mirror of
https://github.com/Richard-Sti/csiborgtools.git
synced 2024-12-22 06:58:02 +00:00
Velocity observer (#86)
* Continue if r200c not defined * Remove smooth scale * Remove smooth scale * Edit Max Matching plot * Add peculiar velocity * Add Vobs calculation * Edit docs * Add Vobs plot * Improve plotting * Edit naming convention * Make a note * Add new cat options * Update density field RSP calculation * Update field 2 rsp * Move functions and shorten documentation * Improve transforms and comments * Update docs * Update imports * Edit calculation * Add docs * Remove imports * Add Quijote flags * Edit documentation * Shorten documentation * Edit func calls * Shorten * Docs edits * Edit docs * Shorten docs * Short docs edits * Simplify docs a little bit * Save plotting * Update env
This commit is contained in:
parent
8e3127f4d9
commit
ae92fd9b72
18 changed files with 761 additions and 788 deletions
|
@ -22,7 +22,6 @@ import numpy
|
|||
from numba import jit
|
||||
from tqdm import trange
|
||||
|
||||
from ..read.utils import real2redshift
|
||||
from .interp import divide_nonzero
|
||||
from .utils import force_single_precision
|
||||
|
||||
|
@ -32,18 +31,6 @@ class BaseField(ABC):
|
|||
_box = None
|
||||
_MAS = None
|
||||
|
||||
@property
|
||||
def boxsize(self):
|
||||
"""
|
||||
Box size. Particle positions are always assumed to be in box units,
|
||||
therefore this is 1.
|
||||
|
||||
Returns
|
||||
-------
|
||||
boxsize : float
|
||||
"""
|
||||
return 1.
|
||||
|
||||
@property
|
||||
def box(self):
|
||||
"""
|
||||
|
@ -51,7 +38,7 @@ class BaseField(ABC):
|
|||
|
||||
Returns
|
||||
-------
|
||||
box : :py:class:`csiborgtools.units.CSiBORGBox`
|
||||
:py:class:`csiborgtools.units.CSiBORGBox`
|
||||
"""
|
||||
return self._box
|
||||
|
||||
|
@ -70,10 +57,10 @@ class BaseField(ABC):
|
|||
|
||||
Returns
|
||||
-------
|
||||
MAS : str
|
||||
str
|
||||
"""
|
||||
if self._MAS is None:
|
||||
raise ValueError("`mas` is not set.")
|
||||
raise ValueError("`MAS` is not set.")
|
||||
return self._MAS
|
||||
|
||||
@MAS.setter
|
||||
|
@ -99,6 +86,8 @@ class DensityField(BaseField):
|
|||
Mass assignment scheme. Options are Options are: 'NGP' (nearest grid
|
||||
point), 'CIC' (cloud-in-cell), 'TSC' (triangular-shape cloud), 'PCS'
|
||||
(piecewise cubic spline).
|
||||
paths : :py:class:`csiborgtools.read.Paths`
|
||||
The simulation paths.
|
||||
|
||||
References
|
||||
----------
|
||||
|
@ -128,13 +117,12 @@ class DensityField(BaseField):
|
|||
delta -= 1
|
||||
return delta
|
||||
|
||||
def __call__(self, parts, grid, in_rsp, flip_xz=True, nbatch=30,
|
||||
verbose=True):
|
||||
def __call__(self, parts, grid, flip_xz=True, nbatch=30, verbose=True):
|
||||
"""
|
||||
Calculate the density field using a Pylians routine [1, 2].
|
||||
Iteratively loads the particles into memory, flips their `x` and `z`
|
||||
coordinates. Particles are assumed to be in box units, with positions
|
||||
in [0, 1] and observer in the centre of the box if RSP is applied.
|
||||
in [0, 1]
|
||||
|
||||
Parameters
|
||||
----------
|
||||
|
@ -143,8 +131,6 @@ class DensityField(BaseField):
|
|||
Columns are: `x`, `y`, `z`, `vx`, `vy`, `vz`, `M`.
|
||||
grid : int
|
||||
Grid size.
|
||||
in_rsp : bool
|
||||
Whether to calculate the density field in redshift space.
|
||||
flip_xz : bool, optional
|
||||
Whether to flip the `x` and `z` coordinates.
|
||||
nbatch : int, optional
|
||||
|
@ -173,21 +159,14 @@ class DensityField(BaseField):
|
|||
pos = parts[start:end]
|
||||
pos, vel, mass = pos[:, :3], pos[:, 3:6], pos[:, 6]
|
||||
|
||||
pos = force_single_precision(pos, "particle_position")
|
||||
vel = force_single_precision(vel, "particle_velocity")
|
||||
mass = force_single_precision(mass, "particle_mass")
|
||||
pos = force_single_precision(pos)
|
||||
vel = force_single_precision(vel)
|
||||
mass = force_single_precision(mass)
|
||||
if flip_xz:
|
||||
pos[:, [0, 2]] = pos[:, [2, 0]]
|
||||
vel[:, [0, 2]] = vel[:, [2, 0]]
|
||||
|
||||
if in_rsp:
|
||||
raise NotImplementedError("Redshift space needs to be fixed.")
|
||||
# TODO change how called + units.
|
||||
pos = real2redshift(pos, vel, [0.5, 0.5, 0.5], self.box,
|
||||
in_box_units=True, periodic_wrap=True,
|
||||
make_copy=False)
|
||||
|
||||
MASL.MA(pos, rho, self.boxsize, self.MAS, W=mass, verbose=False)
|
||||
MASL.MA(pos, rho, 1., self.MAS, W=mass, verbose=False)
|
||||
if end == nparts:
|
||||
break
|
||||
start = end
|
||||
|
@ -223,7 +202,7 @@ class VelocityField(BaseField):
|
|||
|
||||
@staticmethod
|
||||
@jit(nopython=True)
|
||||
def radial_velocity(rho_vel):
|
||||
def radial_velocity(rho_vel, observer_velocity):
|
||||
"""
|
||||
Calculate the radial velocity field around the observer in the centre
|
||||
of the box.
|
||||
|
@ -232,6 +211,8 @@ class VelocityField(BaseField):
|
|||
----------
|
||||
rho_vel : 4-dimensional array of shape `(3, grid, grid, grid)`.
|
||||
Velocity field along each axis.
|
||||
observer_velocity : 3-dimensional array of shape `(3,)`
|
||||
Observer velocity.
|
||||
|
||||
Returns
|
||||
-------
|
||||
|
@ -240,13 +221,19 @@ class VelocityField(BaseField):
|
|||
"""
|
||||
grid = rho_vel.shape[1]
|
||||
radvel = numpy.zeros((grid, grid, grid), dtype=numpy.float32)
|
||||
vx0, vy0, vz0 = observer_velocity
|
||||
|
||||
for i in range(grid):
|
||||
px = i - 0.5 * (grid - 1)
|
||||
for j in range(grid):
|
||||
py = j - 0.5 * (grid - 1)
|
||||
for k in range(grid):
|
||||
pz = k - 0.5 * (grid - 1)
|
||||
vx, vy, vz = rho_vel[:, i, j, k]
|
||||
|
||||
vx = rho_vel[0, i, j, k] - vx0
|
||||
vy = rho_vel[1, i, j, k] - vy0
|
||||
vz = rho_vel[2, i, j, k] - vz0
|
||||
|
||||
radvel[i, j, k] = ((px * vx + py * vy + pz * vz)
|
||||
/ numpy.sqrt(px**2 + py**2 + pz**2))
|
||||
return radvel
|
||||
|
@ -297,19 +284,19 @@ class VelocityField(BaseField):
|
|||
pos = parts[start:end]
|
||||
pos, vel, mass = pos[:, :3], pos[:, 3:6], pos[:, 6]
|
||||
|
||||
pos = force_single_precision(pos, "particle_position")
|
||||
vel = force_single_precision(vel, "particle_velocity")
|
||||
mass = force_single_precision(mass, "particle_mass")
|
||||
pos = force_single_precision(pos)
|
||||
vel = force_single_precision(vel)
|
||||
mass = force_single_precision(mass)
|
||||
if flip_xz:
|
||||
