, runs_to_mass, upper_threshold=100, plot_std=False)