mirror of
https://github.com/Richard-Sti/csiborgtools.git
synced 2025-01-05 11:04:14 +00:00
Final overlap definition update.. (#29)
* Delete whitespace * Update overlap definition * Add documentation * add overlap args * Make the background array store only high density region * Add nsims to args * Remove conc as done inside the func * Simplify the overlap calculation * Rename variable * Just some docs * Docs * Correct overlap definition * Undo debug comment * Remove old debug code * Add prob of no match and exp couunterpart mass * docs * Update the overlap definition
This commit is contained in:
parent
1c859dbdac
commit
f2cef73977
3 changed files with 222 additions and 129 deletions
|
@ -19,6 +19,7 @@ from tqdm import (tqdm, trange)
|
||||||
from datetime import datetime
|
from datetime import datetime
|
||||||
from astropy.coordinates import SkyCoord
|
from astropy.coordinates import SkyCoord
|
||||||
from numba import jit
|
from numba import jit
|
||||||
|
from gc import collect
|
||||||
from ..read import (concatenate_clumps, clumps_pos2cell)
|
from ..read import (concatenate_clumps, clumps_pos2cell)
|
||||||
|
|
||||||
|
|
||||||
|
@ -276,9 +277,10 @@ class RealisationsMatcher:
|
||||||
# Calculate the particle field
|
# Calculate the particle field
|
||||||
if verbose:
|
if verbose:
|
||||||
print("Creating and smoothing the crossed field.", flush=True)
|
print("Creating and smoothing the crossed field.", flush=True)
|
||||||
delta = self.overlapper.make_delta(concatenate_clumps(clumpsx),
|
delta_bckg0 = self.overlapper.make_background_delta(
|
||||||
to_smooth=False)
|
clumps0, to_smooth=False)
|
||||||
delta = self.overlapper.smooth_highres(delta)
|
delta_bckgx = self.overlapper.make_background_delta(
|
||||||
|
clumpsx, to_smooth=False)
|
||||||
|
|
||||||
# Min and max cells along each axis for each halo
|
# Min and max cells along each axis for each halo
|
||||||
limkwargs = {"ncells": self.overlapper.inv_clength,
|
limkwargs = {"ncells": self.overlapper.inv_clength,
|
||||||
|
@ -307,8 +309,8 @@ class RealisationsMatcher:
|
||||||
matchx = cat2clumpsx[ind] # Clump pos matching this halo
|
matchx = cat2clumpsx[ind] # Clump pos matching this halo
|
||||||
clx = clumpsx["clump"][matchx]
|
clx = clumpsx["clump"][matchx]
|
||||||
crosses[ii] = self.overlapper(
|
crosses[ii] = self.overlapper(
|
||||||
cl0, clx, delta, mins0_current, maxs0_current,
|
cl0, clx, delta_bckg0, delta_bckgx, mins0_current,
|
||||||
minsx[matchx], maxsx[matchx],
|
maxs0_current, minsx[matchx], maxsx[matchx],
|
||||||
mass1=mass0, mass2=numpy.sum(clx['M']))
|
mass1=mass0, mass2=numpy.sum(clx['M']))
|
||||||
cross[k] = crosses
|
cross[k] = crosses
|
||||||
|
|
||||||
|
@ -365,9 +367,6 @@ class ParticleOverlap:
|
||||||
|
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
inv_clength : float, optional
|
|
||||||
Inverse cell length in box units. By default :math:`2^11`, which
|
|
||||||
matches the initial RAMSES grid resolution.
|
|
||||||
nshift : int, optional
|
nshift : int, optional
|
||||||
Number of cells by which to shift the subbox from the outside-most
|
Number of cells by which to shift the subbox from the outside-most
|
||||||
cell containing a particle. By default 5.
|
cell containing a particle. By default 5.
|
||||||
|
@ -381,8 +380,10 @@ class ParticleOverlap:
|
||||||
_clength = None
|
_clength = None
|
||||||
_nshift = None
|
_nshift = None
|
||||||
|
|
||||||
def __init__(self, inv_clength=2**11, smooth_scale=None, nshift=5):
|
def __init__(self, smooth_scale=None, nshift=5):
|
||||||
self.inv_clength = inv_clength
|
# Inverse cell length in box units. By default :math:`2^11`, which
|
||||||
|
# matches the initial RAMSES grid resolution.
|
||||||
|
self.inv_clength = 2**11
|
||||||
self.smooth_scale = smooth_scale
|
self.smooth_scale = smooth_scale
|
||||||
self.nshift = nshift
|
self.nshift = nshift
|
||||||
|
|
||||||
|
@ -445,32 +446,47 @@ class ParticleOverlap:
|
||||||
return pos
|
return pos
|
||||||
return numpy.floor(pos * self.inv_clength).astype(int)
|
return numpy.floor(pos * self.inv_clength).astype(int)
|
||||||
|
|
||||||
def smooth_highres(self, delta):
|
def make_background_delta(self, clumps, to_smooth=True):
|
||||||
"""
|
"""
|
||||||
Smooth the central region of a full box density field. Note that if
|
Calculate a NGP density field of clumps within the central
|
||||||
`self.smooth_scale` is `None` then quietly exits the function.
|
:math:`1/2^3` region of the simulation.
|
||||||
|
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
delta : 3-dimensional array
|
clumps : list of structured arrays
|
||||||
|
List of clump structured array, keys must include `x`, `y`, `z`
|
||||||
|
and `M`.
|
||||||
|
to_smooth : bool, optional
|
||||||
|
Explicit control over whether to smooth. By default `True`.
|
||||||
|
|
||||||
Returns
|
Returns
|
||||||
-------
|
-------
|
||||||
smooth_delta : 3-dimensional arrray
|
delta : 3-dimensional array
|
||||||
"""
|
"""
|
||||||
if self.smooth_scale is None:
|
conc_clumps = concatenate_clumps(clumps)
|
||||||
return delta
|
cells = [self.pos2cell(conc_clumps[p]) for p in ('x', 'y', 'z')]
|
||||||
msg = "Shape of `delta` must match the entire box."
|
mass = conc_clumps['M']
|
||||||
assert delta.shape == (self._inv_clength,)*3, msg
|
|
||||||
|
|
||||||
# Subselect only the high-resolution region
|
del conc_clumps
|
||||||
start = self._inv_clength // 4
|
collect() # This is a large array so force memory clean
|
||||||
end = start * 3
|
|
||||||
highres = delta[start:end, start:end, start:end]
|
cellmin = self.inv_clength // 4 # The minimum cell ID
|
||||||
# Smoothen it
|
cellmax = 3 * self.inv_clength // 4 # The maximum cell ID
|
||||||
gaussian_filter(highres, self.smooth_scale, output=highres)
|
ncells = cellmax - cellmin
|
||||||
# Put things back into the original array
|
# Mask out particles outside the cubical high resolution region
|
||||||
delta[start:end, start:end, start:end] = highres
|
mask = ((cellmin <= cells[0]) & (cells[0] < cellmax)
|
||||||
|
& (cellmin <= cells[1]) & (cells[1] < cellmax)
|
||||||
|
& (cellmin <= cells[2]) & (cells[2] < cellmax)
|
||||||
|
)
|
||||||
|
cells = [c[mask] for c in cells]
|
||||||
|
mass = mass[mask]
|
||||||
|
|
||||||
|
# Preallocate and fill the array
|
||||||
|
delta = numpy.zeros((ncells,) * 3, dtype=numpy.float32)
|
||||||
|
fill_delta(delta, *cells, *(cellmin,) * 3, mass)
|
||||||
|
|
||||||
|
if to_smooth and self.smooth_scale is not None:
|
||||||
|
gaussian_filter(delta, self.smooth_scale, output=delta)
|
||||||
return delta
|
return delta
|
||||||
|
|
||||||
def make_delta(self, clump, mins=None, maxs=None, subbox=False,
|
def make_delta(self, clump, mins=None, maxs=None, subbox=False,
|
||||||
|
@ -540,6 +556,9 @@ class ParticleOverlap:
|
||||||
mins2, maxs2 : 1-dimensional arrays of shape `(3,)`
|
mins2, maxs2 : 1-dimensional arrays of shape `(3,)`
|
||||||
Minimun and maximum cell numbers along each dimension of `clump2`.
|
Minimun and maximum cell numbers along each dimension of `clump2`.
|
||||||
Optional.
|
Optional.
|
||||||
|
return_nonzero1 : bool, optional
|
||||||
|
Whether to return the indices where the contribution of `clump1` is
|
||||||
|
non-zero.
|
||||||
|
|
||||||
Returns
|
Returns
|
||||||
-------
|
-------
|
||||||
|
@ -593,35 +612,12 @@ class ParticleOverlap:
|
||||||
|
|
||||||
return delta1, delta2, cellmins, nonzero1
|
return delta1, delta2, cellmins, nonzero1
|
||||||
|
|
||||||
@staticmethod
|
def __call__(self, clump1, clump2, delta1_bckg, delta2_bckg,
|
||||||
def overlap(delta1, delta2, cellmins, delta2_full):
|
mins1=None, maxs1=None, mins2=None, maxs2=None,
|
||||||
r"""
|
mass1=None, mass2=None, loop_nonzero=True):
|
||||||
Overlap between two clumps whose density fields are evaluated on the
|
|
||||||
same grid.
|
|
||||||
|
|
||||||
Parameters
|
|
||||||
----------
|
|
||||||
delta1, delta2 : 3-dimensional arrays
|
|
||||||
Clumps density fields.
|
|
||||||
cellmins : len-3 tuple
|
|
||||||
Tuple of left-most cell ID in the full box.
|
|
||||||
delta2_full : 3-dimensional array
|
|
||||||
Density field of the whole box calculated with particles assigned
|
|
||||||
to halos at zero redshift.
|
|
||||||
|
|
||||||
Returns
|
|
||||||
-------
|
|
||||||
overlap : float
|
|
||||||
"""
|
|
||||||
return calculate_overlap(delta1, delta2, cellmins, delta2_full)
|
|
||||||
|
|
||||||
def __call__(self, clump1, clump2, delta2_full, mins1=None, maxs1=None,
|
|
||||||
mins2=None, maxs2=None, mass1=None, mass2=None,
|
|
||||||
loop_nonzero=True):
|
|
||||||
"""
|
"""
|
||||||
Calculate overlap between `clump1` and `clump2`. See
|
Calculate overlap between `clump1` and `clump2`. See
|
||||||
`self.overlap(...)` and `self.make_deltas(...)` for further
|
`calculate_overlap(...)` for further information.
|
||||||
information.
|
|
||||||
|
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
|
@ -630,9 +626,10 @@ class ParticleOverlap:
|
||||||
must include `x`, `y`, `z` and `M`.
|
must include `x`, `y`, `z` and `M`.
|
||||||
cellmins : len-3 tuple
|
cellmins : len-3 tuple
|
||||||
Tuple of left-most cell ID in the full box.
|
Tuple of left-most cell ID in the full box.
|
||||||
delta2_full : 3-dimensional array
|
delta1_bcgk, delta2_bckg : 3-dimensional arrays
|
||||||
Density field of the whole box calculated with particles assigned
|
Background density fields of the reference and cross boxes
|
||||||
to halos at zero redshift.
|
calculated with particles assigned to halos at the final snapshot.
|
||||||
|
Assumed to only be sampled in cells :math:`[512, 1536)^3`.
|
||||||
mins1, maxs1 : 1-dimensional arrays of shape `(3,)`
|
mins1, maxs1 : 1-dimensional arrays of shape `(3,)`
|
||||||
Minimun and maximum cell numbers along each dimension of `clump1`.
|
Minimun and maximum cell numbers along each dimension of `clump1`.
|
||||||
Optional.
|
Optional.
|
||||||
|
@ -655,10 +652,14 @@ class ParticleOverlap:
|
||||||
return_nonzero1=loop_nonzero)
|
return_nonzero1=loop_nonzero)
|
||||||
|
|
||||||
if not loop_nonzero:
|
if not loop_nonzero:
|
||||||
return calculate_overlap(delta1, delta2, cellmins, delta2_full)
|
return calculate_overlap(delta1, delta2, cellmins,
|
||||||
|
delta1_bckg, delta2_bckg)
|
||||||
|
|
||||||
return calculate_overlap_indxs(delta1, delta2, cellmins, delta2_full,
|
# Calculate masses not given
|
||||||
nonzero1, mass1, mass2)
|
mass1 = numpy.sum(clump1['M']) if mass1 is None else mass1
|
||||||
|
mass2 = numpy.sum(clump2['M']) if mass2 is None else mass2
|
||||||
|
return calculate_overlap_indxs(delta1, delta2, cellmins, delta1_bckg,
|
||||||
|
delta2_bckg, nonzero1, mass1, mass2)
|
||||||
|
|
||||||
|
|
||||||
@jit(nopython=True)
|
@jit(nopython=True)
|
||||||
|
@ -760,7 +761,7 @@ def get_clumplims(clumps, ncells, nshift=None):
|
||||||
|
|
||||||
|
|
||||||
@jit(nopython=True)
|
@jit(nopython=True)
|
||||||
def calculate_overlap(delta1, delta2, cellmins, delta2_full):
|
def calculate_overlap(delta1, delta2, cellmins, delta1_bckg, delta2_bckg):
|
||||||
r"""
|
r"""
|
||||||
Overlap between two clumps whose density fields are evaluated on the
|
Overlap between two clumps whose density fields are evaluated on the
|
||||||
same grid. This is a JIT implementation, hence it is outside of the main
|
same grid. This is a JIT implementation, hence it is outside of the main
|
||||||
|
@ -772,9 +773,10 @@ def calculate_overlap(delta1, delta2, cellmins, delta2_full):
|
||||||
Clumps density fields.
|
Clumps density fields.
|
||||||
cellmins : len-3 tuple
|
cellmins : len-3 tuple
|
||||||
Tuple of left-most cell ID in the full box.
|
Tuple of left-most cell ID in the full box.
|
||||||
delta2_full : 3-dimensional array
|
delta1_bcgk, delta2_bckg : 3-dimensional arrays
|
||||||
Density field of the whole box calculated with particles assigned
|
Background density fields of the reference and cross boxes calculated
|
||||||
to halos at zero redshift.
|
with particles assigned to halos at the final snapshot. Assumed to only
|
||||||
|
be sampled in cells :math:`[512, 1536)^3`.
|
||||||
|
|
||||||
Returns
|
Returns
|
||||||
-------
|
-------
|
||||||
|
@ -782,36 +784,41 @@ def calculate_overlap(delta1, delta2, cellmins, delta2_full):
|
||||||
"""
|
"""
|
||||||
totmass = 0. # Total mass of clump 1 and clump 2
|
totmass = 0. # Total mass of clump 1 and clump 2
|
||||||
intersect = 0. # Mass of pixels that are non-zero in both clumps
|
intersect = 0. # Mass of pixels that are non-zero in both clumps
|
||||||
weight = 0. # Weight to account for other halos
|
|
||||||
count = 0 # Total number of pixels that are both non-zero
|
|
||||||
i0, j0, k0 = cellmins # Unpack things
|
i0, j0, k0 = cellmins # Unpack things
|
||||||
|
bckg_offset = 512 # Offset of the background density field
|
||||||
|
bckg_size = 1024
|
||||||
imax, jmax, kmax = delta1.shape
|
imax, jmax, kmax = delta1.shape
|
||||||
|
|
||||||
for i in range(imax):
|
for i in range(imax):
|
||||||
ii = i0 + i
|
ii = i0 + i - bckg_offset
|
||||||
|
flag = 0 <= ii < bckg_size
|
||||||
for j in range(jmax):
|
for j in range(jmax):
|
||||||
jj = j0 + j
|
jj = j0 + j - bckg_offset
|
||||||
|
flag &= 0 <= jj < bckg_size
|
||||||
for k in range(kmax):
|
for k in range(kmax):
|
||||||
kk = k0 + k
|
kk = k0 + k - bckg_offset
|
||||||
|
flag &= 0 <= kk < bckg_size
|
||||||
|
|
||||||
cell1, cell2 = delta1[i, j, k], delta2[i, j, k]
|
cell1, cell2 = delta1[i, j, k], delta2[i, j, k]
|
||||||
cell = cell1 + cell2
|
|
||||||
totmass += cell
|
|
||||||
# If both are zero then skip
|
# If both are zero then skip
|
||||||
if cell1 * cell2 > 0:
|
if cell1 * cell2 > 0:
|
||||||
intersect += cell
|
if flag:
|
||||||
weight += cell2 / delta2_full[ii, jj, kk]
|
weight1 = cell1 / delta1_bckg[ii, jj, kk]
|
||||||
count += 1
|
weight2 = cell2 / delta2_bckg[ii, jj, kk]
|
||||||
|
else:
|
||||||
|
weight1 = 1.
|
||||||
|
weight2 = 1.
|
||||||
|
# Average weighted mass in the cell
|
||||||
|
intersect += 0.5 * (weight1 * cell1 + weight2 * cell2)
|
||||||
|
|
||||||
# Normalise the intersect and weights
|
totmass += cell1 + cell2
|
||||||
intersect *= 0.5
|
|
||||||
weight = weight / count if count > 0 else 0.
|
return intersect / (totmass - intersect)
|
||||||
return weight * intersect / (totmass - intersect)
|
|
||||||
|
|
||||||
|
|
||||||
@jit(nopython=True)
|
@jit(nopython=True)
|
||||||
def calculate_overlap_indxs(delta1, delta2, cellmins, delta2_full, nonzero1,
|
def calculate_overlap_indxs(delta1, delta2, cellmins, delta1_bckg, delta2_bckg,
|
||||||
mass1, mass2):
|
nonzero1, mass1, mass2):
|
||||||
r"""
|
r"""
|
||||||
Overlap between two clumps whose density fields are evaluated on the
|
Overlap between two clumps whose density fields are evaluated on the
|
||||||
same grid and `nonzero1` enumerates the non-zero cells of `delta1. This is
|
same grid and `nonzero1` enumerates the non-zero cells of `delta1. This is
|
||||||
|
@ -823,9 +830,10 @@ def calculate_overlap_indxs(delta1, delta2, cellmins, delta2_full, nonzero1,
|
||||||
Clumps density fields.
|
Clumps density fields.
|
||||||
cellmins : len-3 tuple
|
cellmins : len-3 tuple
|
||||||
Tuple of left-most cell ID in the full box.
|
Tuple of left-most cell ID in the full box.
|
||||||
delta2_full : 3-dimensional array
|
delta1_bcgk, delta2_bckg : 3-dimensional arrays
|
||||||
Density field of the whole box calculated with particles assigned
|
Background density fields of the reference and cross boxes calculated
|
||||||
to halos at zero redshift.
|
with particles assigned to halos at the final snapshot. Assumed to only
|
||||||
|
be sampled in cells :math:`[512, 1536)^3`.
|
||||||
nonzero1 : 2-dimensional array of shape `(n_cells, 3)`
|
nonzero1 : 2-dimensional array of shape `(n_cells, 3)`
|
||||||
Indices of cells that are non-zero in `delta1`. Expected to be
|
Indices of cells that are non-zero in `delta1`. Expected to be
|
||||||
precomputed from `fill_delta_indxs`.
|
precomputed from `fill_delta_indxs`.
|
||||||
|
@ -837,27 +845,36 @@ def calculate_overlap_indxs(delta1, delta2, cellmins, delta2_full, nonzero1,
|
||||||
-------
|
-------
|
||||||
overlap : float
|
overlap : float
|
||||||
"""
|
"""
|
||||||
totmass = mass1 + mass2 # Total mass of clump 1 and clump 2
|
|
||||||
intersect = 0. # Mass of pixels that are non-zero in both clumps
|
intersect = 0. # Mass of pixels that are non-zero in both clumps
|
||||||
weight = 0. # Weight to account for other halos
|
|
||||||
count = 0 # Total number of pixels that are both non-zero
|
|
||||||
i0, j0, k0 = cellmins # Unpack cell minimas
|
i0, j0, k0 = cellmins # Unpack cell minimas
|
||||||
|
bckg_offset = 512 # Offset of the background density field
|
||||||
|
bckg_size = 1024 # Size of the background density field array
|
||||||
|
|
||||||
ncells = nonzero1.shape[0]
|
for n in range(nonzero1.shape[0]):
|
||||||
|
|
||||||
for n in range(ncells):
|
|
||||||
i, j, k = nonzero1[n, :]
|
i, j, k = nonzero1[n, :]
|
||||||
cell1, cell2 = delta1[i, j, k], delta2[i, j, k]
|
cell2 = delta2[i, j, k]
|
||||||
|
|
||||||
if cell2 > 0: # We already know that cell1 is non-zero
|
if cell2 > 0: # We already know that cell1 is non-zero
|
||||||
intersect += cell1 + cell2
|
cell1 = delta1[i, j, k] # Now unpack cell1 as well
|
||||||
weight += cell2 / delta2_full[i0 + i, j0 + j, k0 + k]
|
ii = i0 + i - bckg_offset # Indices of this cell in the
|
||||||
count += 1
|
jj = j0 + j - bckg_offset # background density field.
|
||||||
|
kk = k0 + k - bckg_offset
|
||||||
|
|
||||||
# Normalise the intersect and weights
|
flag = 0 <= ii < bckg_size # Whether this cell is in the high
|
||||||
intersect *= 0.5
|
flag &= 0 <= jj < bckg_size # resolution region for which the
|
||||||
weight = weight / count if count > 0 else 0.
|
flag &= 0 <= kk < bckg_size # background density is calculated.
|
||||||
return weight * intersect / (totmass - intersect)
|
|
||||||
|
if flag:
|
||||||
|
weight1 = cell1 / delta1_bckg[ii, jj, kk]
|
||||||
|
weight2 = cell2 / delta2_bckg[ii, jj, kk]
|
||||||
|
else:
|
||||||
|
weight1 = 1.
|
||||||
|
weight2 = 1.
|
||||||
|
|
||||||
|
# Average weighted mass in the cell
|
||||||
|
intersect += 0.5 * (weight1 * cell1 + weight2 * cell2)
|
||||||
|
|
||||||
|
return intersect / (mass1 + mass2 - intersect)
|
||||||
|
|
||||||
|
|
||||||
def dist_centmass(clump):
|
def dist_centmass(clump):
|
||||||
|
|
|
@ -18,6 +18,7 @@ Tools for summarising various results.
|
||||||
import numpy
|
import numpy
|
||||||
import joblib
|
import joblib
|
||||||
from tqdm import tqdm
|
from tqdm import tqdm
|
||||||
|
from .make_cat import HaloCatalogue
|
||||||
|
|
||||||
|
|
||||||
class PKReader:
|
class PKReader:
|
||||||
|
@ -170,16 +171,24 @@ class PKReader:
|
||||||
|
|
||||||
class OverlapReader:
|
class OverlapReader:
|
||||||
"""
|
"""
|
||||||
TODO: docs
|
A shortcut object for reading in the results of matching two simulations.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
nsim0 : int
|
||||||
|
The reference simulation ID.
|
||||||
|
nsimx : int
|
||||||
|
The cross simulation ID.
|
||||||
|
fskel : str, optional
|
||||||
|
Path to the overlap. By default `None`, i.e.
|
||||||
|
`/mnt/extraspace/rstiskalek/csiborg/overlap/cross_{}_{}.npz`.
|
||||||
"""
|
"""
|
||||||
|
def __init__(self, nsim0, nsimx, fskel=None):
|
||||||
def __init__(self, nsim0, nsimx, cat0, catx, fskel=None):
|
|
||||||
if fskel is None:
|
if fskel is None:
|
||||||
fskel = "/mnt/extraspace/rstiskalek/csiborg/overlap/"
|
fskel = "/mnt/extraspace/rstiskalek/csiborg/overlap/"
|
||||||
fskel += "cross_{}_{}.npz"
|
fskel += "cross_{}_{}.npz"
|
||||||
self._data = numpy.load(fskel.format(nsim0, nsimx), allow_pickle=True)
|
self._data = numpy.load(fskel.format(nsim0, nsimx), allow_pickle=True)
|
||||||
self._set_cats(nsim0, nsimx, cat0, catx)
|
self._set_cats(nsim0, nsimx)
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def nsim0(self):
|
def nsim0(self):
|
||||||
|
@ -225,7 +234,7 @@ class OverlapReader:
|
||||||
"""
|
"""
|
||||||
return self._catx
|
return self._catx
|
||||||
|
|
||||||
def _set_cats(self, nsim0, nsimx, cat0, catx):
|
def _set_cats(self, nsim0, nsimx):
|
||||||
"""
|
"""
|
||||||
Set the simulation IDs and catalogues.
|
Set the simulation IDs and catalogues.
|
||||||
|
|
||||||
|
@ -233,18 +242,15 @@ class OverlapReader:
|
||||||
----------
|
----------
|
||||||
nsim0, nsimx : int
|
nsim0, nsimx : int
|
||||||
The reference and cross simulation IDs.
|
The reference and cross simulation IDs.
|
||||||
cat0, catx: :py:class:`csiborgtools.read.HaloCatalogue`
|
|
||||||
Halo catalogues corresponding to `nsim0` and `nsimx`, respectively.
|
|
||||||
|
|
||||||
Returns
|
Returns
|
||||||
-------
|
-------
|
||||||
None
|
None
|
||||||
"""
|
"""
|
||||||
assert (nsim0 == cat0.paths.n_sim) & (nsimx == catx.paths.n_sim)
|
|
||||||
self._nsim0 = nsim0
|
self._nsim0 = nsim0
|
||||||
self._nsimx = nsimx
|
self._nsimx = nsimx
|
||||||
self._cat0 = cat0
|
self._cat0 = HaloCatalogue(nsim0)
|
||||||
self._catx = catx
|
self._catx = HaloCatalogue(nsimx)
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def indxs(self):
|
def indxs(self):
|
||||||
|
@ -351,15 +357,11 @@ class OverlapReader:
|
||||||
Summed overlap of each halo in the reference simulation with the cross
|
Summed overlap of each halo in the reference simulation with the cross
|
||||||
simulation.
|
simulation.
|
||||||
|
|
||||||
Parameters
|
|
||||||
----------
|
|
||||||
None
|
|
||||||
|
|
||||||
Returns
|
Returns
|
||||||
-------
|
-------
|
||||||
summed_overlap : 1-dimensional array of shape `(nhalos, )`
|
summed_overlap : 1-dimensional array of shape `(nhalos, )`
|
||||||
"""
|
"""
|
||||||
return numpy.array([numpy.sum(cross) for cross in self._data["cross"]])
|
return numpy.array([numpy.sum(cross) for cross in self.overlap])
|
||||||
|
|
||||||
def copy_per_match(self, par):
|
def copy_per_match(self, par):
|
||||||
"""
|
"""
|
||||||
|
@ -381,6 +383,80 @@ class OverlapReader:
|
||||||
out[n] = numpy.ones(ind.size) * self.cat0[par][n]
|
out[n] = numpy.ones(ind.size) * self.cat0[par][n]
|
||||||
return numpy.array(out, dtype=object)
|
return numpy.array(out, dtype=object)
|
||||||
|
|
||||||
|
def prob_nomatch(self):
|
||||||
|
"""
|
||||||
|
Probability of no match for each halo in the reference simulation with
|
||||||
|
the cross simulation. Defined as a product of 1 - overlap with other
|
||||||
|
halos.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
out : 1-dimensional array of shape `(nhalos, )`
|
||||||
|
"""
|
||||||
|
return numpy.array(
|
||||||
|
[numpy.product(1 - overlap) for overlap in self.overlap])
|
||||||
|
|
||||||
|
def expected_counterpart_mass(self, overlap_threshold=0., in_log=False,
|
||||||
|
mass_kind="totpartmass"):
|
||||||
|
"""
|
||||||
|
Calculate the expected counterpart mass of each halo in the reference
|
||||||
|
simulation from the crossed simulation.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
-----------
|
||||||
|
overlap_threshold : float, optional
|
||||||
|
Minimum overlap required for a halo to be considered a match. By
|
||||||
|
default 0.0, i.e. no threshold.
|
||||||
|
in_log : bool, optional
|
||||||
|
Whether to calculate the expectation value in log space. By default
|
||||||
|
`False`.
|
||||||
|
mass_kind : str, optional
|
||||||
|
The mass kind whose ratio is to be calculated. Must be a valid
|
||||||
|
catalogue key. By default `totpartmass`, i.e. the total particle
|
||||||
|
mass associated with a halo.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
mean, std : 1-dimensional arrays of shape `(nhalos, )`
|
||||||
|
"""
|
||||||
|
nhalos = self.indxs.size
|
||||||
|
mean = numpy.full(nhalos, numpy.nan) # Preallocate output arrays
|
||||||
|
std = numpy.full(nhalos, numpy.nan)
|
||||||
|
|
||||||
|
massx = self.catx[mass_kind] # Create references to the arrays here
|
||||||
|
overlap = self.overlap # to speed up the loop below.
|
||||||
|
|
||||||
|
# Is the iterator verbose?
|
||||||
|
for n, match_ind in enumerate((self.match_indxs)):
|
||||||
|
# Skip if no match
|
||||||
|
if match_ind.size == 0:
|
||||||
|
continue
|
||||||
|
|
||||||
|
massx_ = massx[match_ind] # Again just create references
|
||||||
|
overlap_ = overlap[n] # to the appropriate elements
|
||||||
|
|
||||||
|
# Optionally apply overlap threshold
|
||||||
|
if overlap_threshold > 0.:
|
||||||
|
mask = overlap_ > overlap_threshold
|
||||||
|
if numpy.sum(mask) == 0:
|
||||||
|
continue
|
||||||
|
massx_ = massx_[mask]
|
||||||
|
overlap_ = overlap_[mask]
|
||||||
|
|
||||||
|
massx_ = numpy.log10(massx_) if in_log else massx_
|
||||||
|
# Weighted average and *biased* standard deviation
|
||||||
|
mean_ = numpy.average(massx_, weights=overlap_)
|
||||||
|
std_ = numpy.average((massx_ - mean_)**2, weights=overlap_)**0.5
|
||||||
|
|
||||||
|
# If in log, convert back to linear
|
||||||
|
mean_ = 10**mean_ if in_log else mean_
|
||||||
|
std_ = mean_ * std_ * numpy.log(10) if in_log else std_
|
||||||
|
|
||||||
|
mean[n] = mean_
|
||||||
|
std[n] = std_
|
||||||
|
|
||||||
|
return mean, std
|
||||||
|
|
||||||
|
|
||||||
def binned_resample_mean(x, y, prob, bins, nresample=50, seed=42):
|
def binned_resample_mean(x, y, prob, bins, nresample=50, seed=42):
|
||||||
"""
|
"""
|
||||||
|
@ -430,4 +506,3 @@ def binned_resample_mean(x, y, prob, bins, nresample=50, seed=42):
|
||||||
bin_centres = (bins[1:] + bins[:-1]) / 2
|
bin_centres = (bins[1:] + bins[:-1]) / 2
|
||||||
|
|
||||||
return bin_centres, stat
|
return bin_centres, stat
|
||||||
|
|
|
@ -30,25 +30,26 @@ import utils
|
||||||
|
|
||||||
# Argument parser
|
# Argument parser
|
||||||
parser = ArgumentParser()
|
parser = ArgumentParser()
|
||||||
|
parser.add_argument("--nsim0", type=int)
|
||||||
|
parser.add_argument("--nsimx", type=int)
|
||||||
parser.add_argument("--nmult", type=float)
|
parser.add_argument("--nmult", type=float)
|
||||||
parser.add_argument("--overlap", type=lambda x: bool(strtobool(x)))
|
parser.add_argument("--overlap", type=lambda x: bool(strtobool(x)))
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
|
|
||||||
# File paths
|
# File paths
|
||||||
nsim0 = 7468
|
fout = join(
|
||||||
nsimx = 7588
|
utils.dumpdir, "overlap", "cross_{}_{}.npz".format(args.nsim0, args.nsimx))
|
||||||
fperm = join(utils.dumpdir, "overlap", "cross_{}_{}.npy")
|
|
||||||
|
|
||||||
print("{}: loading catalogues.".format(datetime.now()), flush=True)
|
print("{}: loading catalogues.".format(datetime.now()), flush=True)
|
||||||
cat0 = csiborgtools.read.HaloCatalogue(nsim0)
|
cat0 = csiborgtools.read.HaloCatalogue(args.nsim0)
|
||||||
catx = csiborgtools.read.HaloCatalogue(nsimx)
|
catx = csiborgtools.read.HaloCatalogue(args.nsimx)
|
||||||
|
|
||||||
matcher = csiborgtools.match.RealisationsMatcher()
|
matcher = csiborgtools.match.RealisationsMatcher()
|
||||||
print("{}: crossing the simulations.".format(datetime.now()), flush=True)
|
print("{}: crossing the simulations.".format(datetime.now()), flush=True)
|
||||||
indxs, match_indxs, cross = matcher.cross(
|
indxs, match_indxs, cross = matcher.cross(
|
||||||
nsim0, nsimx, cat0, catx, overlap=False)
|
args.nsim0, args.nsimx, cat0, catx, overlap=args.overlap)
|
||||||
|
|
||||||
# Dump the result
|
# Dump the result
|
||||||
fout = fperm.format(nsim0, nsimx)
|
|
||||||
print("Saving results to `{}`.".format(fout), flush=True)
|
print("Saving results to `{}`.".format(fout), flush=True)
|
||||||
with open(fout, "wb") as f:
|
with open(fout, "wb") as f:
|
||||||
numpy.savez(fout, indxs=indxs, match_indxs=match_indxs, cross=cross)
|
numpy.savez(fout, indxs=indxs, match_indxs=match_indxs, cross=cross)
|
||||||
|
|
Loading…
Reference in a new issue