# This program is free software; you can redistribute it and/or modify it # under the terms of the GNU General Public License as published by the # Free Software Foundation; either version 3 of the License, or (at your # option) any later version. # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General # Public License for more details. # # You should have received a copy of the GNU General Public License along # with this program; if not, write to the Free Software Foundation, Inc., # 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. """A script to calculate overlap between two CSiBORG realisations.""" from argparse import ArgumentParser from datetime import datetime from distutils.util import strtobool import numpy from scipy.ndimage import gaussian_filter try: import csiborgtools except ModuleNotFoundError: import sys sys.path.append("../") import csiborgtools # Argument parser parser = ArgumentParser() parser.add_argument("--nsim0", type=int) parser.add_argument("--nsimx", type=int) parser.add_argument("--nmult", type=float) parser.add_argument("--sigma", type=float) parser.add_argument("--verbose", type=lambda x: bool(strtobool(x)), default=False) args = parser.parse_args() paths = csiborgtools.read.CSiBORGPaths(**csiborgtools.paths_glamdring) smooth_kwargs = {"sigma": args.sigma, "mode": "constant", "cval": 0.0} overlapper = csiborgtools.match.ParticleOverlap() matcher = csiborgtools.match.RealisationsMatcher() # Load the raw catalogues (i.e. no selection) including the initial CM positions # and the particle archives. cat0 = csiborgtools.read.HaloCatalogue( args.nsim0, paths, load_initial=True, rawdata=True ) catx = csiborgtools.read.HaloCatalogue( args.nsimx, paths, load_initial=True, rawdata=True ) halos0_archive = paths.initmatch_path(args.nsim0, "particles") halosx_archive = paths.initmatch_path(args.nsimx, "particles") # We generate the background density fields. Loads halos's particles one by one # from the archive, concatenates them and calculates the NGP density field. args.verbose and print( "{}: generating the background density fields.".format(datetime.now()), flush=True ) delta_bckg = overlapper.make_bckg_delta(halos0_archive, verbose=args.verbose) delta_bckg = overlapper.make_bckg_delta( halosx_archive, delta=delta_bckg, verbose=args.verbose ) # We calculate the overlap between the NGP fields. args.verbose and print( "{}: crossing the simulations.".format(datetime.now()), flush=True ) match_indxs, ngp_overlap = matcher.cross( cat0, catx, halos0_archive, halosx_archive, delta_bckg ) # We now smoothen up the background density field for the smoothed overlap calculation. args.verbose and print( "{}: smoothing the background field.".format(datetime.now()), flush=True ) gaussian_filter(delta_bckg, output=delta_bckg, **smooth_kwargs) # We calculate the smoothed overlap for the pairs whose NGP overlap is > 0. args.verbose and print( "{}: calculating smoothed overlaps.".format(datetime.now()), flush=True ) smoothed_overlap = matcher.smoothed_cross( cat0, catx, halos0_archive, halosx_archive, delta_bckg, match_indxs, smooth_kwargs ) # We save the results at long last. fout = paths.overlap_path(args.nsim0, args.nsimx) args.verbose and print( "{}: saving results to `{}`.".format(datetime.now(), fout), flush=True ) numpy.savez( fout, match_indxs=match_indxs, ngp_overlap=ngp_overlap, smoothed_overlap=smoothed_overlap, sigma=args.sigma, ) print("{}: all finished.".format(datetime.now()), flush=True)