# Copyright (C) 2023 Richard Stiskalek # This program is free software; you can redistribute it and/or modify it # under the terms of the GNU General Public License as published by the # Free Software Foundation; either version 3 of the License, or (at your # option) any later version. # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General # Public License for more details. # # You should have received a copy of the GNU General Public License along # with this program; if not, write to the Free Software Foundation, Inc., # 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. """ A script to calculate the particle's separation from the CM and save it. Currently MPI is not supported. """ from argparse import ArgumentParser from datetime import datetime from gc import collect import numpy from mpi4py import MPI from tqdm import trange try: import csiborgtools except ModuleNotFoundError: import sys sys.path.append("../") import csiborgtools parser = ArgumentParser() parser.add_argument("--ics", type=int, nargs="+", default=None, help="IC realisatiosn. If `-1` processes all simulations.") args = parser.parse_args() # Get MPI things comm = MPI.COMM_WORLD rank = comm.Get_rank() nproc = comm.Get_size() if nproc > 1: raise NotImplementedError("MPI is not implemented implemented yet.") paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring) cols_collect = [("r", numpy.float32), ("M", numpy.float32)] if args.ics is None or args.ics == -1: nsims = paths.get_ics("csiborg") else: nsims = args.ics # We loop over simulations. Here later optionally add MPI. for i, nsim in enumerate(nsims): if rank == 0: now = datetime.now() print(f"{now}: calculating {i}th simulation `{nsim}`.", flush=True) nsnap = max(paths.get_snapshots(nsim)) box = csiborgtools.read.CSiBORGBox(nsnap, nsim, paths) f = csiborgtools.read.read_h5(paths.particles(nsim)) particles = f["particles"] clump_map = f["clumpmap"] clid2map = {clid: i for i, clid in enumerate(clump_map[:, 0])} clumps_cat = csiborgtools.read.ClumpsCatalogue(nsim, paths, rawdata=True, load_fitted=False) ismain = clumps_cat.ismain ntasks = len(clumps_cat) # We loop over halos and add ther particle positions to this dictionary, # which we will later save as an archive. out = {} for j in trange(ntasks) if nproc == 1 else range(ntasks): # If we are fitting halos and this clump is not a main, then continue. if not ismain[j]: continue clumpid = clumps_cat["index"][j] parts = csiborgtools.read.load_parent_particles( clumpid, particles, clump_map, clid2map, clumps_cat) # If we have no particles, then do not save anything. if parts is None: continue obj = csiborgtools.fits.Clump(parts, clumps_cat[j], box) r200m, m200m = obj.spherical_overdensity_mass(200, npart_min=10, kind="matter") r = obj.r() mask = r <= r200m _out = csiborgtools.read.cols_to_structured(numpy.sum(mask), cols_collect) _out["r"] = r[mask] _out["M"] = obj["M"][mask] out[str(clumpid)] = _out # Finished, so we save everything. fout = paths.radpos_path(nsnap, nsim) now = datetime.now() print(f"{now}: saving radial profiles for simulation {nsim} to `{fout}`", flush=True) numpy.savez(fout, **out) # Clean up the memory just to be sure. del out collect()