mirror of
https://github.com/Richard-Sti/csiborgtools_public.git
synced 2025-05-21 01:51:11 +00:00
CSiBORG FoF switch (#75)
* Add moving FoF membership files * add FoF membership path * Add notes where its PHEW * Add FoF catalogue path * Correct typo * Add more functionalities * Make work with halo IDs from FoF * Edit print statement * Fix copy bug * copy * Add FoF catalogue reading * Clean up script * Fix typo * Little edits * Fix naming convention * Rename key * Remove loading substructure particles * Rename CSiBORG Cat * Rename clumps cat * Rename cat * Remove misplaced import * Switch to halos * rm import * structfit of only halos * Add FoF halo reading * Add a short comment * Fix __getitem__ to work with int * Fix problems * Improve __getitem__ * Add more conversion * Fix indexing * Fix __getitem__ assertion * Fix numbers * Rename * Fix verbosity flags * Add full Quijote HMF option * Add plot of Quijote only * Add quijote full paths * Fix the fit_init script * Renam arg * Update .gitignore * add default argument name * Change default verbosity flag * Modernise script structure * Fix dictionary * Fix reading to include m200c * Modernise script * Add args
This commit is contained in:
parent
fcd1a6b321
commit
eb8d070fff
19 changed files with 659 additions and 466 deletions
|
@ -12,12 +12,12 @@
|
|||
# with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||
"""
|
||||
Script to load in the simulation particles, load them by their clump ID and
|
||||
dump into a HDF5 file. Stores the first and last index of each clump in the
|
||||
Script to load in the simulation particles, sort them by their FoF halo ID and
|
||||
dump into a HDF5 file. Stores the first and last index of each halo in the
|
||||
particle array. This can be used for fast slicing of the array to acces
|
||||
particles of a single clump.
|
||||
"""
|
||||
|
||||
from argparse import ArgumentParser
|
||||
from datetime import datetime
|
||||
from gc import collect
|
||||
|
||||
|
@ -25,8 +25,11 @@ import h5py
|
|||
import numba
|
||||
import numpy
|
||||
from mpi4py import MPI
|
||||
from taskmaster import work_delegation
|
||||
from tqdm import trange
|
||||
|
||||
from utils import get_nsims
|
||||
|
||||
try:
|
||||
import csiborgtools
|
||||
except ModuleNotFoundError:
|
||||
|
@ -35,80 +38,79 @@ except ModuleNotFoundError:
|
|||
sys.path.append("../")
|
||||
import csiborgtools
|
||||
|
||||
from argparse import ArgumentParser
|
||||
|
||||
# We set up the MPI
|
||||
comm = MPI.COMM_WORLD
|
||||
rank = comm.Get_rank()
|
||||
nproc = comm.Get_size()
|
||||
|
||||
# And next parse all the arguments and set up CSiBORG objects
|
||||
parser = ArgumentParser()
|
||||
parser.add_argument("--ics", type=int, nargs="+", default=None,
|
||||
help="IC realisations. If `-1` processes all simulations.")
|
||||
args = parser.parse_args()
|
||||
|
||||
verbose = nproc == 1
|
||||
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
|
||||
partreader = csiborgtools.read.ParticleReader(paths)
|
||||
# Keep "ID" as the last column!
|
||||
pars_extract = ['x', 'y', 'z', 'vx', 'vy', 'vz', 'M', "ID"]
|
||||
|
||||
if args.ics is None or args.ics[0] == -1:
|
||||
ics = paths.get_ics("csiborg")
|
||||
else:
|
||||
ics = args.ics
|
||||
|
||||
|
||||
@numba.jit(nopython=True)
|
||||
def minmax_clump(clid, clump_ids, start_loop=0):
|
||||
def minmax_halo(hid, halo_ids, start_loop=0):
|
||||
"""
|
||||
Find the start and end index of a clump in a sorted array of clump IDs.
|
||||
Find the start and end index of a halo in a sorted array of halo IDs.
|
||||
This is much faster than using `numpy.where` and then `numpy.min` and
|
||||
`numpy.max`.
|
||||
"""
|
||||
start = None
|
||||
end = None
|
||||
|
||||
for i in range(start_loop, clump_ids.size):
|
||||
n = clump_ids[i]
|
||||
if n == clid:
|
||||
for i in range(start_loop, halo_ids.size):
|
||||
n = halo_ids[i]
|
||||
if n == hid:
|
||||
if start is None:
|
||||
start = i
|
||||
end = i
|
||||
elif n > clid:
|
||||
elif n > hid:
|
||||
break
|
||||
return start, end
|
||||
|
||||
|
||||
# MPI loop over individual simulations. We read in the particles from RAMSES
|
||||
# files and dump them to a HDF5 file.
|
||||
jobs = csiborgtools.fits.split_jobs(len(ics), nproc)[rank]
|
||||
for i in jobs:
|
||||
nsim = ics[i]
|
||||
def main(nsim, simname, verbose):
|
||||
"""
|
||||
Read in the snapshot particles, sort them by their FoF halo ID and dump
|
||||
into a HDF5 file. Stores the first and last index of each halo in the
|
||||
particle array for fast slicing of the array to acces particles of a single
|
||||
halo.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
nsim : int
|
||||
IC realisation index.
|
||||
simname : str
|
||||
Simulation name.
|
||||
verbose : bool
|
||||
Verbosity flag.
|
||||
|
||||
Returns
|
||||
-------
|
||||
None
|
||||
"""
|
||||
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
|
||||
partreader = csiborgtools.read.ParticleReader(paths)
|
||||
|
||||
if simname == "quijote":
|
||||
raise NotImplementedError("Not implemented for Quijote yet.")
|
||||
|
||||
# Keep "ID" as the last column!
|
||||
pars_extract = ['x', 'y', 'z', 'vx', 'vy', 'vz', 'M', "ID"]
|
||||
nsnap = max(paths.get_snapshots(nsim))
|
||||
fname = paths.particles(nsim)
|
||||
# We first read in the clump IDs of the particles and infer the sorting.
|
||||
# Right away we dump the clump IDs to a HDF5 file and clear up memory.
|
||||
print(f"{datetime.now()}: rank {rank} loading particles {nsim}.",
|
||||
flush=True)
|
||||
part_cids = partreader.read_clumpid(nsnap, nsim, verbose=verbose)
|
||||
sort_indxs = numpy.argsort(part_cids).astype(numpy.int32)
|
||||
part_cids = part_cids[sort_indxs]
|
||||
# We first read in the halo IDs of the particles and infer the sorting.
|
||||
# Right away we dump the halo IDs to a HDF5 file and clear up memory.
|
||||
if verbose:
|
||||
print(f"{datetime.now()}: loading particles {nsim}.", flush=True)
|
||||
part_hids = partreader.read_fof_hids(nsim)
|
||||
sort_indxs = numpy.argsort(part_hids).astype(numpy.int32)
|
||||
part_hids = part_hids[sort_indxs]
|
||||
with h5py.File(fname, "w") as f:
|
||||
f.create_dataset("clump_ids", data=part_cids)
|
||||
f.create_dataset("halo_ids", data=part_hids)
|
||||
f.close()
|
||||
del part_cids
|
||||
del part_hids
|
||||
collect()
|
||||
|
||||
# Next we read in the particles and sort them by their clump ID.
|
||||
# Next we read in the particles and sort them by their halo ID.
|
||||
# We cannot directly read this as an unstructured array because the float32
|
||||
# precision is insufficient to capture the clump IDs.
|
||||
# precision is insufficient to capture the halo IDs.
|
||||
parts, pids = partreader.read_particle(
|
||||
nsnap, nsim, pars_extract, return_structured=False, verbose=verbose)
|
||||
# Now we in two steps save the particles and particle IDs.
|
||||
print(f"{datetime.now()}: rank {rank} dumping particles from {nsim}.",
|
||||
flush=True)
|
||||
if verbose:
|
||||
print(f"{datetime.now()}: dumping particles from {nsim}.", flush=True)
|
||||
parts = parts[sort_indxs]
|
||||
pids = pids[sort_indxs]
|
||||
del sort_indxs
|
||||
|
@ -126,29 +128,48 @@ for i in jobs:
|
|||
del parts
|
||||
collect()
|
||||
|
||||
print(f"{datetime.now()}: rank {rank} creating clump mapping for {nsim}.",
|
||||
flush=True)
|
||||
if verbose:
|
||||
print(f"{datetime.now()}: creating halo map for {nsim}.", flush=True)
|
||||
# Load clump IDs back to memory
|
||||
with h5py.File(fname, "r") as f:
|
||||
part_cids = f["clump_ids"][:]
|
||||
part_hids = f["halo_ids"][:]
|
||||
# We loop over the unique clump IDs.
|
||||
unique_clump_ids = numpy.unique(part_cids)
|
||||
clump_map = numpy.full((unique_clump_ids.size, 3), numpy.nan,
|
||||
dtype=numpy.int32)
|
||||
unique_halo_ids = numpy.unique(part_hids)
|
||||
halo_map = numpy.full((unique_halo_ids.size, 3), numpy.nan,
|
||||
dtype=numpy.int32)
|
||||
start_loop = 0
|
||||
niters = unique_clump_ids.size
|
||||
niters = unique_halo_ids.size
|
||||
for i in trange(niters) if verbose else range(niters):
|
||||
clid = unique_clump_ids[i]
|
||||
k0, kf = minmax_clump(clid, part_cids, start_loop=start_loop)
|
||||
clump_map[i, 0] = clid
|
||||
clump_map[i, 1] = k0
|
||||
clump_map[i, 2] = kf
|
||||
hid = unique_halo_ids[i]
|
||||
k0, kf = minmax_halo(hid, part_hids, start_loop=start_loop)
|
||||
halo_map[i, 0] = hid
|
||||
halo_map[i, 1] = k0
|
||||
halo_map[i, 2] = kf
|
||||
start_loop = kf
|
||||
|
||||
# We save the mapping to a HDF5 file
|
||||
with h5py.File(paths.particles(nsim), "r+") as f:
|
||||
f.create_dataset("clumpmap", data=clump_map)
|
||||
f.create_dataset("halomap", data=halo_map)
|
||||
f.close()
|
||||
|
||||
del part_cids
|
||||
del part_hids
|
||||
collect()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# And next parse all the arguments and set up CSiBORG objects
|
||||
parser = ArgumentParser()
|
||||
parser.add_argument("--simname", type=str, default="csiborg",
|
||||
choices=["csiborg", "quijote"],
|
||||
help="Simulation name")
|
||||
parser.add_argument("--nsims", type=int, nargs="+", default=None,
|
||||
help="IC realisations. If `-1` processes all .")
|
||||
args = parser.parse_args()
|
||||
|
||||
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
|
||||
nsims = get_nsims(args, paths)
|
||||
|
||||
def _main(nsim, verbose=MPI.COMM_WORLD.nproc == 1):
|
||||
main(nsim, args.simname, verbose=verbose)
|
||||
|
||||
work_delegation(_main, nsims, MPI.COMM_WORLD)
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue