Clean density calculation (#97)

* Get rid of utils

* Clean up imports

* Move some utils here

* Rename file

* Add simname to boxsize

* Add imports

* Delete old files

* Update README

* Update imports

* Add a new draft of the density calculator

* Update fields

* Draft of new density field calculatiosn

* Add snapshot

* Add boxsizes

* Little updates

* Bring back utils

* Edit docstrings

* Edits imports

* Add progress on snapshots

* edit improts

* add basic snapshot catalogue

* Add support for CSiBORG2 snapshot reader

* add paths to fofcat for csiborg2

* Add more imports

* Add more boxsize

* Add more imports

* Add field readers

* Simplify field paths

* Fix typo

* Add observer vp

* Clean up density field calculation

* Add a short note

* Edit args

* Remove old comments

* Edit docs

* Remove blank line

* Stop flipping RAMSES

* Remove comment

* Edit desc

* Remove normalization

* Remove old dist array

* Remove non-volume weighting

* Remove non-volume weight

* Add ignore of flake8 notebooks

* Fix path typo

* Fix units

* Edit paths docs

* Update nb
This commit is contained in:
Richard Stiskalek 2023-12-18 18:09:08 +01:00 committed by GitHub
parent eeff8f0ab9
commit eb1797e8a9
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
19 changed files with 1260 additions and 1139 deletions

View file

@ -1,108 +0,0 @@
# Copyright (C) 2022 Richard Stiskalek
# This program is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3 of the License, or (at your
# option) any later version.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
# Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
"""
Script to calculate the peculiar velocity of an observer in the centre of the
CSiBORG box.
"""
from argparse import ArgumentParser
from distutils.util import strtobool
import numpy
from mpi4py import MPI
from taskmaster import work_delegation
from tqdm import tqdm
from utils import get_nsims
try:
import csiborgtools
except ModuleNotFoundError:
import sys
sys.path.append("../")
import csiborgtools
def observer_peculiar_velocity(nsim, parser_args):
"""
Calculate the peculiar velocity of an observer in the centre of the box
for several smoothing scales.
"""
pos = numpy.array([0.5, 0.5, 0.5]).reshape(-1, 3)
boxsize = 677.7
smooth_scales = [0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0]
observer_vp = numpy.full((len(smooth_scales), 3), numpy.nan,
dtype=numpy.float32)
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
field_path = paths.field("velocity", parser_args.MAS, parser_args.grid,
nsim, in_rsp=False)
field0 = numpy.load(field_path)
for j, smooth_scale in enumerate(tqdm(smooth_scales,
desc="Smoothing the fields",
disable=not parser_args.verbose)):
if smooth_scale > 0:
field = [None, None, None]
for k in range(3):
field[k] = csiborgtools.field.smoothen_field(
field0[k], smooth_scale, boxsize)
else:
field = field0
v = csiborgtools.field.evaluate_cartesian(
field[0], field[1], field[2], pos=pos)
observer_vp[j, 0] = v[0][0]
observer_vp[j, 1] = v[1][0]
observer_vp[j, 2] = v[2][0]
fout = paths.observer_peculiar_velocity(parser_args.MAS, parser_args.grid,
nsim)
if parser_args.verbose:
print(f"Saving to ... `{fout}`")
numpy.savez(fout, smooth_scales=smooth_scales, observer_vp=observer_vp)
return observer_vp
###############################################################################
# Command line interface #
###############################################################################
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument("--nsims", type=int, nargs="+", default=None,
help="IC realisations. `-1` for all simulations.")
parser.add_argument("--kind", type=str,
choices=["density", "rspdensity", "velocity", "radvel",
"potential", "environment"],
help="What derived field to calculate?")
parser.add_argument("--MAS", type=str,
choices=["NGP", "CIC", "TSC", "PCS"])
parser.add_argument("--grid", type=int, help="Grid resolution.")
parser.add_argument("--verbose", type=lambda x: bool(strtobool(x)),
help="Verbosity flag for reading in particles.")
parser.add_argument("--simname", type=str, default="csiborg",
help="Verbosity flag for reading in particles.")
parser_args = parser.parse_args()
comm = MPI.COMM_WORLD
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
nsims = get_nsims(parser_args, paths)
def main(nsim):
return observer_peculiar_velocity(nsim, parser_args)
work_delegation(main, nsims, comm, master_verbose=True)

View file

@ -12,14 +12,9 @@
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
"""
MPI script to calculate density field-derived fields in the CSiBORG
simulations' final snapshot.
"""
"""MPI script to calculate the various fields."""
from argparse import ArgumentParser
from datetime import datetime
from distutils.util import strtobool
from gc import collect
import numpy
from mpi4py import MPI
@ -29,55 +24,43 @@ import csiborgtools
from utils import get_nsims
###############################################################################
# Cosmotool SPH density & velocity field #
###############################################################################
def cosmotool_sph(nsim, parser_args):
pass
###############################################################################
# Density field #
###############################################################################
def density_field(nsim, parser_args, to_save=True):
"""
Calculate the density field in the CSiBORG simulation.
"""
def density_field(nsim, parser_args):
"""Calculate the density field."""
if parser_args.MAS == "SPH":
raise NotImplementedError("SPH is not implemented here. Use cosmotool")
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
nsnap = max(paths.get_snapshots(nsim, "csiborg"))
box = csiborgtools.read.CSiBORG1Box(nsnap, nsim, paths)
fname = paths.processed_output(nsim, "csiborg", "halo_catalogue")
nsnap = max(paths.get_snapshots(nsim, parser_args.simname))
if not parser_args.in_rsp:
# TODO I removed this function
snap = csiborgtools.read.read_h5(fname)["snapshot_final"]
pos = snap["pos"]
mass = snap["mass"]
gen = csiborgtools.field.DensityField(box, parser_args.MAS)
field = gen(pos, mass, parser_args.grid, verbose=parser_args.verbose)
# Read in the particle coordinates and masses
if parser_args.simname == "csiborg1":
snapshot = csiborgtools.read.CSIBORG1Snapshot(nsim, nsnap, paths)
elif "csiborg2" in parser_args.simname:
kind = parser_args.simname.split("_")[-1]
snapshot = csiborgtools.read.CSIBORG2Snapshot(nsim, nsnap, paths, kind)
elif parser_args.simname == "quijote":
snapshot = csiborgtools.read.QuijoteSnapshot(nsim, nsnap, paths)
else:
field = numpy.load(paths.field(
"density", parser_args.MAS, parser_args.grid, nsim, False))
radvel_field = numpy.load(paths.field(
"radvel", parser_args.MAS, parser_args.grid, nsim, False))
raise RuntimeError(f"Unknown simulation name `{parser_args.simname}`.")
if parser_args.verbose:
print(f"{datetime.now()}: converting density field to RSP.",
flush=True)
pos = snapshot.coordinates()
mass = snapshot.masses()
field = csiborgtools.field.field2rsp(field, radvel_field, box,
parser_args.MAS)
# Run the field generator
boxsize = csiborgtools.simname2boxsize(parser_args.simname)
gen = csiborgtools.field.DensityField(boxsize, parser_args.MAS)
field = gen(pos, mass, parser_args.grid)
if to_save:
fout = paths.field(parser_args.kind, parser_args.MAS, parser_args.grid,
nsim, parser_args.in_rsp)
print(f"{datetime.now()}: saving output to `{fout}`.")
numpy.save(fout, field)
fout = paths.field("density", parser_args.MAS, parser_args.grid,
nsim, parser_args.simname)
print(f"{datetime.now()}: saving output to `{fout}`.")
numpy.save(fout, field)
return field
@ -86,31 +69,36 @@ def density_field(nsim, parser_args, to_save=True):
###############################################################################
def velocity_field(nsim, parser_args, to_save=True):
"""
Calculate the velocity field in a CSiBORG simulation.
"""
if parser_args.in_rsp:
raise NotImplementedError("Velocity field in RSP is not implemented.")
def velocity_field(nsim, parser_args):
"""Calculate the velocity field."""
if parser_args.MAS == "SPH":
raise NotImplementedError("SPH is not implemented here. Use cosmotool")
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
nsnap = max(paths.get_snapshots(nsim, "csiborg"))
box = csiborgtools.read.CSiBORG1Box(nsnap, nsim, paths)
fname = paths.processed_output(nsim, "csiborg", "halo_catalogue")
nsnap = max(paths.get_snapshots(nsim, parser_args.simname))
snap = csiborgtools.read.read_h5(fname)["snapshot_final"]
pos = snap["pos"]
vel = snap["vel"]
mass = snap["mass"]
if parser_args.simname == "csiborg1":
snapshot = csiborgtools.read.CSIBORG1Snapshot(nsim, nsnap, paths)
elif "csiborg2" in parser_args.simname:
kind = parser_args.simname.split("_")[-1]
snapshot = csiborgtools.read.CSIBORG2Snapshot(nsim, nsnap, paths, kind)
elif parser_args.simname == "quijote":
snapshot = csiborgtools.read.QuijoteSnapshot(nsim, nsnap, paths)
else:
raise RuntimeError(f"Unknown simulation name `{parser_args.simname}`.")
gen = csiborgtools.field.VelocityField(box, parser_args.MAS)
field = gen(pos, vel, mass, parser_args.grid, verbose=parser_args.verbose)
pos = snapshot.coordinates()
vel = snapshot.velocities()
mass = snapshot.masses()
if to_save:
fout = paths.field("velocity", parser_args.MAS, parser_args.grid,
nsim, in_rsp=False)
print(f"{datetime.now()}: saving output to `{fout}`.")
numpy.save(fout, field)
boxsize = csiborgtools.simname2boxsize(parser_args.simname)
gen = csiborgtools.field.VelocityField(boxsize, parser_args.MAS)
field = gen(pos, vel, mass, parser_args.grid)
fout = paths.field("velocity", parser_args.MAS, parser_args.grid,
nsim, parser_args.simname)
print(f"{datetime.now()}: saving output to `{fout}`.")
numpy.save(fout, field)
return field
@ -119,125 +107,62 @@ def velocity_field(nsim, parser_args, to_save=True):
###############################################################################
def radvel_field(nsim, parser_args, to_save=True):
"""
Calculate the radial velocity field in the CSiBORG simulation.
"""
if parser_args.in_rsp:
raise NotImplementedError("Radial vel. field in RSP not implemented.")
def radvel_field(nsim, parser_args):
"""Calculate the radial velocity field."""
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
nsnap = max(paths.get_snapshots(nsim, "csiborg"))
box = csiborgtools.read.CSiBORG1Box(nsnap, nsim, paths)
vel = numpy.load(paths.field("velocity", parser_args.MAS, parser_args.grid,
nsim, parser_args.in_rsp))
observer_velocity = csiborgtools.field.observer_vobs(vel)
gen = csiborgtools.field.VelocityField(box, parser_args.MAS)
field = gen.radial_velocity(vel, observer_velocity)
if to_save:
fout = paths.field("radvel", parser_args.MAS, parser_args.grid,
nsim, parser_args.in_rsp)
print(f"{datetime.now()}: saving output to `{fout}`.")
numpy.save(fout, field)
return field
###############################################################################
# Potential field #
###############################################################################
def potential_field(nsim, parser_args, to_save=True):
"""
Calculate the potential field in the CSiBORG simulation.
"""
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
nsnap = max(paths.get_snapshots(nsim, "csiborg"))
box = csiborgtools.read.CSiBORG1Box(nsnap, nsim, paths)
if not parser_args.in_rsp:
rho = numpy.load(paths.field(
"density", parser_args.MAS, parser_args.grid, nsim, in_rsp=False))
density_gen = csiborgtools.field.DensityField(box, parser_args.MAS)
rho = density_gen.overdensity_field(rho)
gen = csiborgtools.field.PotentialField(box, parser_args.MAS)
field = gen(rho)
if parser_args.simname == "csiborg1":
field = csiborgtools.read.CSiBORG1Field(nsim, paths)
elif "csiborg2" in parser_args.simname:
kind = parser_args.simname.split("_")[-1]
field = csiborgtools.read.CSiBORG2Field(nsim, paths, kind)
elif parser_args.simname == "quijote":
field = csiborgtools.read.QuijoteField(nsim, paths)
else:
field = numpy.load(paths.field(
"potential", parser_args.MAS, parser_args.grid, nsim, False))
radvel_field = numpy.load(paths.field(
"radvel", parser_args.MAS, parser_args.grid, nsim, False))
raise RuntimeError(f"Unknown simulation name `{parser_args.simname}`.")
field = csiborgtools.field.field2rsp(field, radvel_field, box,
parser_args.MAS)
vel = field.velocity_field(parser_args.MAS, parser_args.grid)
if to_save:
fout = paths.field(parser_args.kind, parser_args.MAS, parser_args.grid,
nsim, parser_args.in_rsp)
print(f"{datetime.now()}: saving output to `{fout}`.")
numpy.save(fout, field)
observer_velocity = csiborgtools.field.observer_peculiar_velocity(vel)
radvel = csiborgtools.field.radial_velocity(vel, observer_velocity)
fout = paths.field("radvel", parser_args.MAS, parser_args.grid,
nsim, parser_args.simname)
print(f"{datetime.now()}: saving output to `{fout}`.")
numpy.save(fout, radvel)
return field
###############################################################################
# Environment classification #
###############################################################################
def environment_field(nsim, parser_args, to_save=True):
def observer_peculiar_velocity(nsim, parser_args):
"""
Calculate the environmental classification in the CSiBORG simulation.
Calculate the peculiar velocity of an observer in the centre of the box
for several smoothing scales.
"""
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
nsnap = max(paths.get_snapshots(nsim, "csiborg"))
box = csiborgtools.read.CSiBORG1Box(nsnap, nsim, paths)
boxsize = csiborgtools.simname2boxsize(parser_args.simname)
# NOTE thevse values are hard-coded.
smooth_scales = numpy.array([0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0])
smooth_scales /= boxsize
rho = numpy.load(paths.field(
"density", parser_args.MAS, parser_args.grid, nsim, in_rsp=False))
density_gen = csiborgtools.field.DensityField(box, parser_args.MAS)
rho = density_gen.overdensity_field(rho)
if parser_args.simname == "csiborg1":
field = csiborgtools.read.CSiBORG1Field(nsim, paths)
elif "csiborg2" in parser_args.simname:
kind = parser_args.simname.split("_")[-1]
field = csiborgtools.read.CSiBORG2Field(nsim, paths, kind)
elif parser_args.simname == "quijote":
field = csiborgtools.read.QuijoteField(nsim, paths)
else:
raise RuntimeError(f"Unknown simulation name `{parser_args.simname}`.")
if parser_args.smooth_scale > 0.0:
rho = csiborgtools.field.smoothen_field(
rho, parser_args.smooth_scale, box.box2mpc(1.))
vel = field.velocity_field(parser_args.MAS, parser_args.grid)
gen = csiborgtools.field.TidalTensorField(box, parser_args.MAS)
field = gen(rho)
observer_vp = csiborgtools.field.observer_peculiar_velocity(
vel, smooth_scales)
del rho
collect()
if parser_args.in_rsp:
radvel_field = numpy.load(paths.field(
"radvel", parser_args.MAS, parser_args.grid, nsim, False))
args = (radvel_field, box, parser_args.MAS)
field.T00 = csiborgtools.field.field2rsp(field.T00, *args)
field.T11 = csiborgtools.field.field2rsp(field.T11, *args)
field.T22 = csiborgtools.field.field2rsp(field.T22, *args)
field.T01 = csiborgtools.field.field2rsp(field.T01, *args)
field.T02 = csiborgtools.field.field2rsp(field.T02, *args)
field.T12 = csiborgtools.field.field2rsp(field.T12, *args)
del radvel_field
collect()
eigvals = gen.tensor_field_eigvals(field)
del field
collect()
env = gen.eigvals_to_environment(eigvals)
if to_save:
fout = paths.field("environment", parser_args.MAS, parser_args.grid,
nsim, parser_args.in_rsp, parser_args.smooth_scale)
print(f"{datetime.now()}: saving output to `{fout}`.")
numpy.save(fout, env)
return env
fout = paths.observer_peculiar_velocity(parser_args.MAS, parser_args.grid,
nsim, parser_args.simname)
print(f"Saving to ... `{fout}`")
numpy.savez(fout, smooth_scales=smooth_scales, observer_vp=observer_vp)
return observer_vp
###############################################################################
@ -249,39 +174,124 @@ if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument("--nsims", type=int, nargs="+", default=None,
help="IC realisations. `-1` for all simulations.")
parser.add_argument("--simname", type=str, help="Simulation name.")
parser.add_argument("--kind", type=str,
choices=["density", "rspdensity", "velocity", "radvel",
"potential", "environment"],
choices=["density", "velocity", "radvel", "observer_vp"], # noqa
help="What derived field to calculate?")
parser.add_argument("--MAS", type=str,
choices=["NGP", "CIC", "TSC", "PCS"])
choices=["NGP", "CIC", "TSC", "PCS", "SPH"],
help="Mass assignment scheme.")
parser.add_argument("--grid", type=int, help="Grid resolution.")
parser.add_argument("--in_rsp", type=lambda x: bool(strtobool(x)),
help="Calculate in RSP?")
parser.add_argument("--smooth_scale", type=float, default=0.0,
help="Smoothing scale in Mpc / h. Only used for the environment field.") # noqa
parser.add_argument("--verbose", type=lambda x: bool(strtobool(x)),
help="Verbosity flag for reading in particles.")
parser.add_argument("--simname", type=str, default="csiborg",
choices=["csiborg", "csiborg2"],
help="Verbosity flag for reading in particles.")
parser_args = parser.parse_args()
comm = MPI.COMM_WORLD
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
nsims = get_nsims(parser_args, paths)
def main(nsim):
if parser_args.kind == "density" or parser_args.kind == "rspdensity":
if parser_args.kind == "density":
density_field(nsim, parser_args)
elif parser_args.kind == "velocity":
velocity_field(nsim, parser_args)
elif parser_args.kind == "radvel":
radvel_field(nsim, parser_args)
elif parser_args.kind == "potential":
potential_field(nsim, parser_args)
elif parser_args.kind == "environment":
environment_field(nsim, parser_args)
elif parser_args.kind == "observer_vp":
observer_peculiar_velocity(nsim, parser_args)
else:
raise RuntimeError(f"Field {parser_args.kind} is not implemented.")
work_delegation(main, nsims, comm, master_verbose=True)
# def potential_field(nsim, parser_args, to_save=True):
# """
# Calculate the potential field in the CSiBORG simulation.
# """
# paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
# nsnap = max(paths.get_snapshots(nsim, "csiborg"))
# box = csiborgtools.read.CSiBORG1Box(nsnap, nsim, paths)
#
# if not parser_args.in_rsp:
# rho = numpy.load(paths.field(
# "density", parser_args.MAS, parser_args.grid, nsim,
# in_rsp=False))
# density_gen = csiborgtools.field.DensityField(box, parser_args.MAS)
# rho = density_gen.overdensity_field(rho)
#
# gen = csiborgtools.field.PotentialField(box, parser_args.MAS)
# field = gen(rho)
# else:
# field = numpy.load(paths.field(
# "potential", parser_args.MAS, parser_args.grid, nsim, False))
# radvel_field = numpy.load(paths.field(
# "radvel", parser_args.MAS, parser_args.grid, nsim, False))
#
# field = csiborgtools.field.field2rsp(field, radvel_field, box,
# parser_args.MAS)
#
# if to_save:
# fout = paths.field(parser_args.kind, parser_args.MAS,
# parser_args.grid,
# nsim, parser_args.in_rsp)
# print(f"{datetime.now()}: saving output to `{fout}`.")
# numpy.save(fout, field)
# return field
#
#
# #############################################################################
# # Environment classification #
# #############################################################################
#
#
# def environment_field(nsim, parser_args, to_save=True):
# """
# Calculate the environmental classification in the CSiBORG simulation.
# """
# paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
# nsnap = max(paths.get_snapshots(nsim, "csiborg"))
# box = csiborgtools.read.CSiBORG1Box(nsnap, nsim, paths)
#
# rho = numpy.load(paths.field(
# "density", parser_args.MAS, parser_args.grid, nsim, in_rsp=False))
# density_gen = csiborgtools.field.DensityField(box, parser_args.MAS)
# rho = density_gen.overdensity_field(rho)
#
# if parser_args.smooth_scale > 0.0:
# rho = csiborgtools.field.smoothen_field(
# rho, parser_args.smooth_scale, box.box2mpc(1.))
#
# gen = csiborgtools.field.TidalTensorField(box, parser_args.MAS)
# field = gen(rho)
#
# del rho
# collect()
#
# if parser_args.in_rsp:
# radvel_field = numpy.load(paths.field(
# "radvel", parser_args.MAS, parser_args.grid, nsim, False))
# args = (radvel_field, box, parser_args.MAS)
#
# field.T00 = csiborgtools.field.field2rsp(field.T00, *args)
# field.T11 = csiborgtools.field.field2rsp(field.T11, *args)
# field.T22 = csiborgtools.field.field2rsp(field.T22, *args)
# field.T01 = csiborgtools.field.field2rsp(field.T01, *args)
# field.T02 = csiborgtools.field.field2rsp(field.T02, *args)
# field.T12 = csiborgtools.field.field2rsp(field.T12, *args)
#
# del radvel_field
# collect()
#
# eigvals = gen.tensor_field_eigvals(field)
#
# del field
# collect()
#
# env = gen.eigvals_to_environment(eigvals)
#
# if to_save:
# fout = paths.field("environment", parser_args.MAS, parser_args.grid,
# nsim, parser_args.in_rsp,
# parser_args.smooth_scale)
# print(f"{datetime.now()}: saving output to `{fout}`.")
# numpy.save(fout, env)
# return env

View file

@ -30,7 +30,12 @@ import csiborgtools
from utils import get_nsims
# TODO get rid of this.
MPC2BOX = 1 / 677.7
# MPC2BOX = 1 / 677.7
SIM2BOXSIZE = {"csiborg1": 677.7,
"csiborg2_main": None,
"csiborg2_random": None,
"csiborg2_varysmall": None,
}
def steps(cls, survey_name):

View file

@ -1,374 +0,0 @@
# Copyright (C) 2022 Richard Stiskalek
# This program is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3 of the License, or (at your
# option) any later version.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
# Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
r"""
Script to process simulation files and create a single HDF5 file, in which
particles are sorted by the particle halo IDs.
"""
from argparse import ArgumentParser
from gc import collect
import h5py
import numpy
from mpi4py import MPI
import csiborgtools
from csiborgtools import fprint
from numba import jit
from taskmaster import work_delegation
from tqdm import trange, tqdm
from utils import get_nsims
@jit(nopython=True, boundscheck=False)
def minmax_halo(hid, halo_ids, start_loop=0):
"""
Find the start and end index of a halo in a sorted array of halo IDs.
This is much faster than using `numpy.where` and then `numpy.min` and
`numpy.max`.
"""
start = None
end = None
for i in range(start_loop, halo_ids.size):
n = halo_ids[i]
if n == hid:
if start is None:
start = i
end = i
elif n > hid:
break
return start, end
def process_snapshot(nsim, simname, halo_finder, verbose):
"""
Read in the snapshot particles, sort them by their halo ID and dump
into a HDF5 file. Stores the first and last index of each halo in the
particle array for fast slicing of the array to acces particles of a single
halo.
"""
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
nsnap = max(paths.get_snapshots(nsim, simname))
if simname == "csiborg":
partreader = csiborgtools.read.CSiBORGReader(paths)
box = csiborgtools.read.CSiBORGBox(nsnap, nsim, paths)
else:
partreader = csiborgtools.read.QuijoteReader(paths)
box = None
desc = {"hid": f"Halo finder ID ({halo_finder})of the particle.",
"pos": "DM particle positions in box units.",
"vel": "DM particle velocity in km / s.",
"mass": "DM particle mass in Msun / h.",
"pid": "DM particle ID",
}
fname = paths.processed_output(nsim, simname, halo_finder)
fprint(f"loading HIDs of IC {nsim}.", verbose)
hids = partreader.read_halo_id(nsnap, nsim, halo_finder, verbose)
collect()
fprint(f"sorting HIDs of IC {nsim}.")
sort_indxs = numpy.argsort(hids)
with h5py.File(fname, "w") as f:
group = f.create_group("snapshot_final")
group.attrs["header"] = "Snapshot data at z = 0."
fprint("dumping halo IDs.", verbose)
dset = group.create_dataset("halo_ids", data=hids[sort_indxs])
dset.attrs["header"] = desc["hid"]
del hids
collect()
fprint("reading, sorting and dumping the snapshot particles.", verbose)
for kind in ["pos", "vel", "mass", "pid"]:
x = partreader.read_snapshot(nsnap, nsim, kind)[sort_indxs]
if simname == "csiborg" and kind == "vel":
x = box.box2vel(x) if simname == "csiborg" else x
if simname == "csiborg" and kind == "mass":
x = box.box2solarmass(x) if simname == "csiborg" else x
dset = f["snapshot_final"].create_dataset(kind, data=x)
dset.attrs["header"] = desc[kind]
del x
collect()
del sort_indxs
collect()
fprint(f"creating a halo map for IC {nsim}.")
with h5py.File(fname, "r") as f:
part_hids = f["snapshot_final"]["halo_ids"][:]
# We loop over the unique halo IDs and remove the 0 halo ID
unique_halo_ids = numpy.unique(part_hids)
unique_halo_ids = unique_halo_ids[unique_halo_ids != 0]
halo_map = numpy.full((unique_halo_ids.size, 3), numpy.nan,
dtype=numpy.uint64)
start_loop, niters = 0, unique_halo_ids.size
for i in trange(niters, disable=not verbose):
hid = unique_halo_ids[i]
k0, kf = minmax_halo(hid, part_hids, start_loop=start_loop)
halo_map[i, :] = hid, k0, kf
start_loop = kf
# Dump the halo mapping.
with h5py.File(fname, "r+") as f:
dset = f["snapshot_final"].create_dataset("halo_map", data=halo_map)
dset.attrs["header"] = """
Halo to particle mapping. Columns are HID, start index, end index.
"""
f.close()
del part_hids
collect()
# Add the halo finder catalogue
with h5py.File(fname, "r+") as f:
group = f.create_group("halofinder_catalogue")
group.attrs["header"] = f"Original {halo_finder} halo catalogue."
cat = partreader.read_catalogue(nsnap, nsim, halo_finder)
hid2pos = {hid: i for i, hid in enumerate(unique_halo_ids)}
for key in cat.dtype.names:
x = numpy.full(unique_halo_ids.size, numpy.nan,
dtype=cat[key].dtype)
for i in range(len(cat)):
j = hid2pos[cat["index"][i]]
x[j] = cat[key][i]
group.create_dataset(key, data=x)
f.close()
# Lastly create the halo catalogue
with h5py.File(fname, "r+") as f:
group = f.create_group("halo_catalogue")
group.attrs["header"] = f"{halo_finder} halo catalogue."
group.create_dataset("index", data=unique_halo_ids)
f.close()
def add_initial_snapshot(nsim, simname, halo_finder, verbose):
"""
Sort the initial snapshot particles according to their final snapshot and
add them to the final snapshot's HDF5 file.
"""
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
fname = paths.processed_output(nsim, simname, halo_finder)
if simname == "csiborg":
partreader = csiborgtools.read.CSiBORGReader(paths)
else:
partreader = csiborgtools.read.QuijoteReader(paths)
fprint(f"processing simulation `{nsim}`.", verbose)
if simname == "csiborg":
nsnap0 = 1
elif simname == "quijote":
nsnap0 = -1
else:
raise ValueError(f"Unknown simulation `{simname}`.")
fprint("loading and sorting the initial PID.", verbose)
sort_indxs = numpy.argsort(partreader.read_snapshot(nsnap0, nsim, "pid"))
fprint("loading the final particles.", verbose)
with h5py.File(fname, "r") as f:
sort_indxs_final = f["snapshot_final/pid"][:]
f.close()
fprint("sorting the particles according to the final snapshot.", verbose)
sort_indxs_final = numpy.argsort(numpy.argsort(sort_indxs_final))
sort_indxs = sort_indxs[sort_indxs_final]
del sort_indxs_final
collect()
fprint("loading and sorting the initial particle position.", verbose)
pos = partreader.read_snapshot(nsnap0, nsim, "pos")[sort_indxs]
del sort_indxs
collect()
# In Quijote some particles are position precisely at the edge of the
# box. Move them to be just inside.
if simname == "quijote":
mask = pos >= 1
if numpy.any(mask):
spacing = numpy.spacing(pos[mask])
assert numpy.max(spacing) <= 1e-5
pos[mask] -= spacing
fprint(f"dumping particles for `{nsim}` to `{fname}`.", verbose)
with h5py.File(fname, "r+") as f:
if "snapshot_initial" in f.keys():
del f["snapshot_initial"]
group = f.create_group("snapshot_initial")
group.attrs["header"] = "Initial snapshot data."
dset = group.create_dataset("pos", data=pos)
dset.attrs["header"] = "DM particle positions in box units."
f.close()
def calculate_initial(nsim, simname, halo_finder, verbose):
"""Calculate the Lagrangian patch centre of mass and size."""
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
fname = paths.processed_output(nsim, simname, halo_finder)
fprint("loading the particle information.", verbose)
f = h5py.File(fname, "r")
pos = f["snapshot_initial/pos"]
mass = f["snapshot_final/mass"]
hid = f["halo_catalogue/index"][:]
hid2map = csiborgtools.read.make_halomap_dict(
f["snapshot_final/halo_map"][:])
if simname == "csiborg":
kwargs = {"box_size": 2048, "bckg_halfsize": 512}
else:
kwargs = {"box_size": 512, "bckg_halfsize": 256}
overlapper = csiborgtools.match.ParticleOverlap(**kwargs)
lagpatch_pos = numpy.full((len(hid), 3), numpy.nan, dtype=numpy.float32)
lagpatch_size = numpy.full(len(hid), numpy.nan, dtype=numpy.float32)
lagpatch_ncells = numpy.full(len(hid), numpy.nan, dtype=numpy.int32)
for i in trange(len(hid), disable=not verbose):
h = hid[i]
# These are unasigned particles.
if h == 0:
continue
parts_pos = csiborgtools.read.load_halo_particles(h, pos, hid2map)
parts_mass = csiborgtools.read.load_halo_particles(h, mass, hid2map)
# Skip if the halo has no particles or is too small.
if parts_pos is None or parts_pos.size < 5:
continue
cm = csiborgtools.center_of_mass(parts_pos, parts_mass, boxsize=1.0)
sep = csiborgtools.periodic_distance(parts_pos, cm, boxsize=1.0)
delta = overlapper.make_delta(parts_pos, parts_mass, subbox=True)
lagpatch_pos[i] = cm
lagpatch_size[i] = numpy.percentile(sep, 99)
lagpatch_ncells[i] = csiborgtools.delta2ncells(delta)
f.close()
collect()
with h5py.File(fname, "r+") as f:
grp = f["halo_catalogue"]
dset = grp.create_dataset("lagpatch_pos", data=lagpatch_pos)
dset.attrs["header"] = "Lagrangian patch centre of mass in box units."
dset = grp.create_dataset("lagpatch_size", data=lagpatch_size)
dset.attrs["header"] = "Lagrangian patch size in box units."
dset = grp.create_dataset("lagpatch_ncells", data=lagpatch_ncells)
dset.attrs["header"] = f"Lagrangian patch number of cells on a {kwargs['box_size']}^3 grid." # noqa
f.close()
def make_phew_halo_catalogue(nsim, verbose):
"""
Process the PHEW halo catalogue for a CSiBORG simulation at all snapshots.
"""
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
snapshots = paths.get_snapshots(nsim, "csiborg")
reader = csiborgtools.read.CSiBORGReader(paths)
keys_write = ["index", "x", "y", "z", "mass_cl", "parent",
"ultimate_parent", "summed_mass"]
# Create a HDF5 file to store all this.
fname = paths.processed_phew(nsim)
with h5py.File(fname, "w") as f:
f.close()
for nsnap in tqdm(snapshots, disable=not verbose, desc="Snapshot"):
try:
data = reader.read_phew_clumps(nsnap, nsim, verbose=False)
except FileExistsError:
continue
with h5py.File(fname, "r+") as f:
if str(nsnap) in f:
print(f"Group {nsnap} already exists. Deleting.", flush=True)
del f[str(nsnap)]
grp = f.create_group(str(nsnap))
for key in keys_write:
grp.create_dataset(key, data=data[key])
grp.attrs["header"] = f"CSiBORG PHEW clumps at snapshot {nsnap}."
f.close()
# Now write the redshifts
scale_factors = numpy.full(len(snapshots), numpy.nan, dtype=numpy.float32)
for i, nsnap in enumerate(snapshots):
box = csiborgtools.read.CSiBORGBox(nsnap, nsim, paths)
scale_factors[i] = box._aexp
redshifts = scale_factors[-1] / scale_factors - 1
with h5py.File(fname, "r+") as f:
grp = f.create_group("info")
grp.create_dataset("redshift", data=redshifts)
grp.create_dataset("snapshots", data=snapshots)
grp.create_dataset("Om0", data=[box.Om0])
grp.create_dataset("boxsize", data=[box.boxsize])
f.close()
def main(nsim, args):
if args.make_final:
process_snapshot(nsim, args.simname, args.halofinder, True)
if args.make_initial:
add_initial_snapshot(nsim, args.simname, args.halofinder, True)
calculate_initial(nsim, args.simname, args.halofinder, True)
if args.make_phew:
make_phew_halo_catalogue(nsim, True)
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument("--simname", type=str, default="csiborg",
choices=["csiborg", "quijote"],
help="Simulation name")
parser.add_argument("--nsims", type=int, nargs="+", default=None,
help="IC realisations. If `-1` processes all.")
parser.add_argument("--halofinder", type=str, help="Halo finder")
parser.add_argument("--make_final", action="store_true", default=False,
help="Process the final snapshot.")
parser.add_argument("--make_initial", action="store_true", default=False,
help="Process the initial snapshot.")
parser.add_argument("--make_phew", action="store_true", default=False,
help="Process the PHEW halo catalogue.")
args = parser.parse_args()
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
nsims = get_nsims(args, paths)
def _main(nsim):
main(nsim, args)
work_delegation(_main, nsims, MPI.COMM_WORLD)