{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "# Copyright (C) 2024 Richard Stiskalek\n", "# This program is free software; you can redistribute it and/or modify it\n", "# under the terms of the GNU General Public License as published by the\n", "# Free Software Foundation; either version 3 of the License, or (at your\n", "# option) any later version.\n", "# This program is distributed in the hope that it will be useful, but\n", "# WITHOUT ANY WARRANTY; without even the implied warranty of\n", "# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General\n", "# Public License for more details.\n", "#\n", "# You should have received a copy of the GNU General Public License along\n", "# with this program; if not, write to the Free Software Foundation, Inc.,\n", "# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.\n", "from os.path import join\n", "\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "from h5py import File\n", "\n", "%matplotlib inline" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Supernovae data" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "a2dir = \"/Users/richard/Data/PV/A2_paper_data/A2\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### LOSS data set" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "names = [\"z_CMB\", \"mB\", \"x1\", \"c\", \"e_mB\", \"e_x1\", \"e_c\", \"RA\", \"DEC\"]\n", "dtype = [(n, np.float32) for n in names]\n", "data = np.genfromtxt(join(a2dir, \"loss.csv\"), delimiter=\",\", skip_header=1,\n", " usecols=[5 + n for n in range(len(names))])\n", "\n", "loss_data = np.empty(len(data), dtype=dtype)\n", "for i, n in enumerate(names):\n", " loss_data[n] = data[:, i]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Foundation data set " ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "names = [\"z_CMB\", \"RA\", \"DEC\", \"x1\", \"mB\", \"c\", \"peak\", \"e_peak\", \"e_x1\", \"e_mB\", \"e_c\"]\n", "dtype = [(n, np.float32) for n in names]\n", "data = np.genfromtxt(join(a2dir, \"foundation.csv\"), delimiter=\",\", skip_header=1,\n", " usecols=[3 + n for n in range(len(names))])\n", "\n", "foundation_data = np.empty(len(data), dtype=dtype)\n", "for i, n in enumerate(names):\n", " foundation_data[n] = data[:, i]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Write output as HDF5 file" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "outdir = \"/Users/richard/Downloads\"\n", "fname = \"PV_compilation_Supranta2019.hdf5\"\n", "\n", "with File(join(outdir, fname), 'w') as f:\n", " # Write LOSS\n", " grp = f.create_group(\"LOSS\")\n", " for name in loss_data.dtype.names:\n", " grp.create_dataset(name, data=loss_data[name])\n", "\n", " # Write Foundation\n", " grp = f.create_group(\"Foundation\")\n", " for name in foundation_data.dtype.names:\n", " grp.create_dataset(name, data=foundation_data[name])\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.6" } }, "nbformat": 4, "nbformat_minor": 2 }