mirror of
https://github.com/Richard-Sti/csiborgtools.git
synced 2024-12-22 17:38:02 +00:00
Add void density (#154)
* Add load void data * Add void densities support
This commit is contained in:
parent
52589a533f
commit
d5d78e5127
3 changed files with 48 additions and 27 deletions
|
@ -221,11 +221,11 @@ class BaseFlowValidationModel(ABC):
|
||||||
self.z_xrange = jnp.asarray(z_xrange)
|
self.z_xrange = jnp.asarray(z_xrange)
|
||||||
self.mu_xrange = jnp.asarray(mu_xrange)
|
self.mu_xrange = jnp.asarray(mu_xrange)
|
||||||
|
|
||||||
def _set_void_data(self, RA, dec, kind, h, order):
|
def _set_void_data(self, RA, dec, profile, kind, h, order):
|
||||||
"""Create the void interpolator."""
|
"""Create the void interpolator."""
|
||||||
# h is the MOND model value of local H0 to convert the radial grid to
|
# h is the MOND model value of local H0 to convert the radial grid
|
||||||
# Mpc / h
|
# to Mpc / h
|
||||||
rLG_grid, void_grid = load_void_data(kind)
|
rLG_grid, void_grid = load_void_data(profile, kind)
|
||||||
void_grid = jnp.asarray(void_grid, dtype=jnp.float32)
|
void_grid = jnp.asarray(void_grid, dtype=jnp.float32)
|
||||||
rLG_grid = jnp.asarray(rLG_grid, dtype=jnp.float32)
|
rLG_grid = jnp.asarray(rLG_grid, dtype=jnp.float32)
|
||||||
|
|
||||||
|
@ -244,9 +244,17 @@ class BaseFlowValidationModel(ABC):
|
||||||
model_axis.ra.rad, model_axis.dec.rad)
|
model_axis.ra.rad, model_axis.dec.rad)
|
||||||
phi = jnp.asarray(phi * 180 / np.pi, dtype=jnp.float32)
|
phi = jnp.asarray(phi * 180 / np.pi, dtype=jnp.float32)
|
||||||
|
|
||||||
self.void_interpolator = lambda rLG: interpolate_void(
|
if kind == "density":
|
||||||
rLG, self.r_xrange, phi, void_grid, rgrid_min, rgrid_max,
|
void_grid = jnp.log(void_grid)
|
||||||
rLG_min, rLG_max, order)
|
self.void_log_rho_interpolator = lambda rLG: interpolate_void(
|
||||||
|
rLG, self.r_xrange, phi, void_grid, rgrid_min, rgrid_max,
|
||||||
|
rLG_min, rLG_max, order)
|
||||||
|
elif kind == "vrad":
|
||||||
|
self.void_vrad_interpolator = lambda rLG: interpolate_void(
|
||||||
|
rLG, self.r_xrange, phi, void_grid, rgrid_min, rgrid_max,
|
||||||
|
rLG_min, rLG_max, order)
|
||||||
|
else:
|
||||||
|
raise ValueError(f"Unknown kind: `{kind}`.")
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def ndata(self):
|
def ndata(self):
|
||||||
|
@ -264,21 +272,22 @@ class BaseFlowValidationModel(ABC):
|
||||||
def los_density(self, **kwargs):
|
def los_density(self, **kwargs):
|
||||||
if self.is_void_data:
|
if self.is_void_data:
|
||||||
# Currently we have no densities for the void.
|
# Currently we have no densities for the void.
|
||||||
return jnp.ones((1, self.ndata, len(self.r_xrange)))
|
# return jnp.ones((1, self.ndata, len(self.r_xrange)))
|
||||||
|
raise NotImplementedError("Only log-density for the void.")
|
||||||
|
|
||||||
return self._los_density
|
return self._los_density
|
||||||
|
|
||||||
def log_los_density(self, **kwargs):
|
def log_los_density(self, **kwargs):
|
||||||
if self.is_void_data:
|
if self.is_void_data:
|
||||||
# Currently we have no densities for the void.
|
# We want the shape to be `(1, n_objects, n_radial_steps)``.
|
||||||
return jnp.zeros((1, self.ndata, len(self.r_xrange)))
|
return self.void_log_rho_interpolator(kwargs["rLG"])[None, ...]
|
||||||
|
|
||||||
return self._log_los_density
|
return self._log_los_density
|
||||||
|
|
||||||
def los_velocity(self, **kwargs):
|
def los_velocity(self, **kwargs):
|
||||||
if self.is_void_data:
|
if self.is_void_data:
|
||||||
# We want the shape to be `(1, n_objects, n_radial_steps)``.
|
# We want the shape to be `(1, n_objects, n_radial_steps)``.
|
||||||
return self.void_interpolator(kwargs["rLG"])[None, ...]
|
return self.void_vrad_interpolator(kwargs["rLG"])[None, ...]
|
||||||
|
|
||||||
return self._los_velocity
|
return self._los_velocity
|
||||||
|
|
||||||
|
@ -428,7 +437,7 @@ def sample_calibration(Vext_min, Vext_max, Vmono_min, Vmono_max, beta_min,
|
||||||
Vext = jnp.zeros(3)
|
Vext = jnp.zeros(3)
|
||||||
|
|
||||||
if sample_Vmag_vax:
|
if sample_Vmag_vax:
|
||||||
Vext_mag = sample("Vext_axis_mag", Uniform(0.0, Vext_max))
|
Vext_mag = sample("Vext_axis_mag", Uniform(Vext_min, Vext_max))
|
||||||
# In the direction if (l, b) = (117, 4)
|
# In the direction if (l, b) = (117, 4)
|
||||||
Vext = Vext_mag * jnp.asarray([0.4035093, -0.01363162, 0.91487396])
|
Vext = Vext_mag * jnp.asarray([0.4035093, -0.01363162, 0.91487396])
|
||||||
|
|
||||||
|
@ -524,7 +533,8 @@ class PV_LogLikelihood(BaseFlowValidationModel):
|
||||||
|
|
||||||
# This must be done before we convert to radians.
|
# This must be done before we convert to radians.
|
||||||
if void_kwargs is not None:
|
if void_kwargs is not None:
|
||||||
self._set_void_data(RA=RA, dec=dec, **void_kwargs)
|
self._set_void_data(RA=RA, dec=dec, kind="density", **void_kwargs)
|
||||||
|
self._set_void_data(RA=RA, dec=dec, kind="vrad", **void_kwargs)
|
||||||
|
|
||||||
# Convert RA/dec to radians.
|
# Convert RA/dec to radians.
|
||||||
RA, dec = np.deg2rad(RA), np.deg2rad(dec)
|
RA, dec = np.deg2rad(RA), np.deg2rad(dec)
|
||||||
|
|
|
@ -29,35 +29,46 @@ from tqdm import tqdm
|
||||||
###############################################################################
|
###############################################################################
|
||||||
|
|
||||||
|
|
||||||
def load_void_data(kind):
|
def load_void_data(profile, kind):
|
||||||
"""
|
"""
|
||||||
Load the void velocities from Sergij & Indranil's files for a given kind
|
Load the void velocities from Sergij & Indranil's files for a given kind
|
||||||
of void profile per observer.
|
of void profile per observer.
|
||||||
|
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
|
profile : str
|
||||||
|
Void profile to load. One of "exp", "gauss", "mb".
|
||||||
kind : str
|
kind : str
|
||||||
The kind of void profile to load. One of "exp", "gauss", "mb".
|
Data kind, either "density" or "vrad".
|
||||||
|
|
||||||
Returns
|
Returns
|
||||||
-------
|
-------
|
||||||
velocities : 3-dimensional array of shape (nLG, nrad, nphi)
|
velocities : 3-dimensional array of shape (nLG, nrad, nphi)
|
||||||
"""
|
"""
|
||||||
if kind not in ["exp", "gauss", "mb"]:
|
if profile not in ["exp", "gauss", "mb"]:
|
||||||
raise ValueError("kind must be one of 'exp', 'gauss', 'mb'")
|
raise ValueError("profile must be one of 'exp', 'gauss', 'mb'")
|
||||||
|
|
||||||
|
if kind not in ["density", "vrad"]:
|
||||||
|
raise ValueError("kind must be one of 'density', 'vrad'")
|
||||||
|
|
||||||
fdir = "/mnt/extraspace/rstiskalek/catalogs/IndranilVoid"
|
fdir = "/mnt/extraspace/rstiskalek/catalogs/IndranilVoid"
|
||||||
|
|
||||||
kind = kind.upper()
|
if kind == "density":
|
||||||
fdir = join(fdir, f"{kind}profile")
|
fdir = join(fdir, "rho_data")
|
||||||
|
tag = "rho"
|
||||||
|
else:
|
||||||
|
tag = "v_pec"
|
||||||
|
|
||||||
|
profile = profile.upper()
|
||||||
|
fdir = join(fdir, f"{profile}profile")
|
||||||
|
|
||||||
files = glob(join(fdir, "*.dat"))
|
files = glob(join(fdir, "*.dat"))
|
||||||
rLG = [int(search(rf'v_pec_{kind}profile_rLG_(\d+)', f).group(1))
|
rLG = [int(search(rf'{tag}_{profile}profile_rLG_(\d+)', f).group(1))
|
||||||
for f in files]
|
for f in files]
|
||||||
rLG = np.sort(rLG)
|
rLG = np.sort(rLG)
|
||||||
|
|
||||||
for i, ri in enumerate(tqdm(rLG, desc="Loading void observer data")):
|
for i, ri in enumerate(tqdm(rLG, desc=f"Loading void `{kind}`observer data")): # noqa
|
||||||
f = join(fdir, f"v_pec_{kind}profile_rLG_{ri}.dat")
|
f = join(fdir, f"{tag}_{profile}profile_rLG_{ri}.dat")
|
||||||
data_i = np.genfromtxt(f).T
|
data_i = np.genfromtxt(f).T
|
||||||
|
|
||||||
if i == 0:
|
if i == 0:
|
||||||
|
|
|
@ -232,7 +232,7 @@ def run_model(model, nsteps, nburn, model_kwargs, out_folder,
|
||||||
###############################################################################
|
###############################################################################
|
||||||
|
|
||||||
def get_distmod_hyperparams(catalogue, sample_alpha, sample_mag_dipole):
|
def get_distmod_hyperparams(catalogue, sample_alpha, sample_mag_dipole):
|
||||||
alpha_min = -1.0
|
alpha_min = -10 if "IndraniVoid" in ARGS.simname else -1.0
|
||||||
alpha_max = 10.0
|
alpha_max = 10.0
|
||||||
|
|
||||||
if catalogue in ["LOSS", "Foundation", "Pantheon+", "Pantheon+_groups", "Pantheon+_zSN"]: # noqa
|
if catalogue in ["LOSS", "Foundation", "Pantheon+", "Pantheon+_groups", "Pantheon+_zSN"]: # noqa
|
||||||
|
@ -307,7 +307,7 @@ if __name__ == "__main__":
|
||||||
num_epochs = 50
|
num_epochs = 50
|
||||||
inference_method = "mike"
|
inference_method = "mike"
|
||||||
mag_selection = None
|
mag_selection = None
|
||||||
sample_alpha = False if "IndranilVoid_" in ARGS.simname or ARGS.simname == "no_field" else True # noqa
|
sample_alpha = False if ARGS.simname == "no_field" else True
|
||||||
sample_beta = None
|
sample_beta = None
|
||||||
no_Vext = None
|
no_Vext = None
|
||||||
sample_Vmag_vax = False
|
sample_Vmag_vax = False
|
||||||
|
@ -357,10 +357,10 @@ if __name__ == "__main__":
|
||||||
raise ValueError(
|
raise ValueError(
|
||||||
"`IndranilVoid` does not have multiple realisations.")
|
"`IndranilVoid` does not have multiple realisations.")
|
||||||
|
|
||||||
kind = ARGS.simname.split("_")[-1]
|
profile = ARGS.simname.split("_")[-1]
|
||||||
h = select_void_h(kind)
|
h = select_void_h(profile)
|
||||||
rdist = np.arange(0, 165, 0.5)
|
rdist = np.arange(0, 165, 0.5)
|
||||||
void_kwargs = {"kind": kind, "h": h, "order": 1, "rdist": rdist}
|
void_kwargs = {"profile": profile, "h": h, "order": 1, "rdist": rdist}
|
||||||
else:
|
else:
|
||||||
void_kwargs = None
|
void_kwargs = None
|
||||||
h = 1.
|
h = 1.
|
||||||
|
|
Loading…
Reference in a new issue