add read particle file

This commit is contained in:
rstiskalek 2022-10-10 17:42:11 +01:00
parent 016be32634
commit b119d21acf
2 changed files with 159 additions and 408 deletions

View file

@ -1,234 +0,0 @@
import numpy as np
import math
import matplotlib.pyplot as plt
import fortranfile as ff
from os import listdir
import random
outnr1 = str(184).zfill(5)
outnr2 = str(2).zfill(5)
srcdir1 = '/mnt/extraspace/hdesmond/IC_test3/output_'+outnr1
srcdir2 = '/mnt/extraspace/hdesmond/IC_test3_inv/output_'+outnr2
for i in range(2):
print("Starting ", i)
if i==0:
srcdir = srcdir1
outnr = outnr1
else:
srcdir = srcdir2
outnr = outnr2
infofile = srcdir+'/info_'+outnr+'.txt'
f = open(infofile, 'r')
ncpuline = f.readline()
line = ncpuline.split()
ncpu = int(line[-1])
print("ncpu:", ncpu)
print("Reading in particles of output", int(srcdir[-5:]))
srcdirlist = listdir(srcdir)
if 'unbinding_'+srcdir[-5:]+'.out00001' not in srcdirlist:
print("Couldn't find unbinding_"+srcdir[-5:]+".out00001 in", srcdir)
print("use mergertreeplot.py -h or --help to print help message.")
quit()
#-----------------------
# First read headers
#-----------------------
nparts = np.zeros(ncpu, dtype='int32')
partfiles = [0]*ncpu
for cpu in range(ncpu):
srcfile = srcdir+'/part_'+srcdir[-5:]+'.out'+str(cpu+1).zfill(5)
partfiles[cpu] = ff.FortranFile(srcfile)
ncpu = partfiles[cpu].readInts()
ndim = partfiles[cpu].readInts()
nparts[cpu] = partfiles[cpu].readInts()
localseed = partfiles[cpu].readInts()
nstar_tot = partfiles[cpu].readInts()
mstar_tot = partfiles[cpu].readReals('d')
mstar_lost = partfiles[cpu].readReals('d')
nsink = partfiles[cpu].readInts()
del ndim, localseed, nstar_tot, mstar_tot, mstar_lost, nsink
#-------------------
# Allocate arrays
#-------------------
nparttot = nparts.sum()
dum = np.zeros(nparttot, dtype='float16')
if i==0:
#x = np.zeros(nparttot, dtype='float16')
#y = np.zeros(nparttot, dtype='float16')
#z = np.zeros(nparttot, dtype='float16')
mass = np.zeros(nparttot, dtype='float16')
ID = np.zeros(nparttot, dtype='int32')
level = np.zeros(nparttot, dtype='int32')
clumpid = np.zeros(nparttot, dtype='int32')
else:
#x_inv = np.zeros(nparttot, dtype='float16')
#y_inv = np.zeros(nparttot, dtype='float16')
#z_inv = np.zeros(nparttot, dtype='float16')
mass_inv = np.zeros(nparttot, dtype='float16')
ID_inv = np.zeros(nparttot, dtype='int32')
level_inv = np.zeros(nparttot, dtype='int32')
clumpid_inv = np.zeros(nparttot, dtype='int32')
#----------------------
# Read particle data
#----------------------
#read(1)ncpu2 # What you would do in fortran
#read(1)ndim2
#read(1)npart2
#read(1)
#read(1)
#read(1)
#read(1)
#read(1)
#do i=1,ndim
#read(1)m
#x(1:npart2,i)=m
#end do
#! Skip velocity
#do i=1,ndim
#read(1)m
#end do
#! Read mass
#read(1)m
#if(nstar>0)then
#read(1) ! Skip identity
#read(1) ! Skip level
#read(1)family
#read(1)tag
#read(1)age
start_ind = np.zeros(ncpu, dtype='int')
for cpu in range(ncpu-1):
start_ind[cpu+1] = nparts[cpu] + start_ind[cpu]
for cpu in range(ncpu):
unbfile = srcdir+'/unbinding_'+srcdir[-5:]+'.out'+str(cpu+1).zfill(5)
unbffile = ff.FortranFile(unbfile)
if i==0:
dum[start_ind[cpu]:start_ind[cpu]+nparts[cpu]] = partfiles[cpu].readReals('d') # Think they're stored as double so must read as double
dum[start_ind[cpu]:start_ind[cpu]+nparts[cpu]] = partfiles[cpu].readReals('d') # Positions
dum[start_ind[cpu]:start_ind[cpu]+nparts[cpu]] = partfiles[cpu].readReals('d')
dum[start_ind[cpu]:start_ind[cpu]+nparts[cpu]] = partfiles[cpu].readReals('d') # Velocities; this all just overwrites itself
dum[start_ind[cpu]:start_ind[cpu]+nparts[cpu]] = partfiles[cpu].readReals('d')
dum[start_ind[cpu]:start_ind[cpu]+nparts[cpu]] = partfiles[cpu].readReals('d')
mass[start_ind[cpu]:start_ind[cpu]+nparts[cpu]] = partfiles[cpu].readReals('d') # Mass
#vx[start_ind[cpu]:start_ind[cpu]+nparts[cpu]] = partfiles[cpu].readReals('d')
#vy[start_ind[cpu]:start_ind[cpu]+nparts[cpu]] = partfiles[cpu].readReals('d')
#vz[start_ind[cpu]:start_ind[cpu]+nparts[cpu]] = partfiles[cpu].readReals('d')
#mass[start_ind[cpu]:start_ind[cpu]+nparts[cpu]] = partfiles[cpu].readReals('d')
ID[start_ind[cpu]:start_ind[cpu]+nparts[cpu]] = partfiles[cpu].readInts()
level[start_ind[cpu]:start_ind[cpu]+nparts[cpu]] = partfiles[cpu].readInts()
clumpid[start_ind[cpu]:start_ind[cpu]+nparts[cpu]] = unbffile.readInts()
else:
dum[start_ind[cpu]:start_ind[cpu]+nparts[cpu]] = partfiles[cpu].readReals('d')
dum[start_ind[cpu]:start_ind[cpu]+nparts[cpu]] = partfiles[cpu].readReals('d')
dum[start_ind[cpu]:start_ind[cpu]+nparts[cpu]] = partfiles[cpu].readReals('d')
dum[start_ind[cpu]:start_ind[cpu]+nparts[cpu]] = partfiles[cpu].readReals('d')
dum[start_ind[cpu]:start_ind[cpu]+nparts[cpu]] = partfiles[cpu].readReals('d')
dum[start_ind[cpu]:start_ind[cpu]+nparts[cpu]] = partfiles[cpu].readReals('d')
mass_inv[start_ind[cpu]:start_ind[cpu]+nparts[cpu]] = partfiles[cpu].readReals('d')
#vx[start_ind[cpu]:start_ind[cpu]+nparts[cpu]] = partfiles[cpu].readReals('d')
#vy[start_ind[cpu]:start_ind[cpu]+nparts[cpu]] = partfiles[cpu].readReals('d')
#vz[start_ind[cpu]:start_ind[cpu]+nparts[cpu]] = partfiles[cpu].readReals('d')
#mass[start_ind[cpu]:start_ind[cpu]+nparts[cpu]] = partfiles[cpu].readReals('d')
ID_inv[start_ind[cpu]:start_ind[cpu]+nparts[cpu]] = partfiles[cpu].readInts()
level_inv[start_ind[cpu]:start_ind[cpu]+nparts[cpu]] = partfiles[cpu].readInts()
clumpid_inv[start_ind[cpu]:start_ind[cpu]+nparts[cpu]] = unbffile.readInts()
del dum
if i==0:
print("Minimum clump ID:", np.min(clumpid)) # This is the clump a particle has been assigned to, so min should be 0 which means not in clump
clumpid = np.absolute(clumpid) # Not sure why this is here...
else:
print("Minimum inv clump ID:", np.min(clumpid_inv))
clumpid_inv = np.absolute(clumpid_inv)
#random.shuffle(ID); random.shuffle(ID_inv) # If the IDs are randomised but not the clumpIDs then all of the below should be random
print(np.min(ID), np.median(ID), np.mean(ID), np.max(ID))
print(np.min(ID_inv), np.median(ID_inv), np.mean(ID_inv), np.max(ID_inv))
print(np.min(level), np.median(level), np.mean(level), np.max(level))
print(np.min(level_inv), np.median(level_inv), np.mean(level_inv), np.max(level_inv))
print(np.min(mass), np.median(mass), np.mean(mass), np.max(mass))
print(np.min(mass_inv), np.median(mass_inv), np.mean(mass_inv), np.max(mass_inv))
#plt.clf()
#plt.hist(mass)
#plt.show()
#index lev parent(2) ncell peak_x peak_y(5) peak_z rho- rho+(8) rho_av mass_cl relevance(11)
clumparr = np.genfromtxt(srcdir1+"/clump_"+outnr1+".dat")
clumparr_inv = np.genfromtxt(srcdir2+"/clump_"+outnr2+".dat")
clumpID, parent, Mclump = clumparr[:,0].astype(int), clumparr[:,2].astype(int), clumparr[:,10]
clumpID_inv, parent_inv, Mclump_inv = clumparr_inv[:,0].astype(int), clumparr_inv[:,2].astype(int), clumparr_inv[:,10]
#clumpID_main = clumpID[clumpID==parent] # IDs of main halos only from the clump file
#clumpID_main_inv = clumpID_inv[clumpID_inv==parent_inv]
#clumpID_big = clumpID[Mclump>np.median(Mclump)] # IDs of halos more massive than the median
#clumpID_big_inv = clumpID_inv[Mclump_inv>np.median(Mclump_inv)]
clumpID_big = clumpID[Mclump>np.percentile(Mclump, 90)]
clumpID_big_inv = clumpID_inv[Mclump_inv>np.percentile(Mclump_inv, 90)]
#clumpID_small = clumpID[Mclump<=np.median(Mclump)] # IDs of halos more massive than the median
#clumpID_small_inv = clumpID_inv[Mclump_inv<=np.median(Mclump_inv)]
#[np.where(clumpid==x) for x in clumpID_main]
print("CHECK:", len(ID), len(ID_inv), len(np.intersect1d(ID, ID_inv)), "(should all be the same)")
print("Total number of clumps in the two sims:", len(clumparr), len(clumparr_inv))
print("Total number of particles in the two sims:", len(ID), len(ID_inv), "(should be the same)")
print("Fraction of particles within halos in the two sims:", round(len(ID[clumpid!=0])/float(len(ID)), 6), round(len(ID_inv[clumpid_inv!=0])/float(len(ID)), 6))
print("Fraction of particles within halos in *both* sims:", round(len(np.intersect1d(ID[clumpid!=0], ID_inv[clumpid_inv!=0]))/float(len(np.intersect1d(ID, ID_inv))), 6), "(random value =", round(len(ID[clumpid!=0])/float(len(ID)) * len(ID_inv[clumpid_inv!=0])/float(len(ID_inv)), 6), "), ratio =", round(len(np.intersect1d(ID[clumpid!=0], ID_inv[clumpid_inv!=0]))/float(len(np.intersect1d(ID, ID_inv))) / (len(ID[clumpid!=0])/float(len(ID)) * len(ID_inv[clumpid_inv!=0])/float(len(ID_inv))), 3))
print("Fraction of particles in massive halos in the two sims:", round(np.sum(np.in1d(clumpid, clumpID_big))/float(len(ID)), 6), round(np.sum(np.in1d(clumpid_inv, clumpID_big_inv))/float(len(ID)), 6))
print("Fraction of particles in massive halos in *both* sims:", round(len(np.intersect1d(ID[np.in1d(clumpid, clumpID_big)], ID_inv[np.in1d(clumpid_inv, clumpID_big_inv)]))/float(len(np.intersect1d(ID, ID_inv))), 6), "(random value =", round(np.sum(np.in1d(clumpid, clumpID_big))/float(len(ID)) * np.sum(np.in1d(clumpid_inv, clumpID_big_inv))/float(len(ID)), 6), "), ratio =", round(len(np.intersect1d(ID[np.in1d(clumpid, clumpID_big)], ID_inv[np.in1d(clumpid_inv, clumpID_big_inv)]))/float(len(np.intersect1d(ID, ID_inv))) / (np.sum(np.in1d(clumpid, clumpID_big))/float(len(ID)) * np.sum(np.in1d(clumpid_inv, clumpID_big_inv))/float(len(ID_inv))), 3))

View file

@ -1,194 +1,179 @@
import numpy as np
import fortranfile as ff
# PUT HARRY HERE
import numpy
from scipy.io import FortranFile
from os import listdir
outnr = str(184).zfill(5)
srcdir = '/mnt/extraspace/hdesmond/IC_test3/output_'+outnr
from os.path import join
from tqdm import tqdm
infofile = srcdir+'/info_'+outnr+'.txt'
f = open(infofile, 'r')
ncpuline = f.readline()
line = ncpuline.split()
def get_sim_path(n, fname="ramses_out_{}", srcdir="/mnt/extraspace/hdesmond"):
"""
Get a path to a CSiBORG simulation.
ncpu = int(line[-1])
print("ncpu:", ncpu)
Parameters
----------
n : int
The index of the initial conditions (IC) realisation.
fname : str, optional
The file name. By default `ramses_out_{}`, where `n` is the IC index.
srcdir : str, optional
The file path to the folder where realisations of the ICs are stored.
print("Reading in particles of output", int(srcdir[-5:]))
srcdirlist = listdir(srcdir)
if 'unbinding_'+srcdir[-5:]+'.out00001' not in srcdirlist:
print("Couldn't find unbinding_"+srcdir[-5:]+".out00001 in", srcdir)
print("use mergertreeplot.py -h or --help to print help message.")
quit()
Returns
-------
path : str
The complete path to the `n`th CSiBORG simulation.
"""
return join(srcdir, fname.format(n))
#-----------------------
# First read headers
#-----------------------
nparts = np.zeros(ncpu, dtype='int32')
partfiles = [0]*ncpu
def open_particle(n, simpath, verbose=True):
"""
Open particle files to a given CSiBORG simulation.
Parameters
----------
n : int
The index of a redshift snapshot.
simpath : str
The complete path to the CSiBORG simulation.
verbose : bool, optional
Verbosity flag.
Returns
-------
nparts : 1-dimensional array
Number of parts assosiated with each CPU.
partfiles : list of `scipy.io.FortranFile`
Opened part files.
"""
# Zeros filled snapshot number and the snapshot path
nout = str(n).zfill(5)
snappath = join(simpath, "output_{}".format(nout))
infopath = join(snappath, "info_{}.txt".format(nout))
with open(infopath, "r") as f:
ncpu = int(f.readline().split()[-1])
if verbose:
print("Reading in output `{}` with ncpu = `{}`.".format(nout, ncpu))
# Check whether the unbinding file exists.
snapdirlist = listdir(snappath)
unbinding_file = "unbinding_{}.out00001".format(nout)
if unbinding_file not in snapdirlist:
raise FileNotFoundError(
"Couldn't find `{}` in `{}`. Use mergertreeplot.py -h or --help to "
"print help message.".format(unbinding_file, snappath))
# First read the headers. Reallocate arrays and fill them.
nparts = numpy.zeros(ncpu, dtype=int)
partfiles = [None] * ncpu
for cpu in range(ncpu):
srcfile = srcdir+'/part_'+srcdir[-5:]+'.out'+str(cpu+1).zfill(5)
partfiles[cpu] = ff.FortranFile(srcfile)
cpu_str = str(cpu + 1).zfill(5)
fpath = join(snappath, "part_{}.out{}".format(nout, cpu_str))
ncpu = partfiles[cpu].readInts()
ndim = partfiles[cpu].readInts()
nparts[cpu] = partfiles[cpu].readInts()
localseed = partfiles[cpu].readInts()
nstar_tot = partfiles[cpu].readInts()
mstar_tot = partfiles[cpu].readReals('d')
mstar_lost = partfiles[cpu].readReals('d')
nsink = partfiles[cpu].readInts()
f = FortranFile(fpath)
# Read in this order
ncpuloc = f.read_ints()
if ncpuloc != ncpu:
raise ValueError("`ncpu = {}` of `{}` disagrees with `ncpu = {}` "
"of `{}`.".format(ncpu, infopath, ncpuloc, fpath))
ndim = f.read_ints()
nparts[cpu] = f.read_ints()
localseed = f.read_ints()
nstar_tot = f.read_ints()
mstar_tot = f.read_reals('d')
mstar_lost = f.read_reals('d')
nsink = f.read_ints()
del ndim, localseed, nstar_tot, mstar_tot, mstar_lost, nsink
partfiles[cpu] = f
return nparts, partfiles
#-------------------
# Allocate arrays
#-------------------
nparttot = nparts.sum()
def read_sp(dtype, partfile):
"""
Utility function to read a single particle file, depending on the dtype.
dum = np.zeros(nparttot, dtype='float16')
if i==0:
#x = np.zeros(nparttot, dtype='float16')
#y = np.zeros(nparttot, dtype='float16')
#z = np.zeros(nparttot, dtype='float16')
mass = np.zeros(nparttot, dtype='float16')
ID = np.zeros(nparttot, dtype='int32')
level = np.zeros(nparttot, dtype='int32')
clumpid = np.zeros(nparttot, dtype='int32')
Parameters
----------
dtype : str
The dtype of the part file to be read now.
partfile : `scipy.io.FortranFile`
Part file to read from.
Returns
-------
out : 1-dimensional array
The data read from the part file.
n : int
The index of the initial conditions (IC) realisation.
simpath : str
The complete path to the CSiBORG simulation.
"""
if dtype in ["float16", "float32", "float64"]:
return partfile.read_reals('d')
elif dtype in ["int32", "int64"]:
return partfile.read_ints()
else:
#x_inv = np.zeros(nparttot, dtype='float16')
#y_inv = np.zeros(nparttot, dtype='float16')
#z_inv = np.zeros(nparttot, dtype='float16')
mass_inv = np.zeros(nparttot, dtype='float16')
ID_inv = np.zeros(nparttot, dtype='int32')
level_inv = np.zeros(nparttot, dtype='int32')
clumpid_inv = np.zeros(nparttot, dtype='int32')
raise TypeError("Unexpected dtype `{}`.".format(dtype))
#----------------------
# Read particle data
#----------------------
def read_particle(pars_extract, n, simpath, verbose=True):
"""
Read particle files of a simulation at a given snapshot and return
values of `pars_extract`.
#read(1)ncpu2 # What you would do in fortran
#read(1)ndim2
#read(1)npart2
#read(1)
#read(1)
#read(1)
#read(1)
#read(1)
#do i=1,ndim
#read(1)m
#x(1:npart2,i)=m
#end do
#! Skip velocity
#do i=1,ndim
#read(1)m
#end do
#! Read mass
#read(1)m
#if(nstar>0)then
#read(1) ! Skip identity
#read(1) ! Skip level
#read(1)family
#read(1)tag
#read(1)age
Parameters
----------
pars_extract : list of str
Parameters to be extacted.
n : int
The index of the redshift snapshot.
simpath : str
The complete path to the CSiBORG simulation.
verbose : bool, optional
Verbosity flag while for reading the CPU outputs.
start_ind = np.zeros(ncpu, dtype='int')
for cpu in range(ncpu-1):
start_ind[cpu+1] = nparts[cpu] + start_ind[cpu]
Returns
-------
out : structured array
The data read from the particle file.
"""
# Open the particle files
nparts, partfiles = open_particle(n, simpath)
ncpu = nparts.size
# Order in which the particles are written in the FortranFile
forder = [("x", "float16"), ("y", "float16"), ("z", "float16"),
("vx", "float16"), ("vy", "float16"), ("vz", "float16"),
("M", "float16"), ("ID", "int32"), ("level", "int32")]
fnames = [fp[0] for fp in forder]
fdtypes = [fp[1] for fp in forder]
# Check there are no strange parameters
for p in pars_extract:
if p not in fnames:
raise ValueError("Undefined parameter `{}`. Must be one of `{}`."
.format(p, fnames))
for cpu in range(ncpu):
unbfile = srcdir+'/unbinding_'+srcdir[-5:]+'.out'+str(cpu+1).zfill(5)
unbffile = ff.FortranFile(unbfile)
npart_tot = numpy.sum(nparts)
# A dummy array is necessary for reading the fortran files.
dum = numpy.full(npart_tot, numpy.nan, dtype="float16")
# These are the data we read along with types
dtype = {"names": pars_extract,
"formats": [forder[fnames.index(p)][1] for p in pars_extract]}
# Allocate the output structured array
out = numpy.full(npart_tot, numpy.nan, dtype)
# Loop indices
start_ind = numpy.zeros(ncpu, dtype=int)
start_ind[1:] = numpy.cumsum(nparts)[:-1]
iters = tqdm(range(ncpu)) if verbose else range(ncpu)
for cpu in iters:
i = start_ind[cpu]
j = nparts[cpu]
for (fname, fdtype) in zip(fnames, fdtypes):
if fname in pars_extract:
out[fname][i:i + j] = read_sp(fdtype, partfiles[cpu])
else:
dum[i:i + j] = read_sp(fdtype, partfiles[cpu])
dum[start_ind[cpu]:start_ind[cpu]+nparts[cpu]] = partfiles[cpu].readReals('d') # Think they're stored as double so must read as double
dum[start_ind[cpu]:start_ind[cpu]+nparts[cpu]] = partfiles[cpu].readReals('d') # Positions
dum[start_ind[cpu]:start_ind[cpu]+nparts[cpu]] = partfiles[cpu].readReals('d')
dum[start_ind[cpu]:start_ind[cpu]+nparts[cpu]] = partfiles[cpu].readReals('d') # Velocities; this all just overwrites itself
dum[start_ind[cpu]:start_ind[cpu]+nparts[cpu]] = partfiles[cpu].readReals('d')
dum[start_ind[cpu]:start_ind[cpu]+nparts[cpu]] = partfiles[cpu].readReals('d')
mass[start_ind[cpu]:start_ind[cpu]+nparts[cpu]] = partfiles[cpu].readReals('d') # Mass
#vx[start_ind[cpu]:start_ind[cpu]+nparts[cpu]] = partfiles[cpu].readReals('d')
#vy[start_ind[cpu]:start_ind[cpu]+nparts[cpu]] = partfiles[cpu].readReals('d')
#vz[start_ind[cpu]:start_ind[cpu]+nparts[cpu]] = partfiles[cpu].readReals('d')
#mass[start_ind[cpu]:start_ind[cpu]+nparts[cpu]] = partfiles[cpu].readReals('d')
ID[start_ind[cpu]:start_ind[cpu]+nparts[cpu]] = partfiles[cpu].readInts()
level[start_ind[cpu]:start_ind[cpu]+nparts[cpu]] = partfiles[cpu].readInts()
clumpid[start_ind[cpu]:start_ind[cpu]+nparts[cpu]] = unbffile.readInts()
del dum
print("Minimum clump ID:", np.min(clumpid)) # This is the clump a particle has been assigned to, so min should be 0 which means not in clump
clumpid = np.absolute(clumpid) # Not sure why this is here...
#random.shuffle(ID); random.shuffle(ID_inv) # If the IDs are randomised but not the clumpIDs then all of the below should be random
print(np.min(ID), np.median(ID), np.mean(ID), np.max(ID))
print(np.min(ID_inv), np.median(ID_inv), np.mean(ID_inv), np.max(ID_inv))
print(np.min(level), np.median(level), np.mean(level), np.max(level))
print(np.min(level_inv), np.median(level_inv), np.mean(level_inv), np.max(level_inv))
print(np.min(mass), np.median(mass), np.mean(mass), np.max(mass))
print(np.min(mass_inv), np.median(mass_inv), np.mean(mass_inv), np.max(mass_inv))
#plt.clf()
#plt.hist(mass)
#plt.show()
#index lev parent(2) ncell peak_x peak_y(5) peak_z rho- rho+(8) rho_av mass_cl relevance(11)
clumparr = np.genfromtxt(srcdir1+"/clump_"+outnr1+".dat")
clumparr_inv = np.genfromtxt(srcdir2+"/clump_"+outnr2+".dat")
clumpID, parent, Mclump = clumparr[:,0].astype(int), clumparr[:,2].astype(int), clumparr[:,10]
clumpID_inv, parent_inv, Mclump_inv = clumparr_inv[:,0].astype(int), clumparr_inv[:,2].astype(int), clumparr_inv[:,10]
#clumpID_main = clumpID[clumpID==parent] # IDs of main halos only from the clump file
#clumpID_main_inv = clumpID_inv[clumpID_inv==parent_inv]
#clumpID_big = clumpID[Mclump>np.median(Mclump)] # IDs of halos more massive than the median
#clumpID_big_inv = clumpID_inv[Mclump_inv>np.median(Mclump_inv)]
clumpID_big = clumpID[Mclump>np.percentile(Mclump, 90)]
clumpID_big_inv = clumpID_inv[Mclump_inv>np.percentile(Mclump_inv, 90)]
#clumpID_small = clumpID[Mclump<=np.median(Mclump)] # IDs of halos more massive than the median
#clumpID_small_inv = clumpID_inv[Mclump_inv<=np.median(Mclump_inv)]
#[np.where(clumpid==x) for x in clumpID_main]
print("CHECK:", len(ID), len(ID_inv), len(np.intersect1d(ID, ID_inv)), "(should all be the same)")
print("Total number of clumps in the two sims:", len(clumparr), len(clumparr_inv))
print("Total number of particles in the two sims:", len(ID), len(ID_inv), "(should be the same)")
print("Fraction of particles within halos in the two sims:", round(len(ID[clumpid!=0])/float(len(ID)), 6), round(len(ID_inv[clumpid_inv!=0])/float(len(ID)), 6))
print("Fraction of particles within halos in *both* sims:", round(len(np.intersect1d(ID[clumpid!=0], ID_inv[clumpid_inv!=0]))/float(len(np.intersect1d(ID, ID_inv))), 6), "(random value =", round(len(ID[clumpid!=0])/float(len(ID)) * len(ID_inv[clumpid_inv!=0])/float(len(ID_inv)), 6), "), ratio =", round(len(np.intersect1d(ID[clumpid!=0], ID_inv[clumpid_inv!=0]))/float(len(np.intersect1d(ID, ID_inv))) / (len(ID[clumpid!=0])/float(len(ID)) * len(ID_inv[clumpid_inv!=0])/float(len(ID_inv))), 3))
print("Fraction of particles in massive halos in the two sims:", round(np.sum(np.in1d(clumpid, clumpID_big))/float(len(ID)), 6), round(np.sum(np.in1d(clumpid_inv, clumpID_big_inv))/float(len(ID)), 6))
print("Fraction of particles in massive halos in *both* sims:", round(len(np.intersect1d(ID[np.in1d(clumpid, clumpID_big)], ID_inv[np.in1d(clumpid_inv, clumpID_big_inv)]))/float(len(np.intersect1d(ID, ID_inv))), 6), "(random value =", round(np.sum(np.in1d(clumpid, clumpID_big))/float(len(ID)) * np.sum(np.in1d(clumpid_inv, clumpID_big_inv))/float(len(ID)), 6), "), ratio =", round(len(np.intersect1d(ID[np.in1d(clumpid, clumpID_big)], ID_inv[np.in1d(clumpid_inv, clumpID_big_inv)]))/float(len(np.intersect1d(ID, ID_inv))) / (np.sum(np.in1d(clumpid, clumpID_big))/float(len(ID)) * np.sum(np.in1d(clumpid_inv, clumpID_big_inv))/float(len(ID_inv))), 3))
return out