# Copyright (C) 2022 Richard Stiskalek # This program is free software; you can redistribute it and/or modify it # under the terms of the GNU General Public License as published by the # Free Software Foundation; either version 3 of the License, or (at your # option) any later version. # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General # Public License for more details. # # You should have received a copy of the GNU General Public License along # with this program; if not, write to the Free Software Foundation, Inc., # 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. """A script to calculate the KNN-CDF for a set of CSiBORG halo catalogues.""" from warnings import warn from os.path import join from argparse import ArgumentParser from copy import deepcopy from datetime import datetime from itertools import combinations from mpi4py import MPI from TaskmasterMPI import master_process, worker_process import numpy from sklearn.neighbors import NearestNeighbors import joblib import yaml try: import csiborgtools except ModuleNotFoundError: import sys sys.path.append("../") import csiborgtools ############################################################################### # MPI and arguments # ############################################################################### comm = MPI.COMM_WORLD rank = comm.Get_rank() nproc = comm.Get_size() parser = ArgumentParser() parser.add_argument("--runs", type=str, nargs="+") args = parser.parse_args() with open('../scripts/knn_cross.yml', 'r') as file: config = yaml.safe_load(file) Rmax = 155 / 0.705 # Mpc (h = 0.705) high resolution region radius minmass = 1e12 ics = [7444, 7468, 7492, 7516, 7540, 7564, 7588, 7612, 7636, 7660, 7684, 7708, 7732, 7756, 7780, 7804, 7828, 7852, 7876, 7900, 7924, 7948, 7972, 7996, 8020, 8044, 8068, 8092, 8116, 8140, 8164, 8188, 8212, 8236, 8260, 8284, 8308, 8332, 8356, 8380, 8404, 8428, 8452, 8476, 8500, 8524, 8548, 8572, 8596, 8620, 8644, 8668, 8692, 8716, 8740, 8764, 8788, 8812, 8836, 8860, 8884, 8908, 8932, 8956, 8980, 9004, 9028, 9052, 9076, 9100, 9124, 9148, 9172, 9196, 9220, 9244, 9268, 9292, 9316, 9340, 9364, 9388, 9412, 9436, 9460, 9484, 9508, 9532, 9556, 9580, 9604, 9628, 9652, 9676, 9700, 9724, 9748, 9772, 9796, 9820, 9844] paths = csiborgtools.read.CSiBORGPaths() dumpdir = "/mnt/extraspace/rstiskalek/csiborg/knn" fout = join(dumpdir, "cross", "knncdf_{}_{}_{}.p") knncdf = csiborgtools.clustering.kNN_CDF() ############################################################################### # Analysis # ############################################################################### def read_single(selection, cat): mmask = numpy.ones(len(cat), dtype=bool) pos = cat.positions(False) # Primary selection psel = selection["primary"] pmin, pmax = psel.get("min", None), psel.get("max", None) if pmin is not None: mmask &= (cat[psel["name"]] >= pmin) if pmax is not None: mmask &= (cat[psel["name"]] < pmax) return pos[mmask, ...] def do_cross(run, ics): _config = config.get(run, None) if _config is None: warn("No configuration for run {}.".format(run)) return rvs_gen = csiborgtools.clustering.RVSinsphere(Rmax) knn1, knn2 = NearestNeighbors(), NearestNeighbors() cat1 = csiborgtools.read.HaloCatalogue(ics[0], paths, max_dist=Rmax) pos1 = read_single(_config, cat1) knn1.fit(pos1) cat2 = csiborgtools.read.HaloCatalogue(ics[1], paths, max_dist=Rmax) pos2 = read_single(_config, cat2) knn2.fit(pos2) rs, cdf0, cdf1, joint_cdf = knncdf.joint( knn1, knn2, rvs_gen=rvs_gen, nneighbours=int(config["nneighbours"]), rmin=config["rmin"], rmax=config["rmax"], nsamples=int(config["nsamples"]), neval=int(config["neval"]), batch_size=int(config["batch_size"]), random_state=config["seed"]) corr = knncdf.joint_to_corr(cdf0, cdf1, joint_cdf) joblib.dump({"rs": rs, "corr": corr}, fout.format(str(ics[0]).zfill(5), str(ics[1]).zfill(5), run)) def do_runs(ics): print(ics) for run in args.runs: do_cross(run, ics) ############################################################################### # Crosscorrelation calculation # ############################################################################### if nproc > 1: if rank == 0: tasks = list(combinations(ics, 2)) master_process(tasks, comm, verbose=True) else: worker_process(do_runs, comm, verbose=False) else: tasks = list(combinations(ics, 2)) for task in tasks: print("{}: completing task `{}`.".format(datetime.now(), task)) do_runs(task) comm.Barrier() if rank == 0: print("{}: all finished.".format(datetime.now())) quit() # Force quit the script