This commit is contained in:
rstiskalek 2022-11-01 10:11:14 +00:00
commit ee84c12a55
8 changed files with 540 additions and 188 deletions

View file

@ -1,11 +1,16 @@
# CSiBORG analysis tools :dart:
# CSiBORG tools
## TODO :scroll:
- [ ] Calculate $M_{\rm vir}, R_{\rm vir}, c$ from $R_s, \rho_0, \ldots$
- [ ] Calculate $M_{\rm 500c}$ by sphere shrinking
- [ ] Calculate the cross-correlation in CSiBORG. Should see the scale of the constraints?
## :scroll: Short-term TODO
- [x] Calculate $M_{\rm vir}, R_{\rm vir}, c$ from $R_s, \rho_0, \ldots$
- [x] In `NFWPosterior` correct for the radius in which particles are fitted.
- [x] Calculate $M_{\rm 500c}$ by sphere shrinking
- [x] Change to log10 of the scale factor
- [ ] Calculate uncertainty on $R_{\rm s}$, switch to `JAX` and get gradients.
## :hourglass: Long-term TODO
- [ ] Improve file naming system
- [ ] Calculate the cross-correlation in CSiBORG. Should see the scale of the constraints?
## Open questions :bulb:
- Get uncertainty on the fitted $R_{\rm s}$? If so get this directly from JAX.
## :bulb: Open questions

