More flow (#118)

* Add GoF calculation

* Add import

* Add base flow

* Add reading of ndata

* Update nb

* Update plotting

* Update script

* Update plots

* Updaet plo

* Add script

* Update nb

* Update nb

* Update script

* Update script

* Update nb

* Remove imports

* Improve labelling

* Improve flow calibration

* Add bulk flow plots

* Update flow

* Update scrit

* Calculate more radial steps

* Update bulk

* Update script

* Update nb
This commit is contained in:
Richard Stiskalek 2024-03-21 16:50:37 +01:00 committed by GitHub
parent a9cb8943d6
commit f7285b2600
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
12 changed files with 1144 additions and 1023 deletions

View file

@ -30,7 +30,7 @@ from numpyro.infer import MCMC, NUTS, init_to_sample
from taskmaster import work_delegation # noqa
def get_model(args, nsim_iterator):
def get_model(args, nsim_iterator, get_model_kwargs):
"""
Load the data and create the NumPyro model.
@ -40,72 +40,32 @@ def get_model(args, nsim_iterator):
Command line arguments.
nsim_iterator : int
Simulation index, not the IC index. Ranges from 0, ... .
get_model_kwargs : dict
Keyword arguments for reading in the data for the model
(`csiboorgtools.flow.get_model`).
Returns
-------
numpyro.Primitive
numpyro model
"""
folder = "/mnt/extraspace/rstiskalek/catalogs/"
if args.catalogue == "A2":
fpath = join(folder, "A2.h5")
elif args.catalogue == "LOSS" or args.catalogue == "Foundation":
elif args.catalogue in ["LOSS", "Foundation", "Pantheon+", "SFI_gals",
"2MTF"]:
fpath = join(folder, "PV_compilation_Supranta2019.hdf5")
else:
raise ValueError(f"Unknown catalogue: `{args.catalogue}`.")
loader = csiborgtools.flow.DataLoader(args.simname, args.catalogue, fpath,
paths, ksmooth=args.ksmooth)
Omega_m = csiborgtools.simname2Omega_m(args.simname)
loader = csiborgtools.flow.DataLoader(args.simname, nsim_iterator,
args.catalogue, fpath, paths,
ksmooth=args.ksmooth)
# Read in the data from the loader.
los_overdensity = loader.los_density[:, nsim_iterator, :]
los_velocity = loader.los_radial_velocity[:, nsim_iterator, :]
if args.catalogue == "A2":
RA = loader.cat["RA"]
dec = loader.cat["DEC"]
z_obs = loader.cat["z_obs"]
r_hMpc = loader.cat["r_hMpc"]
e_r_hMpc = loader.cat["e_rhMpc"]
return csiborgtools.flow.SD_PV_validation_model(
los_overdensity, los_velocity, RA, dec, z_obs, r_hMpc, e_r_hMpc,
loader.rdist, Omega_m)
elif args.catalogue == "LOSS" or args.catalogue == "Foundation":
RA = loader.cat["RA"]
dec = loader.cat["DEC"]
zCMB = loader.cat["z_CMB"]
mB = loader.cat["mB"]
x1 = loader.cat["x1"]
c = loader.cat["c"]
e_mB = loader.cat["e_mB"]
e_x1 = loader.cat["e_x1"]
e_c = loader.cat["e_c"]
return csiborgtools.flow.SN_PV_validation_model(
los_overdensity, los_velocity, RA, dec, zCMB, mB, x1, c,
e_mB, e_x1, e_c, loader.rdist, Omega_m)
elif args.catalogue in ["SFI_gals", "2MTF"]:
RA = loader.cat["RA"]
dec = loader.cat["DEC"]
zCMB = loader.cat["z_CMB"]
mag = loader.cat["mag"]
eta = loader.cat["eta"]
e_mag = loader.cat["e_mag"]
e_eta = loader.cat["e_eta"]
return csiborgtools.flow.TF_PV_validation_model(
los_overdensity, los_velocity, RA, dec, zCMB, mag, eta,
e_mag, e_eta, loader.rdist, Omega_m)
else:
raise ValueError(f"Unknown catalogue: `{args.catalogue}`.")
return csiborgtools.flow.get_model(loader, **get_model_kwargs)
def run_model(model, nsteps, nchains, nsim, dump_folder, show_progress=True):
def run_model(model, nsteps, nburn, nchains, nsim, dump_folder,
model_kwargs, show_progress=True):
"""
Run the NumPyro model and save the thinned samples to a temporary file.
@ -115,6 +75,8 @@ def run_model(model, nsteps, nchains, nsim, dump_folder, show_progress=True):
Model to be run.
nsteps : int
Number of steps.
nburn : int
Number of burn-in steps.
nchains : int
Number of chains.
nsim : int
@ -129,11 +91,11 @@ def run_model(model, nsteps, nchains, nsim, dump_folder, show_progress=True):
None
"""
nuts_kernel = NUTS(model, init_strategy=init_to_sample)
mcmc = MCMC(nuts_kernel, num_warmup=500, num_samples=nsteps,
mcmc = MCMC(nuts_kernel, num_warmup=nburn, num_samples=nsteps,
chain_method="sequential", num_chains=nchains,
progress_bar=show_progress)
rng_key = jax.random.PRNGKey(42)
mcmc.run(rng_key)
mcmc.run(rng_key, **model_kwargs)
if show_progress:
print(f"Summary of the MCMC run of simulation indexed {nsim}:")
@ -142,9 +104,11 @@ def run_model(model, nsteps, nchains, nsim, dump_folder, show_progress=True):
samples = mcmc.get_samples()
thinned_samples = csiborgtools.thin_samples_by_acl(samples)
gof = csiborgtools.numpyro_gof(model, mcmc, model_kwargs)
# Save the samples to the temporary folder.
fname = join(dump_folder, f"samples_{nsim}.npz")
np.savez(fname, **thinned_samples)
np.savez(fname, **thinned_samples, **gof)
def combine_from_simulations(catalogue_name, simname, nsims, outfolder,
@ -208,6 +172,12 @@ if __name__ == "__main__":
help="PV catalogue.")
parser.add_argument("--ksmooth", type=int, required=True,
help="Smoothing index.")
parser.add_argument("--nchains", type=int, default=4,
help="Number of chains.")
parser.add_argument("--nsteps", type=int, default=2500,
help="Number of post burn-n steps.")
parser.add_argument("--nburn", type=int, default=500,
help="Number of burn-in steps.")
args = parser.parse_args()
comm = MPI.COMM_WORLD
@ -217,8 +187,8 @@ if __name__ == "__main__":
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
nsims = paths.get_ics(args.simname)
nsteps = 2000
nchains = 2
get_model_kwargs = {"zcmb_max": 0.06}
model_kwargs = {"sample_alpha": True}
# Create the dumping folder.
if comm.Get_rank() == 0:
@ -231,9 +201,9 @@ if __name__ == "__main__":
dump_folder = comm.bcast(dump_folder, root=0)
def main(i):
model = get_model(args, i)
run_model(model, nsteps, nchains, nsims[i], dump_folder,
show_progress=size == 1)
model = get_model(args, i, get_model_kwargs)
run_model(model, args.nsteps, args.nburn, args.nchains, nsims[i],
dump_folder, model_kwargs, show_progress=size == 1)
work_delegation(main, [i for i in range(len(nsims))], comm,
master_verbose=True)

View file

@ -1,14 +1,14 @@
memory=4
on_login=${1}
nthreads=${2}
ksmooth=${3}
on_login=0
nthreads=${1}
ksmooth=${2}
queue="berg"
env="/mnt/users/rstiskalek/csiborgtools/venv_csiborg/bin/python"
file="flow_validation.py"
catalogue="Foundation"
simname="csiborg2_random"
catalogue="Pantheon+"
simname="csiborg2_main"
pythoncm="$env $file --catalogue $catalogue --simname $simname --ksmooth $ksmooth"

View file

@ -168,7 +168,7 @@ def main_csiborg(args, folder):
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
boxsize = csiborgtools.simname2boxsize(args.simname)
nsims = paths.get_ics(args.simname)
distances = numpy.linspace(0, boxsize / 2, 101)[1:]
distances = numpy.linspace(0, boxsize / 2, 501)[1:]
# Initialize arrays to store the results
cumulative_mass = numpy.zeros((len(nsims), len(distances)))

View file

@ -1,11 +1,11 @@
nthreads=1
memory=32
on_login=${1}
queue="berg"
memory=40
on_login=0
queue="cmb"
env="/mnt/zfsusers/rstiskalek/csiborgtools/venv_csiborg/bin/python"
file="mass_enclosed.py"
simname="borg2"
simname=${1}
pythoncm="$env $file --simname $simname"