mirror of
https://github.com/Richard-Sti/csiborgtools_public.git
synced 2025-05-12 13:41:13 +00:00
Lagrangian patch + HMF calculation (#65)
* Rename lagpatch * Fix old bug * Fix small bug * Add number of cells calculation * Fix a small bug * Rename column * Move file * Small changes * Edit style * Add plot script * Add delta2ncells * Add HMF calculation * Move definition around * Add HMF plot * pep8 * Update HMF plotting routine * Small edit
This commit is contained in:
parent
f1dbe6f03f
commit
dbf93b9416
13 changed files with 376 additions and 132 deletions
178
scripts_plots/plot_data.py
Normal file
178
scripts_plots/plot_data.py
Normal file
|
@ -0,0 +1,178 @@
|
|||
# Copyright (C) 2023 Richard Stiskalek
|
||||
# This program is free software; you can redistribute it and/or modify it
|
||||
# under the terms of the GNU General Public License as published by the
|
||||
# Free Software Foundation; either version 3 of the License, or (at your
|
||||
# option) any later version.
|
||||
#
|
||||
# This program is distributed in the hope that it will be useful, but
|
||||
# WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
|
||||
# Public License for more details.
|
||||
#
|
||||
# You should have received a copy of the GNU General Public License along
|
||||
# with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||
|
||||
from os.path import join
|
||||
from argparse import ArgumentParser
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy
|
||||
|
||||
import scienceplots # noqa
|
||||
import utils
|
||||
from cache_to_disk import cache_to_disk, delete_disk_caches_for_function # noqa
|
||||
from tqdm import tqdm
|
||||
|
||||
try:
|
||||
import csiborgtools
|
||||
except ModuleNotFoundError:
|
||||
import sys
|
||||
sys.path.append("../")
|
||||
import csiborgtools
|
||||
|
||||
|
||||
def open_csiborg(nsim):
|
||||
"""
|
||||
Open a CSiBORG halo catalogue.
|
||||
"""
|
||||
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
|
||||
bounds = {"totpartmass": (None, None), "dist": (0, 155/0.705)}
|
||||
return csiborgtools.read.HaloCatalogue(nsim, paths, bounds=bounds)
|
||||
|
||||
|
||||
def open_quijote(nsim, nobs=None):
|
||||
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
|
||||
cat = csiborgtools.read.QuijoteHaloCatalogue(nsim, paths, nsnap=4)
|
||||
if nobs is not None:
|
||||
cat = cat.pick_fiducial_observer(nobs, rmax=155.5 / 0.705)
|
||||
return cat
|
||||
|
||||
|
||||
def plot_mass_vs_ncells(nsim, pdf=False):
|
||||
cat = open_csiborg(nsim)
|
||||
mpart = 4.38304044e+09
|
||||
|
||||
with plt.style.context(utils.mplstyle):
|
||||
plt.figure()
|
||||
plt.scatter(cat["totpartmass"], cat["lagpatch_ncells"], s=0.25,
|
||||
rasterized=True)
|
||||
plt.xscale("log")
|
||||
plt.yscale("log")
|
||||
for n in [1, 10, 100]:
|
||||
plt.axvline(n * 512 * mpart, c="black", ls="--", zorder=0, lw=0.8)
|
||||
plt.xlabel(r"$M_{\rm tot} / M_\odot$")
|
||||
plt.ylabel(r"$N_{\rm cells}$")
|
||||
|
||||
for ext in ["png"] if pdf is False else ["png", "pdf"]:
|
||||
fout = join(utils.fout, f"init_mass_vs_ncells_{nsim}.{ext}")
|
||||
print(f"Saving to `{fout}`.")
|
||||
plt.savefig(fout, dpi=utils.dpi, bbox_inches="tight")
|
||||
plt.close()
|
||||
|
||||
|
||||
def process_counts(counts):
|
||||
mean = numpy.mean(counts, axis=0)
|
||||
std = numpy.std(counts, axis=0)
|
||||
return mean, std
|
||||
|
||||
|
||||
def plot_hmf(pdf=False):
|
||||
print("Plotting the HMF...", flush=True)
|
||||
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
|
||||
|
||||
csiborg_nsims = paths.get_ics("csiborg")
|
||||
print("Loading CSiBORG halo counts.", flush=True)
|
||||
for i, nsim in enumerate(tqdm(csiborg_nsims)):
|
||||
data = numpy.load(paths.halo_counts("csiborg", nsim))
|
||||
if i == 0:
|
||||
bins = data["bins"]
|
||||
csiborg_counts = numpy.full((len(csiborg_nsims), len(bins) - 1),
|
||||
numpy.nan, dtype=numpy.float32)
|
||||
csiborg_counts[i, :] = data["counts"]
|
||||
csiborg_counts /= numpy.diff(bins).reshape(1, -1)
|
||||
|
||||
print("Loading Quijote halo counts.", flush=True)
|
||||
quijote_nsims = paths.get_ics("quijote")
|
||||
for i, nsim in enumerate(tqdm(quijote_nsims)):
|
||||
data = numpy.load(paths.halo_counts("quijote", nsim))
|
||||
if i == 0:
|
||||
bins = data["bins"]
|
||||
nmax = data["counts"].shape[0]
|
||||
quijote_counts = numpy.full(
|
||||
(len(quijote_nsims) * nmax, len(bins) - 1), numpy.nan,
|
||||
dtype=numpy.float32)
|
||||
quijote_counts[i * nmax:(i + 1) * nmax, :] = data["counts"]
|
||||
quijote_counts /= numpy.diff(bins).reshape(1, -1)
|
||||
|
||||
x = 10**(0.5 * (bins[1:] + bins[:-1]))
|
||||
# Edit lower limits
|
||||
csiborg_counts[:, x < 1e12] = numpy.nan
|
||||
quijote_counts[:, x < 8e12] = numpy.nan
|
||||
# Edit upper limits
|
||||
csiborg_counts[:, x > 4e15] = numpy.nan
|
||||
quijote_counts[:, x > 4e15] = numpy.nan
|
||||
|
||||
with plt.style.context(utils.mplstyle):
|
||||
cols = plt.rcParams["axes.prop_cycle"].by_key()["color"]
|
||||
fig, ax = plt.subplots(nrows=2, sharex=True,
|
||||
figsize=(3.5, 2.625 * 1.25),
|
||||
gridspec_kw={"height_ratios": [1, 0.65]})
|
||||
fig.subplots_adjust(hspace=0, wspace=0)
|
||||
|
||||
mean_csiborg, std_csiborg = process_counts(csiborg_counts)
|
||||
ax[0].plot(x, mean_csiborg, label="CSiBORG")
|
||||
ax[0].fill_between(x, mean_csiborg - std_csiborg,
|
||||
mean_csiborg + std_csiborg, alpha=0.5)
|
||||
|
||||
mean_quijote, std_quijote = process_counts(quijote_counts)
|
||||
ax[0].plot(x, mean_quijote, label="Quijote")
|
||||
ax[0].fill_between(x, mean_quijote - std_quijote,
|
||||
mean_quijote + std_quijote, alpha=0.5)
|
||||
|
||||
log_y = numpy.log10(mean_csiborg / mean_quijote)
|
||||
err = numpy.sqrt((std_csiborg / mean_csiborg / numpy.log(10))**2
|
||||
+ (std_quijote / mean_quijote / numpy.log(10))**2)
|
||||
|
||||
ax[1].plot(x, 10**log_y, c=cols[2])
|
||||
ax[1].fill_between(x, 10**(log_y - err), 10**(log_y + err), alpha=0.5,
|
||||
color=cols[2])
|
||||
ax[1].axhline(1, color="k", ls=plt.rcParams["lines.linestyle"],
|
||||
lw=0.5 * plt.rcParams["lines.linewidth"], zorder=0)
|
||||
ax[0].set_ylabel(r"$\frac{\mathrm{d} n}{\mathrm{d}\log M_{\rm h}}~\mathrm{dex}^{-1}$") # noqa
|
||||
ax[1].set_xlabel(r"$M_{\rm h}$ [$M_\odot$]")
|
||||
ax[1].set_ylabel(r"$\mathrm{CSiBORG} / \mathrm{Quijote}$")
|
||||
|
||||
ax[0].set_xscale("log")
|
||||
ax[0].set_yscale("log")
|
||||
ax[1].set_yscale("log")
|
||||
ax[0].legend()
|
||||
|
||||
fig.tight_layout(h_pad=0, w_pad=0)
|
||||
for ext in ["png"] if pdf is False else ["png", "pdf"]:
|
||||
fout = join(utils.fout, f"hmf_comparison.{ext}")
|
||||
print(f"Saving to `{fout}`.")
|
||||
fig.savefig(fout, dpi=utils.dpi, bbox_inches="tight")
|
||||
plt.close()
|
||||
|
||||
|
||||
###############################################################################
|
||||
# Command line interface #
|
||||
###############################################################################
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = ArgumentParser()
|
||||
parser.add_argument('-c', '--clean', action='store_true')
|
||||
args = parser.parse_args()
|
||||
|
||||
cached_funcs = []
|
||||
if args.clean:
|
||||
for func in cached_funcs:
|
||||
print(f"Cleaning cache for function {func}.")
|
||||
delete_disk_caches_for_function(func)
|
||||
|
||||
# plot_mass_vs_occupancy(7444)
|
||||
# plot_mass_vs_normcells(7444 + 24 * 4, pdf=False)
|
||||
# plot_mass_vs_ncells(7444, pdf=True)
|
||||
plot_hmf(pdf=True)
|
|
@ -15,4 +15,4 @@
|
|||
|
||||
dpi = 450
|
||||
fout = "../plots/"
|
||||
mplstyle = ["science", "notebook"]
|
||||
mplstyle = ["science"]
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue