# Copyright (C) 2022 Richard Stiskalek # This program is free software; you can redistribute it and/or modify it # under the terms of the GNU General Public License as published by the # Free Software Foundation; either version 3 of the License, or (at your # option) any later version. # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General # Public License for more details. # # You should have received a copy of the GNU General Public License along # with this program; if not, write to the Free Software Foundation, Inc., # 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. """ Script to calculate the particle centre of mass and Lagrangian patch size in the initial snapshot. The initial snapshot particles are read from the sorted files. """ from argparse import ArgumentParser from datetime import datetime import csiborgtools import numpy from mpi4py import MPI from taskmaster import work_delegation from tqdm import tqdm from utils import get_nsims def _main(nsim, simname, verbose): """ Calculate and save the Lagrangian halo centre of mass and Lagrangian patch size in the initial snapshot. Parameters ---------- nsim : int IC realisation index. simname : str Simulation name. verbose : bool Verbosity flag. Returns ------- None """ paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring) cols = [("index", numpy.int32), ("x", numpy.float32), ("y", numpy.float32), ("z", numpy.float32), ("lagpatch_size", numpy.float32), ("lagpatch_ncells", numpy.int32),] if simname == "csiborg1": snap = csiborgtools.read.CSiBORG1Snapshot(nsim, 1, paths, keep_snapshot_open=True) cat = csiborgtools.read.CSiBORG1Catalogue(nsim, paths, snapshot=snap) fout = f"/mnt/extraspace/rstiskalek/csiborg1/chain_{nsim}/initial_lagpatch.npy" # noqa elif "csiborg2" in simname: kind = simname.split("_")[-1] snap = csiborgtools.read.CSiBORG2Snapshot(nsim, 0, kind, paths, keep_snapshot_open=True) cat = csiborgtools.read.CSiBORG2Catalogue(nsim, 99, kind, paths, snapshot=snap) fout = f"/mnt/extraspace/rstiskalek/csiborg2_{kind}/catalogues/initial_lagpatch_{nsim}.npy" # noqa elif simname == "quijote": snap = csiborgtools.read.QuijoteSnapshot(nsim, "ICs", paths, keep_snapshot_open=True) cat = csiborgtools.read.QuijoteHaloCatalogue(nsim, paths, snapshot=snap) fout = f"/mnt/extraspace/rstiskalek/quijote/fiducial_processed/chain_{nsim}/initial_lagpatch.npy" # noqa else: raise ValueError(f"Unknown simulation name `{simname}`.") boxsize = csiborgtools.simname2boxsize(simname) # Initialise the overlapper. if simname == "csiborg" or "csiborg2" in simname: kwargs = {"box_size": 2048, "bckg_halfsize": 512} else: kwargs = {"box_size": 512, "bckg_halfsize": 256} overlapper = csiborgtools.match.ParticleOverlap(**kwargs) out = csiborgtools.read.cols_to_structured(len(cat), cols) for i, hid in enumerate(tqdm(cat["index"]) if verbose else cat["index"]): out["index"][i] = hid pos = snap.halo_coordinates(hid) mass = snap.halo_masses(hid) # Calculate the centre of mass and the Lagrangian patch size. cm = csiborgtools.center_of_mass(pos, mass, boxsize=boxsize) distances = csiborgtools.periodic_distance(pos, cm, boxsize=boxsize) out["x"][i], out["y"][i], out["z"][i] = cm out["lagpatch_size"][i] = numpy.percentile(distances, 99) pos /= boxsize # need to normalize the positions to be [0, 1). # Calculate the number of cells with > 0 density. delta = overlapper.make_delta(pos, mass, subbox=True) out["lagpatch_ncells"][i] = csiborgtools.delta2ncells(delta) # Now save it if verbose: print(f"{datetime.now()}: dumping fits to .. `{fout}`.", flush=True) with open(fout, "wb") as f: numpy.save(f, out) if __name__ == "__main__": parser = ArgumentParser() parser.add_argument("--simname", type=str, choices=["csiborg1", "csiborg2_main", "csiborg2_random", "csiborg2_varysmall", "quijote"], # noqa help="Simulation name") parser.add_argument("--nsims", type=int, nargs="+", default=None, help="IC realisations. If `-1` processes all.") args = parser.parse_args() paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring) nsims = get_nsims(args, paths) def main(nsim): _main(nsim, args.simname, MPI.COMM_WORLD.Get_size() == 1) work_delegation(main, nsims, MPI.COMM_WORLD)