mirror of
https://github.com/Richard-Sti/csiborgtools_public.git
synced 2025-06-08 18:01:11 +00:00
Lagrangian patch + HMF calculation (#65)
* Rename lagpatch * Fix old bug * Fix small bug * Add number of cells calculation * Fix a small bug * Rename column * Move file * Small changes * Edit style * Add plot script * Add delta2ncells * Add HMF calculation * Move definition around * Add HMF plot * pep8 * Update HMF plotting routine * Small edit
This commit is contained in:
parent
f1dbe6f03f
commit
dbf93b9416
13 changed files with 376 additions and 132 deletions
|
@ -12,6 +12,7 @@
|
|||
# You should have received a copy of the GNU General Public License along
|
||||
# with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||
from .halo import Clump, Halo, dist_centmass # noqa
|
||||
from .halo import (Clump, Halo, delta2ncells, dist_centmass, # noqa
|
||||
number_counts)
|
||||
from .haloprofile import NFWPosterior, NFWProfile # noqa
|
||||
from .utils import split_jobs # noqa
|
||||
|
|
|
@ -15,9 +15,10 @@
|
|||
"""A clump object."""
|
||||
from abc import ABC
|
||||
|
||||
from numba import jit
|
||||
import numpy
|
||||
|
||||
from numba import jit
|
||||
|
||||
|
||||
class BaseStructure(ABC):
|
||||
"""
|
||||
|
@ -337,3 +338,51 @@ def dist_centmass(clump):
|
|||
cmx, cmy, cmz = [numpy.average(xi, weights=mass) for xi in (x, y, z)]
|
||||
dist = ((x - cmx)**2 + (y - cmy)**2 + (z - cmz)**2)**0.5
|
||||
return dist, [cmx, cmy, cmz]
|
||||
|
||||
|
||||
@jit(nopython=True)
|
||||
def delta2ncells(delta):
|
||||
"""
|
||||
Calculate the number of cells in `delta` that are non-zero.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
delta : 3-dimensional array
|
||||
Halo density field.
|
||||
|
||||
Returns
|
||||
-------
|
||||
ncells : int
|
||||
Number of non-zero cells.
|
||||
"""
|
||||
tot = 0
|
||||
imax, jmax, kmax = delta.shape
|
||||
for i in range(imax):
|
||||
for j in range(jmax):
|
||||
for k in range(kmax):
|
||||
if delta[i, j, k] > 0:
|
||||
tot += 1
|
||||
return tot
|
||||
|
||||
|
||||
@jit(nopython=True)
|
||||
def number_counts(x, bin_edges):
|
||||
"""
|
||||
Calculate counts of samples in bins.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : 1-dimensional array
|
||||
Samples' values.
|
||||
bin_edges : 1-dimensional array
|
||||
Bin edges.
|
||||
|
||||
Returns
|
||||
-------
|
||||
counts : 1-dimensional array
|
||||
Bin counts.
|
||||
"""
|
||||
out = numpy.full(bin_edges.size - 1, numpy.nan, dtype=numpy.float32)
|
||||
for i in range(bin_edges.size - 1):
|
||||
out[i] = numpy.sum((x >= bin_edges[i]) & (x < bin_edges[i + 1]))
|
||||
return out
|
||||
|
|
|
@ -16,5 +16,4 @@ from .match import (ParticleOverlap, RealisationsMatcher, # noqa
|
|||
calculate_overlap, calculate_overlap_indxs,
|
||||
cosine_similarity)
|
||||
from .nearest_neighbour import find_neighbour # noqa
|
||||
from .num_density import binned_counts, number_density # noqa
|
||||
from .utils import concatenate_parts # noqa
|
||||
|
|
|
@ -163,7 +163,7 @@ class RealisationsMatcher:
|
|||
print(f"{datetime.now()}: querying the KNN.", flush=True)
|
||||
match_indxs = radius_neighbours(
|
||||
catx.knn(in_initial=True), cat0.position(in_initial=True),
|
||||
radiusX=cat0["lagpatch"], radiusKNN=catx["lagpatch"],
|
||||
radiusX=cat0["lagpatch_size"], radiusKNN=catx["lagpatch_size"],
|
||||
nmult=self.nmult, enforce_int32=True, verbose=verbose)
|
||||
|
||||
# We next remove neighbours whose mass is too large/small.
|
||||
|
@ -419,7 +419,7 @@ class ParticleOverlap:
|
|||
delta : 3-dimensional array
|
||||
"""
|
||||
nshift = read_nshift(smooth_kwargs)
|
||||
cells = self.pos2cell(pos)
|
||||
cells = pos2cell(pos, BOX_SIZE)
|
||||
# Check that minima and maxima are integers
|
||||
if not (mins is None and maxs is None):
|
||||
assert mins.dtype.char in numpy.typecodes["AllInteger"]
|
||||
|
@ -432,10 +432,10 @@ class ParticleOverlap:
|
|||
ncells = maxs - mins + 1 # To get the number of cells
|
||||
else:
|
||||
mins = [0, 0, 0]
|
||||
ncells = BOX_SIZE
|
||||
ncells = (BOX_SIZE, ) * 3
|
||||
|
||||
# Preallocate and fill the array
|
||||
delta = numpy.zeros((ncells,) * 3, dtype=numpy.float32)
|
||||
delta = numpy.zeros(ncells, dtype=numpy.float32)
|
||||
fill_delta(delta, cells[:, 0], cells[:, 1], cells[:, 2], *mins, mass)
|
||||
if smooth_kwargs is not None:
|
||||
gaussian_filter(delta, output=delta, **smooth_kwargs)
|
||||
|
|
|
@ -1,116 +0,0 @@
|
|||
# Copyright (C) 2022 Richard Stiskalek
|
||||
# This program is free software; you can redistribute it and/or modify it
|
||||
# under the terms of the GNU General Public License as published by the
|
||||
# Free Software Foundation; either version 3 of the License, or (at your
|
||||
# option) any later version.
|
||||
#
|
||||
# This program is distributed in the hope that it will be useful, but
|
||||
# WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
|
||||
# Public License for more details.
|
||||
#
|
||||
# You should have received a copy of the GNU General Public License along
|
||||
# with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||
"""
|
||||
Calculation of number density functions.
|
||||
"""
|
||||
import numpy
|
||||
|
||||
|
||||
def binned_counts(x, bins):
|
||||
"""
|
||||
Calculate number of samples in bins.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : 1-dimensional array
|
||||
Samples' values.
|
||||
bins : 1-dimensional array
|
||||
Bin edges of shape `(n_edges, )`.
|
||||
|
||||
Returns
|
||||
-------
|
||||
centres : 1-dimensional array
|
||||
Bin centres of shape `(n_edges - 1, )`.
|
||||
counts : 1-dimensional array
|
||||
Bin counts of shape `(n_edges - 1, )`.
|
||||
"""
|
||||
if not isinstance(bins, numpy.ndarray) and bins.ndim == 1:
|
||||
raise TypeError("`bins` must a 1-dimensional array.")
|
||||
|
||||
n_bins = bins.size
|
||||
# Bin centres
|
||||
centres = numpy.asarray(
|
||||
[0.5 * (bins[i + 1] + bins[i]) for i in range(n_bins - 1)])
|
||||
# Bin counts
|
||||
out = numpy.full(n_bins - 1, numpy.nan, dtype=int)
|
||||
for i in range(n_bins - 1):
|
||||
out[i] = numpy.sum((x >= bins[i]) & (x < bins[i + 1]))
|
||||
return centres, out
|
||||
|
||||
|
||||
def number_density(data, feat, bins, max_dist, to_log10, return_counts=False):
|
||||
"""
|
||||
Calculate volume-limited number density of a feature `feat` from array
|
||||
`data`, normalised also by the bin width.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
data : structured array
|
||||
Input array of halos.
|
||||
feat : str
|
||||
Parameter whose number density to calculate.
|
||||
bins : 1-dimensional array
|
||||
Bin edges. Note that if `to_log10` then the edges must be specified
|
||||
in the logarithmic space, not linear.
|
||||
max_dist : float
|
||||
Maximum radial distance of the volume limited sample.
|
||||
to_log10 : bool
|
||||
Whether to take a logarithm of base 10 of the feature. If so, then the
|
||||
bins must also be logarithmic.
|
||||
return_counts : bool, optional
|
||||
Whether to also return number counts in each bin. By default `False`.
|
||||
|
||||
|
||||
Returns
|
||||
-------
|
||||
centres : 1-dimensional array
|
||||
Bin centres of shape `(n_edges - 1, )`. If `to_log10` then converts the
|
||||
bin centres back to linear space.
|
||||
nd : 1-dimensional array
|
||||
Number density of shape `(n_edges - 1, )`.
|
||||
nd_err : 1-dimensional array
|
||||
Poissonian uncertainty of `nd` of shape `(n_edges - 1, )`.
|
||||
counts: 1-dimensional array, optional
|
||||
Counts in each bin of shape `(n_edges - 1, )`. Returned only if
|
||||
`return_counts`.
|
||||
"""
|
||||
# Extract the param and optionally convert to log10
|
||||
x = data[feat]
|
||||
x = numpy.log10(x) if to_log10 else x
|
||||
# Get only things within distance from the origin
|
||||
rdist = (data["peak_x"]**2 + data["peak_y"]**2 + data["peak_z"]**2)**0.5
|
||||
x = x[rdist < max_dist]
|
||||
|
||||
# Make sure bins equally spaced
|
||||
dbins = numpy.diff(bins)
|
||||
dbin = dbins[0]
|
||||
if not numpy.alltrue(dbins == dbin):
|
||||
raise ValueError("Bins must be equally spaced. Currently `{}`."
|
||||
.format(bins))
|
||||
|
||||
# Encompassed volume around the origin
|
||||
volume = 4 * numpy.pi / 3 * max_dist**3
|
||||
# Poissonian statistics
|
||||
bin_centres, counts = binned_counts(x, bins)
|
||||
nd = counts / volume / dbin
|
||||
nd_err = counts**0.5 / volume / dbin
|
||||
# Convert bins to linear space if log10
|
||||
if to_log10:
|
||||
bin_centres = 10**bin_centres
|
||||
|
||||
out = (bin_centres, nd, nd_err)
|
||||
if return_counts:
|
||||
out += counts
|
||||
return out
|
|
@ -27,7 +27,7 @@ from .readsim import ParticleReader
|
|||
CONV_NAME = {
|
||||
"length": ["x", "y", "z", "peak_x", "peak_y", "peak_z", "Rs", "rmin",
|
||||
"rmax", "r200c", "r500c", "r200m", "x0", "y0", "z0",
|
||||
"lagpatch"],
|
||||
"lagpatch_size"],
|
||||
"velocity": ["vx", "vy", "vz"],
|
||||
"mass": ["mass_cl", "totpartmass", "m200c", "m500c", "mass_mmain", "M",
|
||||
"m200m"],
|
||||
|
|
|
@ -540,7 +540,7 @@ class HaloCatalogue(BaseCSiBORG):
|
|||
|
||||
if not rawdata:
|
||||
if with_lagpatch:
|
||||
self._data = self._data[numpy.isfinite(self['lagpatch'])]
|
||||
self._data = self._data[numpy.isfinite(self["lagpatch_size"])]
|
||||
# Flip positions and convert from code units to cMpc. Convert M too
|
||||
flip_cols(self._data, "x", "z")
|
||||
for p in ("x", "y", "z"):
|
||||
|
@ -551,7 +551,7 @@ class HaloCatalogue(BaseCSiBORG):
|
|||
self._data = self.box.convert_from_box(self._data, names)
|
||||
|
||||
if load_initial:
|
||||
names = ["x0", "y0", "z0", "lagpatch"]
|
||||
names = ["x0", "y0", "z0", "lagpatch_size"]
|
||||
self._data = self.box.convert_from_box(self._data, names)
|
||||
|
||||
if bounds is not None:
|
||||
|
|
|
@ -276,10 +276,10 @@ class PairOverlap:
|
|||
if norm_kind == "r200c":
|
||||
norm = self.cat0("r200c")
|
||||
if norm_kind == "ref_patch":
|
||||
norm = self.cat0("lagpatch")
|
||||
norm = self.cat0("lagpatch_size")
|
||||
if norm_kind == "sum_patch":
|
||||
patch0 = self.cat0("lagpatch")
|
||||
patchx = self.catx("lagpatch")
|
||||
patch0 = self.cat0("lagpatch_size")
|
||||
patchx = self.catx("lagpatch_size")
|
||||
norm = [None] * len(self)
|
||||
for i, ind in enumerate(self["match_indxs"]):
|
||||
norm[i] = patch0[i] + patchx[ind]
|
||||
|
|
|
@ -387,6 +387,28 @@ class Paths:
|
|||
fname = f"{kind}_{MAS}_{str(nsim).zfill(5)}_grid{grid}.npy"
|
||||
return join(fdir, fname)
|
||||
|
||||
def halo_counts(self, simname, nsim):
|
||||
"""
|
||||
Path to the files containing the binned halo counts.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
simname : str
|
||||
Simulation name. Must be `csiborg` or `quijote`.
|
||||
nsim : int
|
||||
IC realisation index.
|
||||
|
||||
Returns
|
||||
-------
|
||||
path : str
|
||||
"""
|
||||
fdir = join(self.postdir, "HMF")
|
||||
if not isdir(fdir):
|
||||
makedirs(fdir)
|
||||
warn(f"Created directory `{fdir}`.", UserWarning, stacklevel=1)
|
||||
fname = f"halo_counts_{simname}_{str(nsim).zfill(5)}.npz"
|
||||
return join(fdir, fname)
|
||||
|
||||
def cross_nearest(self, simname, run, nsim=None, nobs=None):
|
||||
"""
|
||||
Path to the files containing distance from a halo in a reference
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue