# Copyright (C) 2023 Richard Stiskalek # This program is free software; you can redistribute it and/or modify it # under the terms of the GNU General Public License as published by the # Free Software Foundation; either version 3 of the License, or (at your # option) any later version. # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General # Public License for more details. # # You should have received a copy of the GNU General Public License along # with this program; if not, write to the Free Software Foundation, Inc., # 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. from argparse import ArgumentParser from os.path import join import matplotlib.pyplot as plt import numpy import scienceplots # noqa from cache_to_disk import cache_to_disk, delete_disk_caches_for_function import utils try: import csiborgtools except ModuleNotFoundError: import sys sys.path.append("../") import csiborgtools @cache_to_disk(7) def read_dist(simname, run, kind, kwargs): paths = csiborgtools.read.Paths(**kwargs["paths_kind"]) reader = csiborgtools.read.NearestNeighbourReader(**kwargs, paths=paths) return reader.build_dist(simname, run, kind, verbose=True) @cache_to_disk(7) def make_kl(simname, run, nsim, nobs, kwargs): paths = csiborgtools.read.Paths(**kwargs["paths_kind"]) reader = csiborgtools.read.NearestNeighbourReader(**kwargs, paths=paths) pdf = read_dist("quijote", run, "pdf", kwargs) return reader.kl_divergence(simname, run, nsim, pdf, nobs=nobs) @cache_to_disk(7) def make_ks(simname, run, nsim, nobs, kwargs): paths = csiborgtools.read.Paths(**kwargs["paths_kind"]) reader = csiborgtools.read.NearestNeighbourReader(**kwargs, paths=paths) cdf = read_dist("quijote", run, "cdf", kwargs) return reader.ks_significance(simname, run, nsim, cdf, nobs=nobs) def plot_dist(run, kind, kwargs): """ Plot the PDF/CDF of the nearest neighbour distance for Quijote and CSiBORG. """ assert kind in ["pdf", "cdf"] print(f"Plotting the {kind}.", flush=True) paths = csiborgtools.read.Paths(**kwargs["paths_kind"]) reader = csiborgtools.read.NearestNeighbourReader(**kwargs, paths=paths) x = reader.bin_centres("neighbour") y_quijote = read_dist("quijote", run, kind, kwargs) y_csiborg = read_dist("csiborg", run, kind, kwargs) ncdf = y_csiborg.shape[0] with plt.style.context(utils.mplstyle): plt.figure() for i in range(ncdf): if i == 0: label1 = "Quijote" label2 = "CSiBORG" else: label1 = None label2 = None plt.plot(x, y_quijote[i], c="C0", label=label1) plt.plot(x, y_csiborg[i], c="C1", label=label2) plt.xlim(0, 75) plt.xlabel(r"$r_{1\mathrm{NN}}~[\mathrm{Mpc}]$") if kind == "pdf": plt.ylabel(r"$p(r_{1\mathrm{NN}})$") else: plt.ylabel(r"$\mathrm{CDF}(r_{1\mathrm{NN}})$") plt.ylim(0, 1) plt.legend() plt.tight_layout() for ext in ["png"]: fout = join(utils.fout, f"1nn_{kind}_{run}.{ext}") print(f"Saving to `{fout}`.") plt.savefig(fout, dpi=utils.dpi, bbox_inches="tight") plt.close() def plot_significance_hist(simname, run, nsim, nobs, kind, kwargs): """Plot a histogram of the significance of the 1NN distance.""" assert kind in ["kl", "ks"] paths = csiborgtools.read.Paths(**kwargs["paths_kind"]) if kind == "kl": x = make_kl(simname, run, nsim, nobs, kwargs) else: x = make_ks(simname, run, nsim, nobs, kwargs) x = numpy.log10(x) x = x[numpy.isfinite(x)] with plt.style.context(utils.mplstyle): plt.figure() plt.hist(x, bins="auto") if kind == "ks": plt.xlabel(r"$\log p$-value of $r_{1\mathrm{NN}}$ distribution") else: plt.xlabel(r"$D_{\mathrm{KL}}$ of $r_{1\mathrm{NN}}$ distribution") plt.ylabel(r"Counts") plt.tight_layout() for ext in ["png"]: if simname == "quijote": nsim = paths.quijote_fiducial_nsim(nsim, nobs) fout = join(utils.fout, f"significance_{kind}_{simname}_{run}_{str(nsim).zfill(5)}.{ext}") # noqa print(f"Saving to `{fout}`.") plt.savefig(fout, dpi=utils.dpi, bbox_inches="tight") plt.close() def plot_significance_mass(simname, run, nsim, nobs, kind, kwargs): """ Plot significance of the 1NN distance as a function of the total mass. """ assert kind in ["kl", "ks"] paths = csiborgtools.read.Paths(**kwargs["paths_kind"]) reader = csiborgtools.read.NearestNeighbourReader(**kwargs, paths=paths) x = reader.read_single(simname, run, nsim, nobs)["mass"] if kind == "kl": y = make_kl(simname, run, nsim, nobs, kwargs) else: y = make_ks(simname, run, nsim, nobs, kwargs) with plt.style.context(utils.mplstyle): plt.figure() plt.scatter(x, y) plt.xscale("log") plt.xlabel(r"$M_{\rm tot} / M_\odot$") if kind == "ks": plt.ylabel(r"$p$-value of $r_{1\mathrm{NN}}$ distribution") plt.yscale("log") else: plt.ylabel(r"$D_{\mathrm{KL}}$ of $r_{1\mathrm{NN}}$ distribution") plt.tight_layout() for ext in ["png"]: if simname == "quijote": nsim = paths.quijote_fiducial_nsim(nsim, nobs) fout = join(utils.fout, f"significance_vs_mass_{kind}_{simname}_{run}_{str(nsim).zfill(5)}.{ext}") # noqa print(f"Saving to `{fout}`.") plt.savefig(fout, dpi=utils.dpi, bbox_inches="tight") plt.close() if __name__ == "__main__": parser = ArgumentParser() parser.add_argument('-c', '--clean', action='store_true') args = parser.parse_args() kwargs = {"rmax_radial": 155 / 0.705, "nbins_radial": 20, "rmax_neighbour": 100., "nbins_neighbour": 150, "paths_kind": csiborgtools.paths_glamdring} cached_funcs = ["read_dist", "make_kl", "make_ks"] if args.clean: for func in cached_funcs: print(f"Cleaning cache for function `{func}`.") delete_disk_caches_for_function(func) paths = csiborgtools.read.Paths(**kwargs["paths_kind"]) reader = csiborgtools.read.NearestNeighbourReader(**kwargs, paths=paths) run = "mass003" plot_significance_mass("quijote", run, 0, nobs=0, kind="ks", kwargs=kwargs)