mirror of
https://github.com/Richard-Sti/csiborgtools.git
synced 2024-12-22 07:08:01 +00:00
More ABSMAG (#152)
* Add draft of code * Update defaults * Update nb * Update nb * Update script * Update script * Update script * Indicate that not implemented
This commit is contained in:
parent
c881f8eb39
commit
f7d16a9cd0
6 changed files with 155 additions and 271 deletions
|
@ -74,6 +74,20 @@ def gradient_redshift2dist(z, Omega_m):
|
||||||
return SPEED_OF_LIGHT / H0 * (1 - z * (1 + q0))
|
return SPEED_OF_LIGHT / H0 * (1 - z * (1 + q0))
|
||||||
|
|
||||||
|
|
||||||
|
def distmod2dist(mu, Om0):
|
||||||
|
"""
|
||||||
|
Convert distance modulus to distance in `Mpc / h`. The expression is valid
|
||||||
|
for a flat universe over the range of 0.00001 < z < 0.1.
|
||||||
|
"""
|
||||||
|
term1 = jnp.exp((0.443288 * mu) + (-14.286531))
|
||||||
|
term2 = (0.506973 * mu) + 12.954633
|
||||||
|
term3 = ((0.028134 * mu) ** (
|
||||||
|
((0.684713 * mu)
|
||||||
|
+ ((0.151020 * mu) + (1.235158 * Om0))) - jnp.exp(0.072229 * mu)))
|
||||||
|
term4 = (-0.045160) * mu
|
||||||
|
return (-0.000301) + (term1 * (term2 - (term3 - term4)))
|
||||||
|
|
||||||
|
|
||||||
def project_Vext(Vext_x, Vext_y, Vext_z, RA_radians, dec_radians):
|
def project_Vext(Vext_x, Vext_y, Vext_z, RA_radians, dec_radians):
|
||||||
"""Project the external velocity vector onto the line of sight."""
|
"""Project the external velocity vector onto the line of sight."""
|
||||||
cos_dec = jnp.cos(dec_radians)
|
cos_dec = jnp.cos(dec_radians)
|
||||||
|
@ -113,6 +127,15 @@ def likelihood_zobs(zobs, zobs_pred, e2_cz):
|
||||||
return jnp.exp(-0.5 * dcz**2 / e2_cz) / jnp.sqrt(2 * np.pi * e2_cz)
|
return jnp.exp(-0.5 * dcz**2 / e2_cz) / jnp.sqrt(2 * np.pi * e2_cz)
|
||||||
|
|
||||||
|
|
||||||
|
def log_likelihood_zobs(zobs, zobs_pred, e2_cz):
|
||||||
|
"""
|
||||||
|
Calculate the log-likelihood of the observed redshift given the predicted
|
||||||
|
redshift. Multiplies the redshifts by the speed of light.
|
||||||
|
"""
|
||||||
|
dcz = SPEED_OF_LIGHT * (zobs - zobs_pred)
|
||||||
|
return -0.5 * dcz**2 / e2_cz - 0.5 * jnp.log(2 * np.pi * e2_cz)
|
||||||
|
|
||||||
|
|
||||||
def normal_logpdf(x, loc, scale):
|
def normal_logpdf(x, loc, scale):
|
||||||
"""Log of the normal probability density function."""
|
"""Log of the normal probability density function."""
|
||||||
return (-0.5 * ((x - loc) / scale)**2
|
return (-0.5 * ((x - loc) / scale)**2
|
||||||
|
@ -180,9 +203,12 @@ class BaseFlowValidationModel(ABC):
|
||||||
|
|
||||||
r_xrange = jnp.asarray(r_xrange)
|
r_xrange = jnp.asarray(r_xrange)
|
||||||
r2_xrange = r_xrange**2
|
r2_xrange = r_xrange**2
|
||||||
r2_xrange /= r2_xrange.mean()
|
r2_xrange_mean = r2_xrange.mean()
|
||||||
|
r2_xrange /= r2_xrange_mean
|
||||||
|
|
||||||
self.r_xrange = r_xrange
|
self.r_xrange = r_xrange
|
||||||
self.log_r2_xrange = jnp.log(r2_xrange)
|
self.log_r2_xrange = jnp.log(r2_xrange)
|
||||||
|
self.log_r2_xrange_mean = jnp.log(r2_xrange_mean)
