mirror of
https://github.com/Richard-Sti/csiborgtools.git
synced 2024-12-22 07:08:01 +00:00
Add void density (#154)
* Add load void data * Add void densities support
This commit is contained in:
parent
52589a533f
commit
d5d78e5127
3 changed files with 48 additions and 27 deletions
|
@ -221,11 +221,11 @@ class BaseFlowValidationModel(ABC):
|
|||
self.z_xrange = jnp.asarray(z_xrange)
|
||||
self.mu_xrange = jnp.asarray(mu_xrange)
|
||||
|
||||
def _set_void_data(self, RA, dec, kind, h, order):
|
||||
def _set_void_data(self, RA, dec, profile, kind, h, order):
|
||||
"""Create the void interpolator."""
|
||||
# h is the MOND model value of local H0 to convert the radial grid to
|
||||
# Mpc / h
|
||||
rLG_grid, void_grid = load_void_data(kind)
|
||||
# h is the MOND model value of local H0 to convert the radial grid
|
||||
# to Mpc / h
|
||||
rLG_grid, void_grid = load_void_data(profile, kind)
|
||||
void_grid = jnp.asarray(void_grid, dtype=jnp.float32)
|
||||
rLG_grid = jnp.asarray(rLG_grid, dtype=jnp.float32)
|
||||
|
||||
|
@ -244,9 +244,17 @@ class BaseFlowValidationModel(ABC):
|
|||
model_axis.ra.rad, model_axis.dec.rad)
|
||||
phi = jnp.asarray(phi * 180 / np.pi, dtype=jnp.float32)
|
||||
|
||||
self.void_interpolator = lambda rLG: interpolate_void(
|
||||
rLG, self.r_xrange, phi, void_grid, rgrid_min, rgrid_max,
|
||||
rLG_min, rLG_max, order)
|
||||
if kind == "density":
|
||||
void_grid = jnp.log(void_grid)
|
||||
self.void_log_rho_interpolator = lambda rLG: interpolate_void(
|
||||
rLG, self.r_xrange, phi, void_grid, rgrid_min, rgrid_max,
|
||||
rLG_min, rLG_max, order)
|
||||
elif kind == "vrad":
|
||||
self.void_vrad_interpolator = lambda rLG: interpolate_void(
|
||||
rLG, self.r_xrange, phi, void_grid, rgrid_min, rgrid_max,
|
||||
rLG_min, rLG_max, order)
|
||||
else:
|
||||
raise ValueError(f"Unknown kind: `{kind}`.")
|
||||
|
||||
@property
|
||||
def ndata(self):
|
||||
|
@ -264,21 +272,22 @@ class BaseFlowValidationModel(ABC):
|
|||
def los_density(self, **kwargs):
|
||||
if self.is_void_data:
|
||||
# Currently we have no densities for the void.
|
||||
return jnp.ones((1, self.ndata, len(self.r_xrange)))
|
||||
# return jnp.ones((1, self.ndata, len(self.r_xrange)))
|
||||
raise NotImplementedError("Only log-density for the void.")
|
||||
|
||||
return self._los_density
|
||||
|
||||
def log_los_density(self, **kwargs):
|
||||
if self.is_void_data:
|
||||
# Currently we have no densities for the void.
|
||||
return jnp.zeros((1, self.ndata, len(self.r_xrange)))
|
||||
# We want the shape to be `(1, n_objects, n_radial_steps)``.
|
||||
return self.void_log_rho_interpolator(kwargs["rLG"])[None, ...]
|
||||
|
||||
return self._log_los_density
|
||||
|
||||
def los_velocity(self, **kwargs):
|
||||
if self.is_void_data:
|
||||
# We want the shape to be `(1, n_objects, n_radial_steps)``.
|
||||
return self.void_interpolator(kwargs["rLG"])[None, ...]
|
||||
return self.void_vrad_interpolator(kwargs["rLG"])[None, ...]
|
||||
|
||||
return self._los_velocity
|
||||
|
||||
|
@ -428,7 +437,7 @@ def sample_calibration(Vext_min, Vext_max, Vmono_min, Vmono_max, beta_min,
|
|||
Vext = jnp.zeros(3)
|
||||
|
||||
if sample_Vmag_vax:
|
||||
Vext_mag = sample("Vext_axis_mag", Uniform(0.0, Vext_max))
|
||||
Vext_mag = sample("Vext_axis_mag", Uniform(Vext_min, Vext_max))
|
||||
# In the direction if (l, b) = (117, 4)
|
||||
Vext = Vext_mag * jnp.asarray([0.4035093, -0.01363162, 0.91487396])
|
||||
|
||||
|
@ -524,7 +533,8 @@ class PV_LogLikelihood(BaseFlowValidationModel):
