# Copyright (C) 2022 Richard Stiskalek # This program is free software; you can redistribute it and/or modify it # under the terms of the GNU General Public License as published by the # Free Software Foundation; either version 3 of the License, or (at your # option) any later version. # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General # Public License for more details. # # You should have received a copy of the GNU General Public License along # with this program; if not, write to the Free Software Foundation, Inc., # 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. """ Script to split particles to individual files according to their clump. This is useful for calculating the halo properties directly from the particles. """ from datetime import datetime from gc import collect from glob import glob from os import remove from os.path import join import numpy from mpi4py import MPI from TaskmasterMPI import master_process, worker_process from tqdm import tqdm try: import csiborgtools except ModuleNotFoundError: import sys sys.path.append("../") import csiborgtools # Get MPI things comm = MPI.COMM_WORLD rank = comm.Get_rank() nproc = comm.Get_size() paths = csiborgtools.read.CSiBORGPaths(**csiborgtools.paths_glamdring) verbose = nproc == 1 partcols = ["x", "y", "z", "vx", "vy", "vz", "M"] def do_split(nsim): nsnap = max(paths.get_snapshots(nsim)) reader = csiborgtools.read.ParticleReader(paths) ftemp_base = join( paths.temp_dumpdir, "split_{}_{}".format(str(nsim).zfill(5), str(nsnap).zfill(5)), ) ftemp = ftemp_base + "_{}.npz" # Load the particles and their clump IDs particles = reader.read_particle(nsnap, nsim, partcols, verbose=verbose) particle_clumps = reader.read_clumpid(nsnap, nsim, verbose=verbose) # Drop all particles whose clump index is 0 (not assigned to any clump) assigned_mask = particle_clumps != 0 particle_clumps = particle_clumps[assigned_mask] particles = particles[assigned_mask] del assigned_mask collect() # Load the clump indices clumpinds = reader.read_clumps(nsnap, nsim, cols="index")["index"] # Some of the clumps have no particles, so we do not loop over them clumpinds = clumpinds[numpy.isin(clumpinds, particle_clumps)] # Loop over the clump indices and save the particles to a temporary file # every 10000 clumps. We will later read this back and combine into a # single file. out = {} for i, clind in enumerate(tqdm(clumpinds) if verbose else clumpinds): key = str(clind) out.update({str(clind): particles[particle_clumps == clind]}) # REMOVE bump this back up if i % 10000 == 0 or i == clumpinds.size - 1: numpy.savez(ftemp.format(i), **out) out = {} # Clear up memory because we will be loading everything back del particles, particle_clumps, clumpinds collect() # Now load back in every temporary file, combine them into a single # dictionary and save as a single .npz file. out = {} for file in glob(ftemp_base + "*"): inp = numpy.load(file) for key in inp.files: out.update({key: inp[key]}) remove(file) numpy.savez(paths.split_path(nsnap, nsim), **out) ############################################################################### # MPI task delegation # ############################################################################### if nproc > 1: if rank == 0: tasks = list(paths.get_ics(tonew=False)) master_process(tasks, comm, verbose=True) else: worker_process(do_split, comm, verbose=False) else: tasks = paths.get_ics(tonew=False) for task in tasks: print("{}: completing task `{}`.".format(datetime.now(), task)) do_split(task) comm.Barrier()