|
||||||
|
|
||||||
# Require `zmin` < 0 because the first radial step is likely at 0.
|
# Require `zmin` < 0 because the first radial step is likely at 0.
|
||||||
z_xrange = z_at_value(
|
z_xrange = z_at_value(
|
||||||
|
@ -235,6 +261,13 @@ class BaseFlowValidationModel(ABC):
|
||||||
|
|
||||||
return len(self.log_los_density())
|
return len(self.log_los_density())
|
||||||
|
|
||||||
|
def los_density(self, **kwargs):
|
||||||
|
if self.is_void_data:
|
||||||
|
# Currently we have no densities for the void.
|
||||||
|
return jnp.ones((1, self.ndata, len(self.r_xrange)))
|
||||||
|
|
||||||
|
return self._los_density
|
||||||
|
|
||||||
def log_los_density(self, **kwargs):
|
def log_los_density(self, **kwargs):
|
||||||
if self.is_void_data:
|
if self.is_void_data:
|
||||||
# Currently we have no densities for the void.
|
# Currently we have no densities for the void.
|
||||||
|
@ -499,11 +532,16 @@ class PV_LogLikelihood(BaseFlowValidationModel):
|
||||||
names = ["RA", "dec", "z_obs", "e2_cz_obs"]
|
names = ["RA", "dec", "z_obs", "e2_cz_obs"]
|
||||||
values = [RA, dec, z_obs, e2_cz_obs]
|
values = [RA, dec, z_obs, e2_cz_obs]
|
||||||
|
|
||||||
|
# If ever start running out of memory, may be better not to store
|
||||||
|
# both the density and log_density
|
||||||
if not self.is_void_data:
|
if not self.is_void_data:
|
||||||
names += ["_log_los_density", "_los_velocity"]
|
names += ["_log_los_density", "_los_velocity"]
|
||||||
values += [jnp.log(los_density), los_velocity]
|
values += [jnp.log(los_density), los_velocity]
|
||||||
|
|
||||||
# Set the void data
|
# Density required only if not numerically marginalising.
|
||||||
|
if not with_num_dist_marginalisation:
|
||||||
|
names += ["_los_density"]
|
||||||
|
values += [los_density]
|
||||||
|
|
||||||
self._setattr_as_jax(names, values)
|
self._setattr_as_jax(names, values)
|
||||||
self._set_calibration_params(calibration_params)
|
self._set_calibration_params(calibration_params)
|
||||||
|
@ -699,13 +737,12 @@ class PV_LogLikelihood(BaseFlowValidationModel):
|
||||||
if inference_method == "bayes":
|
if inference_method == "bayes":
|
||||||
raise NotImplementedError("Bayes for simple not implemented.")
|
raise NotImplementedError("Bayes for simple not implemented.")
|
||||||
else:
|
else:
|
||||||
mu_true = self.mu
|
|
||||||
if inference_method == "mike":
|
if inference_method == "mike":
|
||||||
e2_mu = e_mu**2 + self.e2_mu
|
e2_mu = e_mu**2 + self.e2_mu
|
||||||
else:
|
else:
|
||||||
e2_mu = jnp.ones_like(mag_true) * e_mu**2
|
e2_mu = jnp.ones_like(mag_true) * e_mu**2
|
||||||
|
|
||||||
mu = mu_true + dmu
|
mu = self.mu + dmu
|
||||||
else:
|
else:
|
||||||
raise ValueError(f"Unknown kind: `{self.kind}`.")
|
raise ValueError(f"Unknown kind: `{self.kind}`.")
|
||||||
|
|
||||||
|
@ -773,8 +810,77 @@ class PV_LogLikelihood(BaseFlowValidationModel):
|
||||||
|
|
||||||
return ll0 + jnp.sum(logsumexp(ll, axis=0)) + self.norm
|
return ll0 + jnp.sum(logsumexp(ll, axis=0)) + self.norm
|
||||||
else:
|
else:
|
||||||
|
if field_calibration_params["sample_h"]:
|
||||||
|
raise NotImplementedError("Sampling of h not implemented.")
|
||||||
|
|
||||||
raise NotImplementedError(
|
raise NotImplementedError(
|
||||||
"No distance marginalisation not implemented yet.")
|
"Sampling of distance is not implemented. Work in progress.")
|
||||||
|
|
||||||
|
e_mu = jnp.sqrt(e2_mu)
|
||||||
|
# True distance modulus, shape is `(n_data)``
|
||||||
|
with plate("plate_mu", self.ndata):
|
||||||
|
mu_true = sample("mu", Normal(mu, e_mu))
|
||||||
|
|
||||||
|
# True distance, shape is `(n_data)``
|
||||||
|
r_true = distmod2dist(mu_true, self.Omega_m)
|
||||||
|
# TODO:
|
||||||
|
z_true = None
|
||||||
|
|
||||||
|
if self.is_void_data:
|
||||||
|
raise NotImplementedError(
|
||||||
|
"Void data not implemented yet for distance sampling.")
|
||||||
|
else:
|
||||||
|
# grid log(density), shape is `(n_sims, n_data, n_rad)`
|
||||||
|
log_los_density_grid = self.los_density()
|
||||||
|
|
||||||
|
# TODO: Need to add the interpolators for these
|
||||||
|
# Densities and velocities at the true distances, shape is
|
||||||
|
# `(n_sims, n_data)`
|
||||||
|
log_density = None
|
||||||
|
los_velocity = None
|
||||||
|
|
||||||
|
alpha = distmod_params["alpha"]
|
||||||
|
|
||||||
|
# Check dimensions of all this
|
||||||
|
|
||||||
|
# Normalisation of p(mu), shape is `(n_sims, n_data, n_rad)`
|
||||||
|
pnorm = (
|
||||||
|
self.log_r2_xrange[None, None, :]
|
||||||
|
+ alpha * log_los_density_grid
|
||||||
|
+ normal_logpdf(
|
||||||
|
self.mu_xrange[None, :], mu[:, None], e_mu[:, None])[None, ...]) # noqa
|
||||||
|
|
||||||
|
pnorm = jnp.exp(pnorm)
|
||||||
|
|
||||||
|
# Normalization of p(mu). Shape is now (nsims, ndata)
|
||||||
|
pnorm = simpson(pnorm, x=self.r_xrange, axis=-1)
|
||||||
|
|
||||||
|
# TODO: There should be a Jacobian?
|
||||||
|
# Calculate unnormalized log p(mu). Shape is (nsims, ndata)
|
||||||
|
ll = (
|
||||||
|
2 * (jnp.log(r_true) - self.log_r2_xrange_mean)[None, :]
|
||||||
|
+ alpha * log_density
|
||||||
|
+ normal_logpdf(mu_true, mu, e_mu)[None, :])
|
||||||
|
|
||||||
|
# Subtract the normalization. Shape remains (nsims, ndata)
|
||||||
|
ll -= jnp.log(pnorm)
|
||||||
|
|
||||||
|
# Calculate z_obs at the true distance. Shape: (nsims, ndata)
|
||||||
|
vrad = field_calibration_params["beta"] * los_velocity
|
||||||
|
vrad += (Vext_rad[None, :] + Vmono)
|
||||||
|
zobs = 1 + z_true[None, :]
|
||||||
|
zobs *= 1 + vrad / SPEED_OF_LIGHT
|
||||||
|
zobs -= 1.
|
||||||
|
|
||||||
|
ll += log_likelihood_zobs(
|
||||||
|
self.z_obs[None, :], zobs, e2_cz[None, :])
|
||||||
|
|
||||||
|
if self.with_absolute_calibration:
|
||||||
|
raise NotImplementedError(
|
||||||
|
"Absolute calibration not implemented for this model. "
|
||||||
|
"Use `PV_LogLikelihood_NoDistMarg` instead.")
|
||||||
|
|
||||||
|
return ll0 + jnp.sum(logsumexp(ll, axis=0)) + self.norm
|
||||||
|
|
||||||
|
|
||||||
###############################################################################
|
###############################################################################
|
||||||
|
|
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
|
@ -18,7 +18,8 @@ then
|
||||||
fi
|
fi
|
||||||
|
|
||||||
|
|
||||||
for simname in "csiborg1" "csiborg2_main" "csiborg2X" "Lilow2024" "Carrick2015" "CF4" "manticore_2MPP_N128_DES_V1"; do
|
# for simname in "csiborg1" "csiborg2_main" "csiborg2X" "Lilow2024" "Carrick2015" "CF4" "manticore_2MPP_N128_DES_V1"; do
|
||||||
|
for simname in "CLONES"; do
|
||||||
for catalogue in "LOSS" "Foundation" "2MTF" "SFI_gals" "CF4_TFR"; do
|
for catalogue in "LOSS" "Foundation" "2MTF" "SFI_gals" "CF4_TFR"; do
|
||||||
pythoncm="$env $file --catalogue $catalogue --nsims $nsims --simname $simname --MAS $MAS --grid $grid"
|
pythoncm="$env $file --catalogue $catalogue --nsims $nsims --simname $simname --MAS $MAS --grid $grid"
|
||||||
if [ $on_login -eq 1 ]; then
|
if [ $on_login -eq 1 ]; then
|
||||||
|
|
|
@ -305,7 +305,7 @@ if __name__ == "__main__":
|
||||||
zcmb_max = 0.05
|
zcmb_max = 0.05
|
||||||
nchains_harmonic = 10
|
nchains_harmonic = 10
|
||||||
num_epochs = 50
|
num_epochs = 50
|
||||||
inference_method = "bayes"
|
inference_method = "mike"
|
||||||
mag_selection = None
|
mag_selection = None
|
||||||
sample_alpha = False if "IndranilVoid_" in ARGS.simname or ARGS.simname == "no_field" else True # noqa
|
sample_alpha = False if "IndranilVoid_" in ARGS.simname or ARGS.simname == "no_field" else True # noqa
|
||||||
sample_beta = None
|
sample_beta = None
|
||||||
|
|
|
@ -39,7 +39,8 @@ fi
|
||||||
|
|
||||||
# for simname in "IndranilVoid_exp" "IndranilVoid_gauss" "IndranilVoid_mb"; do
|
# for simname in "IndranilVoid_exp" "IndranilVoid_gauss" "IndranilVoid_mb"; do
|
||||||
|
|
||||||
for simname in "Carrick2015" "Lilow2024" "csiborg2_main" "csiborg2X" "manticore_2MPP_N128_DES_V1" "CF4" "CLONES"; do
|
# for simname in "Carrick2015" "Lilow2024" "csiborg2_main" "csiborg2X" "manticore_2MPP_N128_DES_V1" "CF4" "CLONES"; do
|
||||||
|
for simname in "Carrick2015"; do
|
||||||
# for simname in "no_field"; do
|
# for simname in "no_field"; do
|
||||||
for catalogue in "LOSS" "Foundation" "2MTF" "SFI_gals" "CF4_TFR_i" "CF4_TFR_w1"; do
|
for catalogue in "LOSS" "Foundation" "2MTF" "SFI_gals" "CF4_TFR_i" "CF4_TFR_w1"; do
|
||||||
# for catalogue in "2MTF"; do
|
# for catalogue in "2MTF"; do
|
||||||
|
|
Loading…
Reference in a new issue