|
|||
|
||||
# This must be done before we convert to radians.
|
||||
if void_kwargs is not None:
|
||||
self._set_void_data(RA=RA, dec=dec, **void_kwargs)
|
||||
self._set_void_data(RA=RA, dec=dec, kind="density", **void_kwargs)
|
||||
self._set_void_data(RA=RA, dec=dec, kind="vrad", **void_kwargs)
|
||||
|
||||
# Convert RA/dec to radians.
|
||||
RA, dec = np.deg2rad(RA), np.deg2rad(dec)
|
||||
|
|
|
@ -29,35 +29,46 @@ from tqdm import tqdm
|
|||
###############################################################################
|
||||
|
||||
|
||||
def load_void_data(kind):
|
||||
def load_void_data(profile, kind):
|
||||
"""
|
||||
Load the void velocities from Sergij & Indranil's files for a given kind
|
||||
of void profile per observer.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
profile : str
|
||||
Void profile to load. One of "exp", "gauss", "mb".
|
||||
kind : str
|
||||
The kind of void profile to load. One of "exp", "gauss", "mb".
|
||||
Data kind, either "density" or "vrad".
|
||||
|
||||
Returns
|
||||
-------
|
||||
velocities : 3-dimensional array of shape (nLG, nrad, nphi)
|
||||
"""
|
||||
if kind not in ["exp", "gauss", "mb"]:
|
||||
raise ValueError("kind must be one of 'exp', 'gauss', 'mb'")
|
||||
if profile not in ["exp", "gauss", "mb"]:
|
||||
raise ValueError("profile must be one of 'exp', 'gauss', 'mb'")
|
||||
|
||||
if kind not in ["density", "vrad"]:
|
||||
raise ValueError("kind must be one of 'density', 'vrad'")
|
||||
|
||||
fdir = "/mnt/extraspace/rstiskalek/catalogs/IndranilVoid"
|
||||
|
||||
kind = kind.upper()
|
||||
fdir = join(fdir, f"{kind}profile")
|
||||
if kind == "density":
|
||||
fdir = join(fdir, "rho_data")
|
||||
tag = "rho"
|
||||
else:
|
||||
tag = "v_pec"
|
||||
|
||||
profile = profile.upper()
|
||||
fdir = join(fdir, f"{profile}profile")
|
||||
|
||||
files = glob(join(fdir, "*.dat"))
|
||||
rLG = [int(search(rf'v_pec_{kind}profile_rLG_(\d+)', f).group(1))
|
||||
rLG = [int(search(rf'{tag}_{profile}profile_rLG_(\d+)', f).group(1))
|
||||
for f in files]
|
||||
rLG = np.sort(rLG)
|
||||
|
||||
for i, ri in enumerate(tqdm(rLG, desc="Loading void observer data")):
|
||||
f = join(fdir, f"v_pec_{kind}profile_rLG_{ri}.dat")
|
||||
for i, ri in enumerate(tqdm(rLG, desc=f"Loading void `{kind}`observer data")): # noqa
|
||||
f = join(fdir, f"{tag}_{profile}profile_rLG_{ri}.dat")
|
||||
data_i = np.genfromtxt(f).T
|
||||
|
||||
if i == 0:
|
||||
|
|
|
@ -232,7 +232,7 @@ def run_model(model, nsteps, nburn, model_kwargs, out_folder,
|
|||
###############################################################################
|
||||
|
||||
def get_distmod_hyperparams(catalogue, sample_alpha, sample_mag_dipole):
|
||||
alpha_min = -1.0
|
||||
alpha_min = -10 if "IndraniVoid" in ARGS.simname else -1.0
|
||||
alpha_max = 10.0
|
||||
|
||||
if catalogue in ["LOSS", "Foundation", "Pantheon+", "Pantheon+_groups", "Pantheon+_zSN"]: # noqa
|
||||
|
@ -307,7 +307,7 @@ if __name__ == "__main__":
|
|||
num_epochs = 50
|
||||
inference_method = "mike"
|
||||
mag_selection = None
|
||||
sample_alpha = False if "IndranilVoid_" in ARGS.simname or ARGS.simname == "no_field" else True # noqa
|
||||
sample_alpha = False if ARGS.simname == "no_field" else True
|
||||
sample_beta = None
|
||||
no_Vext = None
|
||||
sample_Vmag_vax = False
|
||||
|
@ -357,10 +357,10 @@ if __name__ == "__main__":
|
|||
raise ValueError(
|
||||
"`IndranilVoid` does not have multiple realisations.")
|
||||
|
||||
kind = ARGS.simname.split("_")[-1]
|
||||
h = select_void_h(kind)
|
||||
profile = ARGS.simname.split("_")[-1]
|
||||
h = select_void_h(profile)
|
||||
rdist = np.arange(0, 165, 0.5)
|
||||
void_kwargs = {"kind": kind, "h": h, "order": 1, "rdist": rdist}
|
||||
void_kwargs = {"profile": profile, "h": h, "order": 1, "rdist": rdist}
|
||||
else:
|
||||
void_kwargs = None
|
||||
h = 1.
|
||||
|
|
Loading…
Reference in a new issue