mirror of
https://github.com/Richard-Sti/csiborgtools_public.git
synced 2025-05-13 14:11:11 +00:00
Remove halo fitting. (#83)
* Rename file * Remove old content * Remove halo fit * Completely remove fits * Add utils here * Account for renaming
This commit is contained in:
parent
ff395af148
commit
f4a7cb0d16
7 changed files with 148 additions and 718 deletions
|
@ -1,153 +0,0 @@
|
|||
# Copyright (C) 2022 Richard Stiskalek
|
||||
# This program is free software; you can redistribute it and/or modify it
|
||||
# under the terms of the GNU General Public License as published by the
|
||||
# Free Software Foundation; either version 3 of the License, or (at your
|
||||
# option) any later version.
|
||||
#
|
||||
# This program is distributed in the hope that it will be useful, but
|
||||
# WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
|
||||
# Public License for more details.
|
||||
#
|
||||
# You should have received a copy of the GNU General Public License along
|
||||
# with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||
"""
|
||||
A script to fit FoF halos (concentration, ...). The CSiBORG particle array of
|
||||
each realisation must have been processed in advance by `pre_dumppart.py`.
|
||||
Quijote is not supported yet
|
||||
"""
|
||||
from argparse import ArgumentParser
|
||||
|
||||
import numpy
|
||||
from mpi4py import MPI
|
||||
from taskmaster import work_delegation
|
||||
from tqdm import trange
|
||||
|
||||
from utils import get_nsims
|
||||
|
||||
try:
|
||||
import csiborgtools
|
||||
except ModuleNotFoundError:
|
||||
import sys
|
||||
|
||||
sys.path.append("../")
|
||||
import csiborgtools
|
||||
|
||||
|
||||
def fit_halo(particles, box):
|
||||
"""
|
||||
Fit a single halo from the particle array. Only halos with more than 100
|
||||
particles are fitted.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
particles : 2-dimensional array of shape `(n_particles, 3)`
|
||||
Particle array. The columns must be `x`, `y`, `z`, `vx`, `vy`, `vz`,
|
||||
`M`.
|
||||
box : object derived from :py:class`csiborgtools.read.BaseBox`
|
||||
Box object.
|
||||
|
||||
Returns
|
||||
-------
|
||||
out : dict
|
||||
"""
|
||||
halo = csiborgtools.fits.Halo(particles, box)
|
||||
|
||||
out = {}
|
||||
out["npart"] = len(halo)
|
||||
out["totpartmass"] = numpy.sum(halo["M"])
|
||||
for i, v in enumerate(["vx", "vy", "vz"]):
|
||||
out[v] = numpy.average(halo.vel[:, i], weights=halo["M"])
|
||||
|
||||
if out["npart"] < 100:
|
||||
return out
|
||||
|
||||
cm, dist = halo.center_of_mass()
|
||||
m200c, r200c = halo.spherical_overdensity_mass(dist, 200)
|
||||
angmom = halo.angular_momentum(dist, cm, r200c)
|
||||
|
||||
out["m200c"] = m200c
|
||||
out["r200c"] = r200c
|
||||
out["lambda200c"] = halo.lambda_bullock(angmom, m200c, r200c)
|
||||
out["conc"] = halo.nfw_concentration(dist, r200c)
|
||||
return out
|
||||
|
||||
|
||||
def _main(nsim, simname, verbose):
|
||||
"""
|
||||
Fit the FoF halos.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
nsim : int
|
||||
IC realisation index.
|
||||
simname : str
|
||||
Simulation name.
|
||||
verbose : bool
|
||||
Verbosity flag.
|
||||
"""
|
||||
cols = [("index", numpy.int32),
|
||||
("npart", numpy.int32),
|
||||
("totpartmass", numpy.float32),
|
||||
("vx", numpy.float32),
|
||||
("vy", numpy.float32),
|
||||
("vz", numpy.float32),
|
||||
("conc", numpy.float32),
|
||||
("r200c", numpy.float32),
|
||||
("m200c", numpy.float32),
|
||||
("lambda200c", numpy.float32),]
|
||||
|
||||
nsnap = max(paths.get_snapshots(nsim, simname))
|
||||
if simname == "csiborg":
|
||||
box = csiborgtools.read.CSiBORGBox(nsnap, nsim, paths)
|
||||
cat = csiborgtools.read.CSiBORGHaloCatalogue(
|
||||
nsim, paths, bounds=None, load_fitted=False, load_initial=False)
|
||||
else:
|
||||
box = csiborgtools.read.QuijoteBox(nsnap, nsim, paths)
|
||||
cat = csiborgtools.read.QuijoteHaloCatalogue(
|
||||
nsim, paths, nsnap, bounds=None, load_fitted=False,
|
||||
load_initial=False)
|
||||
|
||||
# Particle archive
|
||||
f = csiborgtools.read.read_h5(paths.particles(nsim, simname))
|
||||
particles = f["particles"]
|
||||
halo_map = f["halomap"]
|
||||
hid2map = {hid: i for i, hid in enumerate(halo_map[:, 0])}
|
||||
|
||||
out = csiborgtools.read.cols_to_structured(len(cat), cols)
|
||||
for i in trange(len(cat)) if verbose else range(len(cat)):
|
||||
hid = cat["index"][i]
|
||||
out["index"][i] = hid
|
||||
part = csiborgtools.read.load_halo_particles(hid, particles, halo_map,
|
||||
hid2map)
|
||||
# Skip if no particles.
|
||||
if part is None:
|
||||
continue
|
||||
|
||||
_out = fit_halo(part, box)
|
||||
for key in _out.keys():
|
||||
out[key][i] = _out.get(key, numpy.nan)
|
||||
|
||||
fout = paths.structfit(nsnap, nsim, simname)
|
||||
if verbose:
|
||||
print(f"Saving to `{fout}`.", flush=True)
|
||||
numpy.save(fout, out)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = ArgumentParser()
|
||||
parser.add_argument("--simname", type=str, default="csiborg",
|
||||
choices=["csiborg", "quijote", "quijote_full"],
|
||||
help="Simulation name")
|
||||
parser.add_argument("--nsims", type=int, nargs="+", default=None,
|
||||
help="IC realisations. If `-1` processes all.")
|
||||
args = parser.parse_args()
|
||||
|
||||
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
|
||||
nsims = get_nsims(args, paths)
|
||||
|
||||
def main(nsim):
|
||||
_main(nsim, args.simname, MPI.COMM_WORLD.Get_size() == 1)
|
||||
|
||||
work_delegation(main, nsims, MPI.COMM_WORLD)
|
|
@ -61,7 +61,7 @@ def get_counts(nsim, bins, paths, parser_args):
|
|||
cat = csiborgtools.read.CSiBORGHaloCatalogue(
|
||||
nsim, paths, bounds=bounds, load_fitted=False, load_initial=False)
|
||||
logmass = numpy.log10(cat["fof_totpartmass"])
|
||||
counts = csiborgtools.fits.number_counts(logmass, bins)
|
||||
counts = csiborgtools.number_counts(logmass, bins)
|
||||
elif simname == "quijote":
|
||||
cat0 = csiborgtools.read.QuijoteHaloCatalogue(
|
||||
nsim, paths, nsnap=4, load_fitted=False, load_initial=False)
|
||||
|
@ -72,12 +72,12 @@ def get_counts(nsim, bins, paths, parser_args):
|
|||
for nobs in range(nmax):
|
||||
cat = cat0.pick_fiducial_observer(nobs, rmax=parser_args.Rmax)
|
||||
logmass = numpy.log10(cat["group_mass"])
|
||||
counts[nobs, :] = csiborgtools.fits.number_counts(logmass, bins)
|
||||
counts[nobs, :] = csiborgtools.number_counts(logmass, bins)
|
||||
elif simname == "quijote_full":
|
||||
cat = csiborgtools.read.QuijoteHaloCatalogue(
|
||||
nsim, paths, nsnap=4, load_fitted=False, load_initial=False)
|
||||
logmass = numpy.log10(cat["group_mass"])
|
||||
counts = csiborgtools.fits.number_counts(logmass, bins)
|
||||
counts = csiborgtools.number_counts(logmass, bins)
|
||||
else:
|
||||
raise ValueError(f"Unknown simulation name `{simname}`.")
|
||||
|
||||
|
|
|
@ -91,14 +91,14 @@ def _main(nsim, simname, verbose):
|
|||
|
||||
pos, mass = part[:, :3], part[:, 3]
|
||||
# Calculate the centre of mass and the Lagrangian patch size.
|
||||
cm = csiborgtools.fits.center_of_mass(pos, mass, boxsize=1.0)
|
||||
distances = csiborgtools.fits.periodic_distance(pos, cm, boxsize=1.0)
|
||||
cm = csiborgtools.center_of_mass(pos, mass, boxsize=1.0)
|
||||
distances = csiborgtools.periodic_distance(pos, cm, boxsize=1.0)
|
||||
out["x"][i], out["y"][i], out["z"][i] = cm
|
||||
out["lagpatch_size"][i] = numpy.percentile(distances, 99)
|
||||
|
||||
# Calculate the number of cells with > 0 density.
|
||||
delta = overlapper.make_delta(pos, mass, subbox=True)
|
||||
out["lagpatch_ncells"][i] = csiborgtools.fits.delta2ncells(delta)
|
||||
out["lagpatch_ncells"][i] = csiborgtools.delta2ncells(delta)
|
||||
|
||||
# Now save it
|
||||
fout = paths.initmatch(nsim, simname, "fit")
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue