mirror of
https://github.com/Richard-Sti/csiborgtools.git
synced 2024-12-22 12:28:03 +00:00
Add plotting (#64)
* Add verbosity statements * More verbosity * Save masses too * Add CDF new plot * Blank line * Fix RVS sampling bug * Add R200 conversion * Simplify plotting routines * Remove imoprt
This commit is contained in:
parent
7c2d7a86f5
commit
f1dbe6f03f
6 changed files with 123 additions and 12 deletions
|
@ -67,7 +67,7 @@ class RVSinsphere(BaseRVS):
|
|||
gen = numpy.random.default_rng(random_state)
|
||||
# Spherical
|
||||
r = gen.random(nsamples, dtype=dtype)**(1 / 3) * self.R
|
||||
theta = 2 * numpy.arcsin(gen.random(nsamples, dtype=dtype))
|
||||
theta = numpy.arccos(1 - 2 * gen.random(nsamples, dtype=dtype))
|
||||
phi = 2 * numpy.pi * gen.random(nsamples, dtype=dtype)
|
||||
# Cartesian
|
||||
x = r * numpy.sin(theta) * numpy.cos(phi)
|
||||
|
|
|
@ -27,4 +27,4 @@ from .readsim import (MmainReader, ParticleReader, halfwidth_mask, # noqa
|
|||
load_clump_particles, load_parent_particles, read_initcm)
|
||||
from .tpcf_summary import TPCFReader # noqa
|
||||
from .utils import (cartesian_to_radec, cols_to_structured, # noqa
|
||||
radec_to_cartesian, read_h5, real2redshift)
|
||||
radec_to_cartesian, read_h5, real2redshift, M200_to_R200)
|
||||
|
|
|
@ -484,6 +484,8 @@ class NPairsOverlap:
|
|||
|
||||
def __init__(self, cat0, catxs, paths, verbose=True):
|
||||
pairs = [None] * len(catxs)
|
||||
if verbose:
|
||||
print("Loading individual overlap objects...", flush=True)
|
||||
for i, catx in enumerate(tqdm(catxs) if verbose else catxs):
|
||||
pairs[i] = PairOverlap(cat0, catx, paths)
|
||||
|
||||
|
@ -506,6 +508,8 @@ class NPairsOverlap:
|
|||
summed_overlap : 2-dimensional array of shape `(nhalos, ncatxs)`
|
||||
"""
|
||||
out = [None] * len(self)
|
||||
if verbose:
|
||||
print("Calculating summed overlap...", flush=True)
|
||||
for i, pair in enumerate(tqdm(self.pairs) if verbose else self.pairs):
|
||||
out[i] = pair.summed_overlap(from_smoothed)
|
||||
return numpy.vstack(out).T
|
||||
|
@ -527,6 +531,8 @@ class NPairsOverlap:
|
|||
prob_nomatch : 2-dimensional array of shape `(nhalos, ncatxs)`
|
||||
"""
|
||||
out = [None] * len(self)
|
||||
if verbose:
|
||||
print("Calculating probability of no match...", flush=True)
|
||||
for i, pair in enumerate(tqdm(self.pairs) if verbose else self.pairs):
|
||||
out[i] = pair.prob_nomatch(from_smoothed)
|
||||
return numpy.vstack(out).T
|
||||
|
@ -568,6 +574,8 @@ class NPairsOverlap:
|
|||
Returned only if `return_full` is `True`.
|
||||
"""
|
||||
mus, stds = [None] * len(self), [None] * len(self)
|
||||
if verbose:
|
||||
print("Calculating counterpart masses...", flush=True)
|
||||
for i, pair in enumerate(tqdm(self.pairs) if verbose else self.pairs):
|
||||
mus[i], stds[i] = pair.counterpart_mass(
|
||||
from_smoothed=from_smoothed,
|
||||
|
|
|
@ -18,6 +18,7 @@ Various coordinate transformations.
|
|||
from os.path import isfile
|
||||
|
||||
import numpy
|
||||
from astropy import units
|
||||
from h5py import File
|
||||
|
||||
###############################################################################
|
||||
|
@ -135,6 +136,29 @@ def real2redshift(pos, vel, origin, box, in_box_units, periodic_wrap=True,
|
|||
return pos
|
||||
|
||||
|
||||
def M200_to_R200(M200, cosmo):
|
||||
r"""
|
||||
Convert :math:M_{200} to :math:`R_{200}`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
M200 : float
|
||||
:math:`M_{200}` in :math:`M_{\odot}`.
|
||||
cosmo : astropy cosmology object
|
||||
Cosmology.
|
||||
|
||||
Returns
|
||||
-------
|
||||
R200 : float
|
||||
:math:`R_{200}` in :math:`\mathrm{Mpc}`.
|
||||
"""
|
||||
Msun = 1.98847e30
|
||||
M200 = 1e14 * Msun * units.kg
|
||||
rhoc = cosmo.critical_density0
|
||||
R200 = (M200 / (4 * numpy.pi / 3 * 200 * rhoc))**(1. / 3)
|
||||
return R200.to(units.Mpc).value
|
||||
|
||||
|
||||
###############################################################################
|
||||
# Array manipulation #
|
||||
###############################################################################
|
||||
|
|
|
@ -69,7 +69,7 @@ def find_neighbour(args, nsim, cats, paths, comm):
|
|||
if args.verbose:
|
||||
print(f"Rank {comm.Get_rank()} writing to `{fout}`.", flush=True)
|
||||
numpy.savez(fout, ndist=ndist, cross_hindxs=cross_hindxs, mass=mass,
|
||||
rdist=rdist)
|
||||
ref_hindxs=cat0["index"], rdist=rdist)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
|
|
@ -56,14 +56,16 @@ def get_overlap(nsim0):
|
|||
cat0 = open_cat(nsim0)
|
||||
|
||||
catxs = []
|
||||
print("Opening catalogues...", flush=True)
|
||||
for nsimx in tqdm(nsimxs):
|
||||
catxs.append(open_cat(nsimx))
|
||||
|
||||
reader = csiborgtools.read.NPairsOverlap(cat0, catxs, paths)
|
||||
x = reader.cat0("totpartmass")
|
||||
mass = reader.cat0("totpartmass")
|
||||
hindxs = reader.cat0("index")
|
||||
summed_overlap = reader.summed_overlap(True)
|
||||
prob_nomatch = reader.prob_nomatch(True)
|
||||
return x, summed_overlap, prob_nomatch
|
||||
return mass, hindxs, summed_overlap, prob_nomatch
|
||||
|
||||
|
||||
def plot_summed_overlap(nsim0):
|
||||
|
@ -71,7 +73,7 @@ def plot_summed_overlap(nsim0):
|
|||
Plot the summed overlap and probability of no matching for a single
|
||||
reference simulation as a function of the reference halo mass.
|
||||
"""
|
||||
x, summed_overlap, prob_nomatch = get_overlap(nsim0)
|
||||
x, __, summed_overlap, prob_nomatch = get_overlap(nsim0)
|
||||
|
||||
mean_overlap = numpy.mean(summed_overlap, axis=1)
|
||||
std_overlap = numpy.std(summed_overlap, axis=1)
|
||||
|
@ -170,7 +172,7 @@ def make_ks(simname, run, nsim, nobs, kwargs):
|
|||
return reader.ks_significance(simname, run, nsim, cdf, nobs=nobs)
|
||||
|
||||
|
||||
def plot_dist(run, kind, kwargs):
|
||||
def plot_dist(run, kind, kwargs, r200):
|
||||
"""
|
||||
Plot the PDF/CDF of the nearest neighbour distance for Quijote and CSiBORG.
|
||||
"""
|
||||
|
@ -179,6 +181,8 @@ def plot_dist(run, kind, kwargs):
|
|||
paths = csiborgtools.read.Paths(**kwargs["paths_kind"])
|
||||
reader = csiborgtools.read.NearestNeighbourReader(**kwargs, paths=paths)
|
||||
x = reader.bin_centres("neighbour")
|
||||
if r200 is not None:
|
||||
x /= r200
|
||||
|
||||
y_quijote = read_dist("quijote", run, kind, kwargs)
|
||||
y_csiborg = read_dist("csiborg", run, kind, kwargs)
|
||||
|
@ -196,7 +200,10 @@ def plot_dist(run, kind, kwargs):
|
|||
plt.plot(x, y_quijote[i], c="C0", label=label1)
|
||||
plt.plot(x, y_csiborg[i], c="C1", label=label2)
|
||||
plt.xlim(0, 75)
|
||||
if r200 is None:
|
||||
plt.xlabel(r"$r_{1\mathrm{NN}}~[\mathrm{Mpc}]$")
|
||||
else:
|
||||
plt.xlabel(r"$r_{1\mathrm{NN}} / R_{200c}$")
|
||||
if kind == "pdf":
|
||||
plt.ylabel(r"$p(r_{1\mathrm{NN}})$")
|
||||
else:
|
||||
|
@ -308,6 +315,63 @@ def plot_kl_vs_ks(simname, run, nsim, nobs, kwargs):
|
|||
plt.close()
|
||||
|
||||
|
||||
def plot_kl_vs_overlap(run, nsim, kwargs):
|
||||
"""
|
||||
Plot KL divergence vs overlap.
|
||||
"""
|
||||
paths = csiborgtools.read.Paths(**kwargs["paths_kind"])
|
||||
nn_reader = csiborgtools.read.NearestNeighbourReader(**kwargs, paths=paths)
|
||||
nn_data = nn_reader.read_single("csiborg", run, nsim, nobs=None)
|
||||
nn_hindxs = nn_data["ref_hindxs"]
|
||||
|
||||
mass, overlap_hindxs, summed_overlap, prob_nomatch = get_overlap(nsim)
|
||||
|
||||
# We need to match the hindxs between the two.
|
||||
hind2overlap_array = {hind: i for i, hind in enumerate(overlap_hindxs)}
|
||||
mask = numpy.asanyarray([hind2overlap_array[hind] for hind in nn_hindxs])
|
||||
|
||||
summed_overlap = summed_overlap[mask]
|
||||
prob_nomatch = prob_nomatch[mask]
|
||||
mass = mass[mask]
|
||||
|
||||
kl = make_kl("csiborg", run, nsim, nobs=None, kwargs=kwargs)
|
||||
|
||||
with plt.style.context(utils.mplstyle):
|
||||
plt.figure()
|
||||
mu = numpy.mean(prob_nomatch, axis=1)
|
||||
plt.scatter(kl, 1 - mu, c=numpy.log10(mass))
|
||||
plt.colorbar(label=r"$\log M_{\rm tot} / M_\odot$")
|
||||
plt.xlabel(r"$D_{\mathrm{KL}}$ of $r_{1\mathrm{NN}}$ distribution")
|
||||
plt.ylabel(r"$1 - \langle \eta^{\mathcal{B}}_a \rangle_{\mathcal{B}}$")
|
||||
|
||||
plt.tight_layout()
|
||||
for ext in ["png"]:
|
||||
fout = join(utils.fout, f"kl_vs_overlap_mean_{run}_{str(nsim).zfill(5)}.{ext}") # noqa
|
||||
print(f"Saving to `{fout}`.")
|
||||
plt.savefig(fout, dpi=utils.dpi, bbox_inches="tight")
|
||||
plt.close()
|
||||
|
||||
with plt.style.context(utils.mplstyle):
|
||||
plt.figure()
|
||||
std = numpy.std(prob_nomatch, axis=1)
|
||||
plt.scatter(kl, std, c=numpy.log10(mass))
|
||||
plt.colorbar(label=r"$\log M_{\rm tot} / M_\odot$")
|
||||
plt.xlabel(r"$D_{\mathrm{KL}}$ of $r_{1\mathrm{NN}}$ distribution")
|
||||
plt.ylabel(r"$\langle \left(\eta^{\mathcal{B}}_a - \langle \eta^{\mathcal{B}^\prime}_a \rangle_{\mathcal{B}^\prime}\right)^2\rangle_{\mathcal{B}}^{1/2}$") # noqa
|
||||
|
||||
plt.tight_layout()
|
||||
for ext in ["png"]:
|
||||
fout = join(utils.fout, f"kl_vs_overlap_std_{run}_{str(nsim).zfill(5)}.{ext}") # noqa
|
||||
print(f"Saving to `{fout}`.")
|
||||
plt.savefig(fout, dpi=utils.dpi, bbox_inches="tight")
|
||||
plt.close()
|
||||
|
||||
|
||||
###############################################################################
|
||||
# Command line interface #
|
||||
###############################################################################
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = ArgumentParser()
|
||||
parser.add_argument('-c', '--clean', action='store_true')
|
||||
|
@ -320,15 +384,30 @@ if __name__ == "__main__":
|
|||
delete_disk_caches_for_function(func)
|
||||
|
||||
neighbour_kwargs = {"rmax_radial": 155 / 0.705,
|
||||
"nbins_radial": 20,
|
||||
"nbins_radial": 50,
|
||||
"rmax_neighbour": 100.,
|
||||
"nbins_neighbour": 150,
|
||||
"paths_kind": csiborgtools.paths_glamdring}
|
||||
run = "mass003"
|
||||
|
||||
# plot_dist("mass003", "pdf", neighbour_kwargs)
|
||||
|
||||
paths = csiborgtools.read.Paths(**neighbour_kwargs["paths_kind"])
|
||||
nn_reader = csiborgtools.read.NearestNeighbourReader(**neighbour_kwargs,
|
||||
paths=paths)
|
||||
run = "mass003"
|
||||
|
||||
# for ic in [7444, 8812, 9700]:
|
||||
# plot_summed_overlap(ic)
|
||||
# sizes = numpy.full(2700, numpy.nan)
|
||||
# from tqdm import trange
|
||||
# k = 0
|
||||
# for nsim in trange(100):
|
||||
# for nobs in range(27):
|
||||
# d = nn_reader.read_single("quijote", run, nsim, nobs)
|
||||
# sizes[k] = d["mass"].size
|
||||
|
||||
# k += 1
|
||||
# print(sizes)
|
||||
# print(numpy.mean(sizes), numpy.std(sizes))
|
||||
|
||||
# plot_kl_vs_overlap("mass003", 7444, neighbour_kwargs)
|
||||
|
||||
# plot_cdf_r200("mass003", neighbour_kwargs)
|
||||
|
|
Loading…
Reference in a new issue