Add the sigma value calculation

This commit is contained in:
rstiskalek 2023-05-22 13:27:58 +01:00
parent 9b4c02f3b0
commit fa2b3551c1

View file

@ -19,6 +19,9 @@ the final snapshot.
from math import floor
import numpy
from scipy.interpolate import interp1d
from scipy.stats import kstest
from scipy.special import erfinv
from numba import jit
from tqdm import tqdm
@ -236,6 +239,58 @@ class NearestNeighbourReader:
out /= out[:, -1].reshape(-1, 1)
return out
def calc_significance(self, simname, run, nsim, cdf, nobs=None):
"""
Calculate the significance of the nearest neighbour distribution of a
reference halo relative to an unconstrained simulation.
Parameters
----------
simname : str
Simulation name. Must be either `csiborg` or `quijote`.
run : str
Run name.
nsim : int
Simulation index.
cdf : 2-dimensional array of shape `(nbins_radial, nbins_neighbour)`
CDF of the nearest neighbour distribution in an unconstrained
suite of simiulations.
nobs : int, optional
Fiducial Quijote observer index.
Returns
-------
sigma : 1-dimensional array of shape `(nhalos,)`
Significance of the nearest neighbour distribution of each halo.
"""
assert simname in ["csiborg", "quijote"]
data = self.read_single(simname, run, nsim, nobs)
rdist = data["rdist"]
ndist = data["ndist"]
rbin_edges = self.radial_bin_edges
# Create an interpolation function for each radial bin.
xbin = self.bin_centres("neighbour")
kwargs = {"bounds_error": False,
"fill_value": numpy.nan,
"assume_sorted": True}
N = self.nbins_radial
cdf_interp = [interp1d(xbin, cdf[i, :], **kwargs) for i in range(N)]
# We loop over each halo and find its radial bin. Then calculate the
# p-value under null hypothesis and convert it to a sigma value.
out = numpy.full(rdist.size, numpy.nan, dtype=numpy.float64)
for i, radial_cell in enumerate(numpy.digitize(rdist, rbin_edges) - 1):
# The null hypothesis is that the distances in Quijote are larger
# or equal to CSiBORG.
ks = kstest(ndist[i, :], cdf_interp[radial_cell], N=10000,
alternative="greater")
# We convert the p-value to a sigma value.
out[i] = - numpy.sqrt(2) * erfinv(ks.pvalue - 1)
return out
###############################################################################
# Support functions #