View file

@ -18,6 +18,7 @@ Tools for splitting the particles and a clump object.
import numpy
from scipy.optimize import minimize_scalar
from os import remove
from warnings import warn
from os.path import join
@ -235,7 +236,7 @@ def pick_single_clump(n, particles, particle_clumps, clumps):
class Clump:
"""
r"""
A clump (halo) object to handle the particles and their clump's data.
Parameters
@ -254,28 +255,40 @@ class Clump:
Clump center coordinate along the y-axis.
z0 : float
Clump center coordinate along the z-axis.
clump_mass : float
Mass of the clump.
vx : 1-dimensional array
Particle velocity along the x-axis.
vy : 1-dimensional array
Particle velocity along the y-axis.
vz : 1-dimensional array
Particle velocity along the z-axis.
clump_mass : float, optional
Mass of the clump. By default not set.
vx : 1-dimensional array, optional
Particle velocity along the x-axis. By default not set.
vy : 1-dimensional array, optional
Particle velocity along the y-axis. By default not set.
vz : 1-dimensional array, optional
Particle velocity along the z-axis. By default not set.
index : int, optional
The halo finder index of this clump. By default not set.
rhoc : float, optional
The critical density :math:`\rho_c` at this snapshot in box units. By
default not set.
"""
_r = None
_rmin = None
_rmax = None
_pos = None
_clump_pos = None
_clump_mass = None
_vel = None
_Npart = None
_index = None
_rhoc = None
def __init__(self, x, y, z, m, x0, y0, z0, clump_mass=None,
vx=None, vy=None, vz=None):
vx=None, vy=None, vz=None, index=None, rhoc=None):
self.pos = (x, y, z, x0, y0, z0)
self.clump_pos = (x0, y0, z0)
self.clump_mass = clump_mass
self.vel = (vx, vy, vz)
self.m = m
self.index = index
self.rhoc = rhoc
@property
def pos(self):
@ -294,7 +307,46 @@ class Clump:
"""Sets `pos` and calculates radial distance."""
x, y, z, x0, y0, z0 = X
self._pos = numpy.vstack([x - x0, y - y0, z - z0]).T
self.r = numpy.sum(self.pos**2, axis=1)**0.5
self._r = numpy.sum(self.pos**2, axis=1)**0.5
self._rmin = numpy.min(self._r)
self._rmax = numpy.max(self._r)
self._Npart = self._r.size
@property
def r(self):
"""
Radial distance of the particles from the clump peak.
Returns
-------
r : 1-dimensional array
Array of shape `(n_particles, )`.
"""
return self._r
@property
def rmin(self):
"""
The minimum radial distance of a particle.
Returns
-------
rmin : float
The minimum distance.
"""
return self._rmin
@property
def rmax(self):
"""
The maximum radial distance of a particle.
Returns
-------
rmin : float
The maximum distance.
"""
return self._rmax
@property
def Npart(self):
@ -306,7 +358,7 @@ class Clump:
Npart : int
Number of particles.
"""
return self.r.size
return self._Npart
@property
def clump_pos(self):
@ -338,12 +390,14 @@ class Clump:
mass : float
Clump mass.
"""
if self._clump_mass is None:
raise ValueError("Clump mass `clump_mass` has not been set.")
return self._clump_mass
@clump_mass.setter
def clump_mass(self, mass):
"""Sets `clump_mass`, making sure it is a float."""
if not isinstance(mass, float):
if mass is not None and not isinstance(mass, float):
raise ValueError("`clump_mass` must be a float.")
self._clump_mass = mass
@ -391,25 +445,46 @@ class Clump:
self._m = m
@property
def r(self):
def index(self):
"""
Radial distance of particles from the clump peak.
The halo finder clump index.
Returns
-------
r : 1-dimensional array
Array of shape `(n_particles, )`
hindex : int
The index.
"""
return self._r
if self._index is None:
raise ValueError("Halo index `hindex` has not been set.")
return self._index
@r.setter
def r(self, r):
"""Sets `r`. Again checks the shape."""
if not isinstance(r, numpy.ndarray) and r.ndim == 1:
raise TypeError("`r` must be a 1-dimensional array.")
if not numpy.all(r >= 0):
raise ValueError("`r` larger than zero.")
self._r = r
@index.setter
def index(self, n):
"""Sets the halo index, making sure it is an integer."""
if n is not None and not (isinstance(n, (int, numpy.int64)) and n > 0):
raise ValueError("Halo index `index` must be an integer > 0.")
self._index = n
@property
def rhoc(self):
"""
The critical density :math:`\rho_c` at this snapshot in box units.
Returns
-------
rhoc : float
The critical density.
"""
if self._rhoc is None:
raise ValueError("The critical density `rhoc` has not been set.")
return self._rhoc
@rhoc.setter
def rhoc(self, rhoc):
"""Sets the critical density. Makes sure it is > 0."""
if rhoc is not None and not rhoc > 0:
raise ValueError("Critical density `rho_c` must be > 0.")
self._rhoc = rhoc
@property
def total_particle_mass(self):
@ -435,8 +510,165 @@ class Clump:
"""
return numpy.mean(self.pos + self.clump_pos, axis=0)
def enclosed_spherical_mass(self, rmax, rmin=None):
"""
The enclosed spherical mass between two radii. All quantities remain
in the box units.
Parameters
----------
rmax : float
The maximum radial distance.
rmin : float, optional
The minimum radial distance. By default the radial distance of the
closest particle.
Returns
-------
M_enclosed : float
The enclosed mass.
"""
rmin = self.rmin if rmin is None else rmin
return numpy.sum(self.m[(self.r >= rmin) & (self.r <= rmax)])
def enclosed_spherical_density(self, rmax, rmin=None):
"""
The enclosed spherical density between two radii. All quantities
remain in box units.
Parameters
----------
rmax : float
The maximum radial distance.
rmin : float, optional
The minimum radial distance. By default the radial distance of the
closest particle.
Returns
-------
rho_enclosed : float
The enclosed density.
"""
rmin = self.rmin if rmin is None else rmin
M = self.enclosed_spherical_mass(rmax, rmin)
V = 4 * numpy.pi / 3 * (rmax**3 - rmin**3)
return M / V
def radius_enclosed_overdensity(self, delta):
r"""
Radius of where the mean enclosed spherical density reaches a multiple
of the critical radius at a given redshift `self.rho_c`. Returns
`numpy.nan` if the fit does not converge. Note that `rhoc` must be in
box units!
Parameters
----------
delta : int or float
The :math:`\delta_{\rm x}` parameters where :math:`\mathrm{x}` is
the overdensity multiple.
Returns
-------
rx : float
The radius where the enclosed density reaches required value.
"""
# Loss function to minimise
def loss(r):
return abs(self.enclosed_spherical_density(r, self.rmin)
- delta * self.rhoc)
res = minimize_scalar(loss, bounds=(self.rmin, self.rmax),
method='bounded')
return res.x if res.success else numpy.nan
@property
def r200(self):
r"""
The radius at which the mean spherical density reaches 200 times
the critical density, :math:`R_{200c}`. Returns `numpy.nan` if the
estimate fails.
Returns
-------
r200 : float
The R200c radius
"""
return self.radius_enclosed_overdensity(200)
@property
def r178(self):
r"""
The radius at which the mean spherical density reaches 178 times
the critical density, :math:`R_{178c}`. Returns `numpy.nan` if the
estimate fails.
Returns
-------
r178 : float
The R178c radius
"""
return self.radius_enclosed_overdensity(178)
@property
def r500(self):
r"""
The radius at which the mean spherical density reaches 500 times
the critical density, :math:`R_{500c}`. Returns `numpy.nan` if the
estimate fails.
Returns
-------
r500 : float
The R500c radius
"""
return self.radius_enclosed_overdensity(500)
@property
def m200(self):
r"""
The mass enclosed within the :math:`R_{200c}` region, obtained from
`self.r200`. Returns `numpy.nan` if the radius estimate fails.
Returns
-------
m200 : float
The M200 mass
"""
r200 = self.radius_enclosed_overdensity(200)
return self.enclosed_spherical_mass(r200)
@property
def m178(self):
r"""
The mass enclosed within the :math:`R_{178c}` region, obtained from
`self.r178`. This is approximately the virial mass, though this notion
depends on the dynamical state of the clump. Returns `numpy.nan` if
the radius estimate fails.
Returns
-------
m178 : float
The M178 mass
"""
r178 = self.radius_enclosed_overdensity(178)
return self.enclosed_spherical_mass(r178)
@property
def m500(self):
r"""
The mass enclosed within the :math:`R_{500c}` region, obtained from
`self.r500`. Returns `numpy.nan` if the radius estimate fails.
Returns
-------
m500 : float
The M500 mass
"""
r500 = self.radius_enclosed_overdensity(500)
return self.enclosed_spherical_mass(r500)
@classmethod
def from_arrays(cls, particles, clump):
def from_arrays(cls, particles, clump, rhoc=None):
"""
Initialises `Halo` from `particles` containing the relevant particle
information and its `clump` information.
@ -452,14 +684,15 @@ class Clump:
Returns
-------
halo : `Halo`
An initialised halo object.
clump : `Clump`
An initialised clump object.
"""
x, y, z, m = (particles[p] for p in ["x", "y", "z", "M"])
x0, y0, z0, cl_mass = (
clump[p] for p in ["peak_x", "peak_y", "peak_z", "mass_cl"])
x0, y0, z0, cl_mass, hindex = (
clump[p] for p in ["peak_x", "peak_y", "peak_z", "mass_cl",
"index"])
try:
vx, vy, vz = (particles[p] for p in ["vx", "vy", "vz"])
except ValueError:
vx, vy, vz = None, None, None
return cls(x, y, z, m, x0, y0, z0, cl_mass, vx, vy, vz)
return cls(x, y, z, m, x0, y0, z0, cl_mass, vx, vy, vz, hindex, rhoc)

View file

@ -43,7 +43,8 @@ class NFWProfile:
def __init__(self):
pass
def profile(self, r, Rs, rho0):
@staticmethod
def profile(r, Rs, rho0):
r"""
Halo profile evaluated at :math:`r`.
@ -64,7 +65,8 @@ class NFWProfile:
x = r / Rs
return rho0 / (x * (1 + x)**2)
def logprofile(self, r, Rs, rho0):
@staticmethod
def logprofile(r, Rs, rho0):
r"""
Natural logarithm of the halo profile evaluated at :math:`r`.
@ -85,7 +87,8 @@ class NFWProfile:
x = r / Rs
return numpy.log(rho0) - numpy.log(x) - 2 * numpy.log(1 + x)
def enclosed_mass(self, r, Rs, rho0):
@staticmethod
def enclosed_mass(r, Rs, rho0):
r"""
Enclosed mass of a NFW profile in radius :math:`r`.
@ -198,16 +201,18 @@ class NFWProfile:
class NFWPosterior(NFWProfile):
r"""
Posterior of for fitting the NFW profile in the range specified by the
closest and further particle. The likelihood is calculated as
Posterior for fitting the NFW profile in the range specified by the
closest particle and the :math:`r_{200c}` radius. The likelihood is
calculated as
.. math::
\frac{4\pi r^2 \rho(r)} {M(r_\min, r_\max)} \frac{m}{M / N}
\frac{4\pi r^2 \rho(r)} {M(r_{\min} r_{200c})} \frac{m}{M / N}
where :math:`M(r_\min, r_\max)` is the enclosed mass between the closest
and further particle as expected from a NFW profile, :math:`m` is the
particle mass, :math:`M` is the sum of the particle masses and :math:`N`
is the number of particles.
where :math:`M(r_{\min} r_{200c}))` is the NFW enclosed mass between the
closest particle and the :math:`r_{200c}` radius, :math:`m` is the particle
mass, :math:`M` is the sum of the particle masses and :math:`N` is the
number of particles. Calculated only using particles within the
above-mentioned range.
Paramaters
----------
@ -215,10 +220,12 @@ class NFWPosterior(NFWProfile):
Clump object containing the particles and clump information.
"""
_clump = None
_N = None
_binsguess = 10
_r = None
_Npart = None
_m = None
_rmin = None
_rmax = None
_binsguess = 10
def __init__(self, clump):
# Initialise the NFW profile
@ -228,7 +235,8 @@ class NFWPosterior(NFWProfile):
@property
def clump(self):
"""
Clump object.
Clump object containig all particles, i.e. ones beyond :math:`R_{200c}`
as well.
Returns
-------
@ -237,44 +245,49 @@ class NFWPosterior(NFWProfile):
"""
return self._clump
@clump.setter
def clump(self, clump):
"""Sets `clump` and precalculates useful things."""
if not isinstance(clump, Clump):
raise TypeError(
"`clump` must be :py:class:`csiborgtools.fits.Clump` type. "
"Currently `{}`".format(type(clump)))
self._clump = clump
# Set here the rest of the radial info
self._rmax = numpy.max(self.r)
# r_min could be zero if particle in the potential minimum.
# Set it to the closest particle that is at distance > 0
self._rmin = numpy.sort(self.r[self.r > 0])[0]
self._logrmin = numpy.log(self.rmin)
self._logrmax = numpy.log(self.rmax)
self._logprior_volume = numpy.log(self._logrmax - self._logrmin)
self._N = self.r.size
# Precalculate useful things
self._logMtot = numpy.log(numpy.sum(self.clump.m))
gamma = 4 * numpy.pi * self.r**2 * self.clump.m * self.N
self._ll0 = numpy.sum(numpy.log(gamma)) - self.N * self._logMtot
@property
def r(self):
"""
Radial distance of particles.
r"""
Radial distance of particles used to fit the NFW profile, i.e. the ones
whose radial distance is less than :math:`R_{\rm 200c}`.
Returns
-------
r : 1-dimensional array
Radial distance of particles.
Array of shape `(n_particles, )`.
"""
return self.clump.r
return self._r
@property
def Npart(self):
r"""
Number of particles used to fit the NFW profile, i.e. the ones
whose radial distance is less than :math:`R_{\rm 200c}`.
Returns
-------
Npart : int
Number of particles.
"""
return self._Npart
@property
def m(self):
r"""
Mass of particles used to fit the NFW profile, i.e. the ones
whose radial distance is less than :math:`R_{\rm 200c}`.
Returns
-------
r : 1-dimensional array
Array of shape `(n_particles, )`.
"""
return self._m
@property
def rmin(self):
"""
Minimum radial distance of a particle belonging to this clump.
The minimum radial distance of a particle.
Returns
-------
@ -285,30 +298,50 @@ class NFWPosterior(NFWProfile):
@property
def rmax(self):
"""
Maximum radial distance of a particle belonging to this clump.
r"""
The maximum radial distance used to fit the profile, here takem to be
the :math:`R_{\rm 200c}`.
Returns
-------
rmin : float
The maximum distance.
rmax : float
The R200c radius.
"""
return self._rmax
@property
def N(self):
"""
The number of particles in this clump.
Returns
-------
N : int
Number of particles.
"""
return self._N
@clump.setter
def clump(self, clump):
"""Sets `clump` and precalculates useful things."""
if not isinstance(clump, Clump):
raise TypeError(
"`clump` must be :py:class:`csiborgtools.fits.Clump` type. "
"Currently `{}`".format(type(clump)))
self._clump = clump
# The minimum separation
rmin = self.clump.rmin
rmax = self.clump.r200
# Set the distances
self._rmin = rmin
self._rmax = rmax
# Set particles that will be used to fit the halo
mask_r200 = (self.clump.r >= rmin) & (self.clump.r <= rmax)
self._r = self.clump.r[mask_r200]
self._m = self.clump.m[mask_r200]
self._Npart = self._r.size
# Ensure that the minimum separation is > 0 for finite log
if self.rmin > 0:
self._logrmin = numpy.log10(self.rmin)
else:
self._logrmin = numpy.log10(numpy.min(self.r[self.r > 0]))
self._logrmax = numpy.log10(self.rmax)
self._logprior_volume = numpy.log(self._logrmax - self._logrmin)
# Precalculate useful things
self._logMtot = numpy.log(numpy.sum(self.m))
gamma = 4 * numpy.pi * self.r**2 * self.m * self.Npart
self._ll0 = numpy.sum(numpy.log(gamma)) - self.Npart * self._logMtot
def rho0_from_logRs(self, logRs):
"""
r"""
Obtain :math:`\rho_0` of the NFW profile from the integral constraint
on total mass. Calculated as the ratio between the total particle mass
and the enclosed NFW profile mass.
@ -324,8 +357,8 @@ class NFWPosterior(NFWProfile):
The NFW density parameter.
"""
Mtot = numpy.exp(self._logMtot)
Rs = numpy.exp(logRs)
Mnfw_norm = self.bounded_enclosed_mass(self.rmin, self.rmax, Rs, 1)
Mnfw_norm = self.bounded_enclosed_mass(self.rmin, self.rmax,
10**logRs, 1)
return Mtot / Mnfw_norm
def logprior(self, logRs):
@ -360,11 +393,12 @@ class NFWPosterior(NFWProfile):
ll : float
The logarithmic likelihood.
"""
Rs = numpy.exp(logRs)
Rs = 10**logRs
# Expected enclosed mass from a NFW
Mnfw = self.bounded_enclosed_mass(self.rmin, self.rmax, Rs, 1)
Mnfw = self.bounded_enclosed_mass(self.rmin, self.rmax,
Rs, 1)
ll = self._ll0 + numpy.sum(self.logprofile(self.r, Rs, 1))
return ll - self.N * numpy.log(Mnfw)
return ll - self.Npart * numpy.log(Mnfw)
@property
def initlogRs(self):
@ -378,7 +412,8 @@ class NFWPosterior(NFWProfile):
initlogRs : float
The initial guess of :math:`\log R_{\rm s}`.
"""
bins = numpy.linspace(self.rmin, self.rmax, self._binsguess)
bins = numpy.linspace(self.rmin, self.rmax,
self._binsguess)
counts, edges = numpy.histogram(self.r, bins)
return numpy.log(edges[numpy.argmax(counts)])
@ -401,61 +436,19 @@ class NFWPosterior(NFWProfile):
return - numpy.infty
return self.loglikelihood(logRs) + lp
def hamiltonian(self, logRs):
"""
Negative logarithmic posterior (i.e. the Hamiltonian).
Parameters
----------
logRs : float
Logarithmic scale factor in units matching the coordinates.
Returns
-------
neg_lpost : float
The Hamiltonian.
"""
return - self(logRs)
def maxpost_logRs(self):
r"""
Maximum a-posterio estimate of the scale radius :math:`\log R_{\rm s}`.
Returns the scale radius if the fit converged, otherwise `numpy.nan`.
Returns
-------
res : `scipy.optimize.OptimizeResult`
Optimisation result.
res : float
The scale radius.
"""
bounds = (self._logrmin, self._logrmax)
return minimize_scalar(
self.hamiltonian, bounds=bounds, method='bounded')
@classmethod
def from_coords(cls, x, y, z, m, x0, y0, z0):
"""
Initiate `NFWPosterior` from a set of Cartesian coordinates.
Parameters
----------
x : 1-dimensional array
Particle coordinates along the x-axis.
y : 1-dimensional array
Particle coordinates along the y-axis.
z : 1-dimensional array
Particle coordinates along the z-axis.
m : 1-dimensional array
Particle masses.
x0 : float
Halo center coordinate along the x-axis.
y0 : float
Halo center coordinate along the y-axis.
z0 : float
Halo center coordinate along the z-axis.
Returns
-------
post : `NFWPosterior`
Initiated `NFWPosterior` instance.
"""
r = numpy.sqrt((x - x0)**2 + (y - y0)**2 + (z - z0)**2)
return cls(r, m)
# Loss function to optimize
def loss(logRs):
return - self(logRs)
res = minimize_scalar(loss, bounds=(self._logrmin, self._logrmax),
method='bounded')
return res.x if res.success else numpy.nan

View file

@ -17,6 +17,7 @@ from .readsim import (get_csiborg_ids, get_sim_path, get_snapshots, # noqa
get_snapshot_path, read_info, nparts_to_start_ind, # noqa
open_particle, open_unbinding, read_particle, # noqa
drop_zero_indx, # noqa
read_clumpid, read_clumps, read_mmain) # noqa
read_clumpid, read_clumps, read_mmain, # noqa
merge_mmain_to_clumps) # noqa
from .readobs import (read_planck2015, read_2mpp) # noqa
from .outsim import (dump_split, combine_splits) # noqa

View file

@ -85,9 +85,6 @@ def combine_splits(Nsplits, Nsim, Nsnap, outdir, cols_add, remove_splits=False,
out : structured array
Clump array with appended results from the splits.
"""
# Will be grabbing these columns from each split
cols_add = [("npart", I64), ("totpartmass", F64), ("logRs", F64),
("rho0", F64)]
# Load clumps to see how many there are and will add to this array
simpath = get_sim_path(Nsim)
clumps = read_clumps(Nsnap, simpath, cols=None)

View file

@ -23,7 +23,7 @@ from os.path import (join, isfile)
from glob import glob
from tqdm import tqdm
from ..utils import cols_to_structured
from ..utils import (cols_to_structured, add_columns)
F16 = numpy.float16
@ -495,3 +495,30 @@ def read_mmain(n, srcdir, fname="Mmain_{}.npy"):
out[name] = arr[:, i]
return out
def merge_mmain_to_clumps(clumps, mmain):
"""
Merge columns from the `mmain` files to the `clump` file, matches them
by their halo index while assuming that the indices `index` in both arrays
are sorted.
Parameters
----------
clumps : structured array
Clumps structured array.
mmain : structured array
Parent halo array whose information is to be merged into `clumps`.
Returns
-------
out : structured array
Array with added columns.
"""
X = numpy.full((clumps.size, 2), numpy.nan)
# Mask of which clumps have a mmain index
mask = numpy.isin(clumps["index"], mmain["index"])
X[mask, 0] = mmain["mass_cl"]
X[mask, 1] = mmain["sub_frac"]
return add_columns(clumps, X, ["mass_mmain", "sub_frac"])

View file

@ -16,24 +16,16 @@
Simulation box unit transformations.
"""
import numpy
from astropy.cosmology import LambdaCDM
from astropy import (constants, units)
from ..io import read_info
# Conversion factors
MSUNCGS = constants.M_sun.cgs.value
KPC_TO_CM = 3.0856775814913673e+21
PI = 3.1415926535897932384626433
class BoxUnits:
r"""
Box units class for converting between box and physical units.
TODO: check factors of :math:`a` in mass and density transformations
Paramaters
----------
Nsnap : int
@ -41,6 +33,7 @@ class BoxUnits:
simpath : str
Path to the simulation where its snapshot index folders are stored.
"""
_cosmo = None
def __init__(self, Nsnap, simpath):
"""
@ -51,21 +44,105 @@ class BoxUnits:
"omega_m", "omega_l", "omega_k", "omega_b",
"unit_l", "unit_d", "unit_t"]
for par in pars:
setattr(self, par, float(info[par]))
setattr(self, "_" + par, float(info[par]))
self.h = self.H0 / 100
self.cosmo = LambdaCDM(H0=self.H0, Om0=self.omega_m, Ode0=self.omega_l,
Tcmb0=2.725 * units.K, Ob0=self.omega_b)
# Constants in box units
self.G = constants.G.cgs.value * (self.unit_d * self.unit_t ** 2)
self.H0 = self.H0 * 1e5 / (1e3 * KPC_TO_CM) * self.unit_t
self.c = constants.c.cgs.value * self.unit_t / self.unit_l
self.rho_crit = 3 * self.H0 ** 2 / (8 * PI * self.G)
self._cosmo = LambdaCDM(H0=self._H0, Om0=self._omega_m,
Ode0=self._omega_l, Tcmb0=2.725 * units.K,
Ob0=self._omega_b)
self._Msuncgs = constants.M_sun.cgs.value # Solar mass in grams
@property
def cosmo(self):
"""
The box cosmology.
Returns
-------
cosmo : `astropy.cosmology.LambdaCDM`
The CSiBORG cosmology.
"""
return self._cosmo
@property
def H0(self):
r"""
The Hubble parameter at the time of the snapshot
in :math:`\mathrm{Mpc} / \mathrm{km} / \mathrm{s}`.
Returns
-------
H0 : float
Hubble constant.
"""
return self._H0
@property
def h(self):
r"""
The little 'h` parameter at the time of the snapshot.
Returns
-------
h : float
The little h
"""
return self._H0 / 100
@property
def box_G(self):
"""
Gravitational constant :math:`G` in box units. Given everything else
it looks like `self.unit_t` is in seconds.
Returns
-------
G : float
The gravitational constant.
"""
return constants.G.cgs.value * (self._unit_d * self._unit_t ** 2)
@property
def box_H0(self):
"""
Present time Hubble constant :math:`H_0` in box units.
Returns
-------
H0 : float
The Hubble constant.
"""
return self.H0 * 1e5 / units.Mpc.to(units.cm) * self._unit_t
@property
def box_c(self):
"""
Speed of light in box units.
Returns
-------
c : float
The speed of light.
"""
return constants.c.cgs.value * self._unit_t / self._unit_l
@property
def box_rhoc(self):
"""
Critical density in box units.
Returns
-------
rhoc : float
The critical density.
"""
return 3 * self.box_H0 ** 2 / (8 * numpy.pi * self.box_G)
def box2kpc(self, length):
r"""
Convert length from box units to :math:`\mathrm{ckpc}` (with
:math:`h=0.705`).
:math:`h=0.705`). It appears that `self.unit_l` must be in
:math:`\mathrm{cm}`.
Parameters
----------
@ -77,7 +154,7 @@ class BoxUnits:
length : foat
Length in :math:`\mathrm{ckpc}`
"""
return length * self.unit_l / KPC_TO_CM / self.aexp
return length * (self._unit_l / units.kpc.to(units.cm) / self._aexp)
def kpc2box(self, length):
r"""
@ -94,7 +171,7 @@ class BoxUnits:
length : foat
Length in box units.
"""
return length / self.unit_l * KPC_TO_CM * self.aexp
return length / (self._unit_l / units.kpc.to(units.cm) / self._aexp)
def solarmass2box(self, mass):
r"""
@ -110,11 +187,13 @@ class BoxUnits:
mass : float
Mass in box units.
"""
return mass / self.unit_d / (self.unit_l**3 / MSUNCGS)
return mass / (self._unit_d * self._unit_l**3) * self._Msuncgs
def box2solarmass(self, mass):
r"""
Convert mass from box units to :math:`M_\odot` (with :math:`h=0.705`).
It appears that `self.unit_d` is density in units of
:math:`\mathrm{g}/\mathrm{cm}^3`.
Parameters
----------
@ -126,7 +205,7 @@ class BoxUnits:
mass : float
Mass in :math:`M_\odot`.
"""
return mass * self.unit_d * self.unit_l**3 / MSUNCGS
return mass * (self._unit_d * self._unit_l**3) / self._Msuncgs
def box2dens(self, density):
r"""
@ -143,7 +222,8 @@ class BoxUnits:
density : float
Density in :math:`M_\odot / \mathrm{pc}^3`.
"""
return density * self.unit_d / MSUNCGS * (KPC_TO_CM * 1e-3)**3
return (density * self._unit_d / self._Msuncgs
* (units.pc.to(units.cm))**3)
def dens2box(self, density):
r"""
@ -160,4 +240,5 @@ class BoxUnits:
density : float
Density in box units.
"""
return density / self.unit_d * MSUNCGS / (KPC_TO_CM * 1e-3)**3
return (density / self._unit_d * self._Msuncgs
/ (units.pc.to(units.cm))**3)

View file

@ -44,7 +44,10 @@ nproc = comm.Get_size()
dumpdir = utils.dumpdir
loaddir = join(utils.dumpdir, "temp")
cols_collect = [("npart", I64), ("totpartmass", F64), ("logRs", F64),
("rho0", F64)]
("rho0", F64), ("rmin", F64), ("rmax", F64),
("r200", F64), ("r178", F64), ("r500", F64),
("m200", F64), ("m178", F64), ("m500", F64)]
# NOTE later loop over sims too
Nsim = Nsims[0]
@ -56,7 +59,9 @@ for Nsplit in jobs:
N = clumps.size
cols = [("index", I64), ("npart", I64), ("totpartmass", F64),
("logRs", F64), ("rho0", F64)]
("logRs", F64), ("rho0", F64), ("rmin", F64), ("rmax", F64),
("r200", F64), ("r178", F64), ("r500", F64),
("m200", F64), ("m178", F64), ("m500", F64)]
out = csiborgtools.utils.cols_to_structured(N, cols)
out["index"] = clumps["index"]
@ -65,15 +70,25 @@ for Nsplit in jobs:
xs = csiborgtools.fits.pick_single_clump(n, parts, part_clumps, clumps)
clump = csiborgtools.fits.Clump.from_arrays(*xs)
out["npart"][n] = clump.Npart
out["rmin"][n] = clump.rmin
out["rmax"][n] = clump.rmax
out["totpartmass"][n] = clump.total_particle_mass
out["r200"][n] = clump.r200
out["r178"][n] = clump.r178
out["r500"][n] = clump.r500
out["m200"][n] = clump.m200
out["m178"][n] = clump.m178
out["m500"][n] = clump.m200
# NFW profile fit
if clump.Npart > 10:
if clump.Npart > 10 and numpy.isfinite(out["r200"][n]):
# NOTE here it calculates the r200 again, but its fast so does not
# matter anyway.
nfwpost = csiborgtools.fits.NFWPosterior(clump)
logRs = nfwpost.maxpost_logRs()
if logRs.success:
out["logRs"][n] = logRs.x
out["rho0"][n] = nfwpost.rho0_from_logRs(logRs.x)
if not numpy.isnan(logRs):
out["logRs"][n] = logRs
out["rho0"][n] = nfwpost.rho0_from_logRs(logRs)
csiborgtools.io.dump_split(out, Nsplit, Nsim, Nsnap, dumpdir)