# Copyright (C) 2022 Richard Stiskalek # This program is free software; you can redistribute it and/or modify it # under the terms of the GNU General Public License as published by the # Free Software Foundation; either version 3 of the License, or (at your # option) any later version. # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General # Public License for more details. # # You should have received a copy of the GNU General Public License along # with this program; if not, write to the Free Software Foundation, Inc., # 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. """ Scripts to read in observation. """ import numpy from astropy.io import fits from ..utils import (add_columns, cols_to_structured) def read_planck2015(fpath, dist_cosmo, max_comdist=None): r""" Read the Planck 2nd Sunyaev-Zeldovich source catalogue [1]. The following is performed: - removes clusters without a redshift estimate, - calculates the comoving distance with the provided cosmology. - Converts `MSZ` from units of :math:`1e14 M_\odot` to :math:`M_\odot` Parameters ---------- fpath : str Path to the source catalogue. dist_cosmo : `astropy.cosmology` object The cosmology to calculate cluster comoving distance from redshift. max_comdist : float, optional Maximum comoving distance threshold in units of :math:`\mathrm{MPc}`. By default `None` and no threshold is applied. References ---------- [1] https://heasarc.gsfc.nasa.gov/W3Browse/all/plancksz2.html Returns ------- out : `astropy.io.fits.FITS_rec` The catalogue structured array. """ data = fits.open(fpath)[1].data # Convert FITS to a structured array out = numpy.full(data.size, numpy.nan, dtype=data.dtype.descr) for name in out.dtype.names: out[name] = data[name] # Take only clusters with redshifts out = out[out["REDSHIFT"] >= 0] # Add comoving distance dist = dist_cosmo.comoving_distance(out["REDSHIFT"]).value out = add_columns(out, dist, "COMDIST") # Convert masses for par in ("MSZ", "MSZ_ERR_UP", "MSZ_ERR_LOW"): out[par] *= 1e14 # Distance threshold if max_comdist is not None: out = out[out["COMDIST"] < max_comdist] return out def read_2mpp(fpath): """ Read in the 2M++ galaxy redshift catalogue [1], with the catalogue at [2]. Removes fake galaxies used to fill the zone of avoidance. Parameters ---------- fpath : str File path to the catalogue. Returns ------- out : structured array The catalogue. """ # Read the catalogue and select non-fake galaxies cat = numpy.genfromtxt(fpath, delimiter="|", ) cat = cat[cat[:, 12] == 0, :] F64 = numpy.float64 cols = [("RA", F64), ("DEC", F64), ("Ksmag", F64)] out = cols_to_structured(cat.shape[0], cols) out["RA"] = cat[:, 1] - 180 out["DEC"] = cat[:, 2] out["Ksmag"] = cat[:, 5] return out