mirror of
https://github.com/Richard-Sti/csiborgtools.git
synced 2024-12-22 23:48:02 +00:00
Clean up old functions (#8)
* update nbs * rm unused functions * simplify loading * optionally return counts as well * update TODO * update TODO
This commit is contained in:
parent
a0f187d660
commit
f0821c54bf
8 changed files with 7454 additions and 138 deletions
10
README.md
10
README.md
|
@ -1,17 +1,15 @@
|
|||
# CSiBORG tools
|
||||
|
||||
## :scroll: Short-term TODO
|
||||
- [ ] Make a nice plot comparing the SZ clusters and their number density
|
||||
- [x] Compare empirical $M_{500c}$ to the NFW expectation.
|
||||
- [ ] Add half-mass radius and its corresponding concentration.
|
||||
- [ ] Model the Planck SZ selection function.
|
||||
- [ ] Calculate catalogues for all realisations.
|
||||
- [x] Add shortcut function for loading a catalogue
|
||||
|
||||
|
||||
## :hourglass: Long-term TODO
|
||||
- [ ] Calculate the halo spin
|
||||
- [ ] Model the Planck SZ selection function.
|
||||
- [ ] Calculate the halo spin.
|
||||
- [ ] Calculate the cross-correlation in CSiBORG. Should see the scale of the constraints?
|
||||
- [ ] Improve file naming system
|
||||
- [ ] Calculate DM environmental properties.
|
||||
|
||||
|
||||
## :bulb: Open questions
|
|
@ -51,7 +51,7 @@ def binned_counts(x, bins):
|
|||
return centres, out
|
||||
|
||||
|
||||
def number_density(data, feat, bins, max_dist, to_log10):
|
||||
def number_density(data, feat, bins, max_dist, to_log10, return_counts=False):
|
||||
"""
|
||||
Calculate volume-limited number density of a feature `feat` from array
|
||||
`data`, normalised also by the bin width.
|
||||
|
@ -70,6 +70,9 @@ def number_density(data, feat, bins, max_dist, to_log10):
|
|||
to_log10 : bool
|
||||
Whether to take a logarithm of base 10 of the feature. If so, then the
|
||||
bins must also be logarithmic.
|
||||
return_counts : bool, optional
|
||||
Whether to also return number counts in each bin. By default `False`.
|
||||
|
||||
|
||||
Returns
|
||||
-------
|
||||
|
@ -80,6 +83,9 @@ def number_density(data, feat, bins, max_dist, to_log10):
|
|||
Number density of shape `(n_edges - 1, )`.
|
||||
nd_err : 1-dimensional array
|
||||
Poissonian uncertainty of `nd` of shape `(n_edges - 1, )`.
|
||||
counts: 1-dimensional array, optional
|
||||
Counts in each bin of shape `(n_edges - 1, )`. Returned only if
|
||||
`return_counts`.
|
||||
"""
|
||||
# Extract the param and optionally convert to log10
|
||||
x = data[feat]
|
||||
|
@ -104,4 +110,8 @@ def number_density(data, feat, bins, max_dist, to_log10):
|
|||
# Convert bins to linear space if log10
|
||||
if to_log10:
|
||||
bin_centres = 10**bin_centres
|
||||
return bin_centres, nd, nd_err
|
||||
|
||||
out = (bin_centres, nd, nd_err)
|
||||
if return_counts:
|
||||
out += counts
|
||||
return out
|
||||
|
|
|
@ -13,6 +13,5 @@
|
|||
# with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||
|
||||
from .transforms import (cartesian_to_radec, convert_mass_cols, # noqa
|
||||
convert_position_cols) # noqa
|
||||
from .transforms import cartesian_to_radec # noqa
|
||||
from .box_units import (BoxUnits, convert_from_boxunits) # noqa
|
||||
|
|
|
@ -16,15 +16,9 @@
|
|||
Various coordinate transformations.
|
||||
"""
|
||||
|
||||
|
||||
import numpy
|
||||
|
||||
|
||||
little_h = 0.705
|
||||
BOXSIZE = 677.7 / little_h # Mpc. Otherwise positions in [0, 1].
|
||||
BOXMASS = 3.749e19 # Msun
|
||||
|
||||
|
||||
def cartesian_to_radec(arr, xpar="peak_x", ypar="peak_y", zpar="peak_z"):
|
||||
r"""
|
||||
Extract `x`, `y`, and `z` coordinates from a record array `arr` and
|
||||
|
@ -61,50 +55,3 @@ def cartesian_to_radec(arr, xpar="peak_x", ypar="peak_y", zpar="peak_z"):
|
|||
ra[ra < 0] += 360
|
||||
|
||||
return dist, ra, dec
|
||||
|
||||
|
||||
def convert_mass_cols(arr, cols):
|
||||
r"""
|
||||
Convert mass columns from box units to :math:`M_{\odot}`. `arr` is passed
|
||||
by reference and is not explicitly returned back.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
arr : structured array
|
||||
The array whose columns are to be converted.
|
||||
cols : str or list of str
|
||||
The mass columns to be converted.
|
||||
|
||||
Returns
|
||||
-------
|
||||
None
|
||||
"""
|
||||
cols = [cols] if isinstance(cols, str) else cols
|
||||
for col in cols:
|
||||
arr[col] *= BOXMASS
|
||||
|
||||
|
||||
def convert_position_cols(arr, cols, zero_centered=True):
|
||||
r"""
|
||||
Convert position columns from box units to :math:`\mathrm{Mpc}`. `arr` is
|
||||
passed by reference and is not explicitly returned back.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
arr : structured array
|
||||
The array whose columns are to be converted.
|
||||
cols : str or list of str
|
||||
The mass columns to be converted.
|
||||
zero_centered : bool, optional
|
||||
Whether to translate the well-resolved origin in the centre of the
|
||||
simulation to the :math:`(0, 0 , 0)` point. By default `True`.
|
||||
|
||||
Returns
|
||||
-------
|
||||
None
|
||||
"""
|
||||
cols = [cols] if isinstance(cols, str) else cols
|
||||
for col in cols:
|
||||
arr[col] *= BOXSIZE
|
||||
if zero_centered:
|
||||
arr[col] -= BOXSIZE / 2
|
||||
|
|
3146
scripts/playground.ipynb
Normal file
3146
scripts/playground.ipynb
Normal file
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
1262
scripts/plot_mass_function.ipynb
Normal file
1262
scripts/plot_mass_function.ipynb
Normal file
File diff suppressed because one or more lines are too long
|
@ -19,7 +19,6 @@ Notebook utility functions.
|
|||
|
||||
import numpy
|
||||
from os.path import join
|
||||
from tqdm import trange
|
||||
from astropy.cosmology import FlatLambdaCDM
|
||||
|
||||
try:
|
||||
|
@ -33,40 +32,6 @@ Nsplits = 200
|
|||
dumpdir = "/mnt/extraspace/rstiskalek/csiborg/"
|
||||
|
||||
|
||||
def load_mmain_convert(n):
|
||||
srcdir = "/users/hdesmond/Mmain"
|
||||
arr = csiborgtools.io.read_mmain(n, srcdir)
|
||||
|
||||
csiborgtools.utils.convert_mass_cols(arr, "mass_cl")
|
||||
csiborgtools.utils.convert_position_cols(
|
||||
arr, ["peak_x", "peak_y", "peak_z"])
|
||||
csiborgtools.utils.flip_cols(arr, "peak_x", "peak_z")
|
||||
|
||||
d, ra, dec = csiborgtools.utils.cartesian_to_radec(arr)
|
||||
arr = csiborgtools.utils.add_columns(
|
||||
arr, [d, ra, dec], ["dist", "ra", "dec"])
|
||||
return arr
|
||||
|
||||
|
||||
def load_mmains(N=None, verbose=True):
|
||||
ids = csiborgtools.io.get_csiborg_ids("/mnt/extraspace/hdesmond")
|
||||
N = ids.size if N is None else N
|
||||
if N > ids.size:
|
||||
raise ValueError("`N` cannot be larger than 101.")
|
||||
# If N less than num of CSiBORG, then radomly choose
|
||||
if N == ids.size:
|
||||
choices = numpy.arange(N)
|
||||
else:
|
||||
choices = numpy.random.choice(ids.size, N, replace=False)
|
||||
|
||||
out = [None] * N
|
||||
iters = trange(N) if verbose else range(N)
|
||||
for i in iters:
|
||||
j = choices[i]
|
||||
out[i] = load_mmain_convert(ids[j])
|
||||
return out
|
||||
|
||||
|
||||
def load_processed(Nsim, Nsnap):
|
||||
simpath = csiborgtools.io.get_sim_path(Nsim)
|
||||
outfname = join(
|
||||
|
@ -76,6 +41,7 @@ def load_processed(Nsim, Nsnap):
|
|||
# Add mmain
|
||||
mmain = csiborgtools.io.read_mmain(Nsim, "/mnt/zfsusers/hdesmond/Mmain")
|
||||
data = csiborgtools.io.merge_mmain_to_clumps(data, mmain)
|
||||
csiborgtools.utils.flip_cols(data, "peak_x", "peak_z")
|
||||
# Cut on numbre of particles and finite m200
|
||||
data = data[(data["npart"] > 100) & numpy.isfinite(data["m200"])]
|
||||
|
||||
|
@ -85,6 +51,10 @@ def load_processed(Nsim, Nsnap):
|
|||
"r200", "r500", "Rs", "rho0", "peak_x", "peak_y", "peak_z"]
|
||||
data = csiborgtools.units.convert_from_boxunits(
|
||||
data, convert_cols, boxunits)
|
||||
# Now calculate spherical coordinates
|
||||
d, ra, dec = csiborgtools.units.cartesian_to_radec(data)
|
||||
data = csiborgtools.utils.add_columns(
|
||||
data, [d, ra, dec], ["dist", "ra", "dec"])
|
||||
return data
|
||||
|
||||
|
||||
|
|
Loading…
Reference in a new issue