# Copyright (C) 2024 Richard Stiskalek # This program is free software; you can redistribute it and/or modify it # under the terms of the GNU General Public License as published by the # Free Software Foundation; either version 3 of the License, or (at your # option) any later version. # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General # Public License for more details. # # You should have received a copy of the GNU General Public License along # with this program; if not, write to the Free Software Foundation, Inc., # 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. """Script to help with plots in `flow_calibration.ipynb`.""" from os.path import exists, join import csiborgtools import numpy as np from astropy import units as u from astropy.cosmology import FlatLambdaCDM FDIR = "/mnt/extraspace/rstiskalek/csiborg_postprocessing/field_shells" def read_enclosed_density(simname): fname = join(FDIR, f"enclosed_mass_{simname}.npz") if exists(fname): data = np.load(fname) else: raise FileNotFoundError(f"File `{fname}` not found.") Om0 = csiborgtools.simname2Omega_m(simname) cosmo = FlatLambdaCDM(H0=100, Om0=Om0) rho_matter = Om0 * cosmo.critical_density(0).to(u.M_sun / u.Mpc**3).value r = data["distances"] volume = 4 * np.pi / 3 * r**3 overdensity = data["enclosed_mass"] / volume / rho_matter - 1 return r, overdensity def read_enclosed_monopole(simname, rmax=155): fname = join(FDIR, f"enclosed_mass_{simname}.npz") if exists(fname): data = np.load(fname) else: raise FileNotFoundError(f"File {fname} not found.") r = data["distances"] vmono = data["cumulative_velocity_mono"] mask = r < rmax r = r[mask] vmono = vmono[..., mask] return r, vmono def read_enclosed_flow(simname): fname = join(FDIR, f"enclosed_mass_{simname}.npz") if exists(fname): data = np.load(fname) else: raise FileNotFoundError(f"File {fname} not found.") r = data["distances"] V = data["cumulative_velocity"] nsim, nbin = V.shape[:2] Vmag = np.linalg.norm(V, axis=-1) l = np.empty((nsim, nbin), dtype=V.dtype) # noqa b = np.empty_like(l) for n in range(nsim): V_n = csiborgtools.cartesian_to_radec(V[n]) l[n], b[n] = csiborgtools.radec_to_galactic(V_n[:, 1], V_n[:, 2]) return r, Vmag, l, b