pos[:, [0, 2]] = pos[:, [2, 0]]
|
||||
vel[:, [0, 2]] = vel[:, [2, 0]]
|
||||
vel *= mass.reshape(-1, 1)
|
||||
|
||||
for i in range(3):
|
||||
MASL.MA(pos, rho_vel[i], self.boxsize, self.MAS, W=vel[:, i],
|
||||
MASL.MA(pos, rho_vel[i], 1., self.MAS, W=vel[:, i],
|
||||
verbose=False)
|
||||
|
||||
MASL.MA(pos, cellcounts, self.boxsize, self.MAS, W=mass,
|
||||
MASL.MA(pos, cellcounts, 1., self.MAS, W=mass,
|
||||
verbose=False)
|
||||
if end == nparts:
|
||||
break
|
||||
|
|
|
@ -20,23 +20,22 @@ import numpy
|
|||
from numba import jit
|
||||
from tqdm import trange
|
||||
|
||||
from ..read.utils import radec_to_cartesian, real2redshift
|
||||
from .utils import force_single_precision
|
||||
from ..utils import periodic_wrap_grid, radec_to_cartesian
|
||||
|
||||
|
||||
def evaluate_cartesian(*fields, pos, interp="CIC"):
|
||||
"""
|
||||
Evaluate a scalar field at Cartesian coordinates.
|
||||
Evaluate a scalar field(s) at Cartesian coordinates `pos`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
field : (list of) 3-dimensional array of shape `(grid, grid, grid)`
|
||||
Fields to be interpolated.
|
||||
pos : 2-dimensional array of shape `(n_samples, 3)`
|
||||
Positions to evaluate the density field. Assumed to be in box
|
||||
units.
|
||||
Query positions in box units.
|
||||
interp : str, optional
|
||||
Interpolation method. Can be either `CIC` or `NGP`.
|
||||
Interpolation method, `NGP` or `CIC`.
|
||||
|
||||
Returns
|
||||
-------
|
||||
|
@ -44,7 +43,7 @@ def evaluate_cartesian(*fields, pos, interp="CIC"):
|
|||
"""
|
||||
assert interp in ["CIC", "NGP"]
|
||||
boxsize = 1.
|
||||
pos = force_single_precision(pos, "pos")
|
||||
pos = force_single_precision(pos)
|
||||
|
||||
nsamples = pos.shape[0]
|
||||
interp_fields = [numpy.full(nsamples, numpy.nan, dtype=numpy.float32)
|
||||
|
@ -64,60 +63,71 @@ def evaluate_cartesian(*fields, pos, interp="CIC"):
|
|||
return interp_fields
|
||||
|
||||
|
||||
def evaluate_sky(*fields, pos, box, isdeg=True):
|
||||
def evaluate_sky(*fields, pos, box):
|
||||
"""
|
||||
Evaluate the scalar fields at given distance, right ascension and
|
||||
declination. Assumes an observed in the centre of the box, with
|
||||
distance being in :math:`Mpc`. Uses CIC interpolation.
|
||||
Evaluate a scalar field(s) at radial distance `Mpc / h`, right ascensions
|
||||
[0, 360) deg and declinations [-90, 90] deg.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
fields : (list of) 3-dimensional array of shape `(grid, grid, grid)`
|
||||
Field to be interpolated.
|
||||
pos : 2-dimensional array of shape `(n_samples, 3)`
|
||||
Spherical coordinates to evaluate the field. Columns are distance,
|
||||
right ascension, declination, respectively.
|
||||
Query spherical coordinates.
|
||||
box : :py:class:`csiborgtools.read.CSiBORGBox`
|
||||
The simulation box information and transformations.
|
||||
isdeg : bool, optional
|
||||
Whether `ra` and `dec` are in degres. By default `True`.
|
||||
|
||||
Returns
|
||||
-------
|
||||
interp_fields : (list of) 1-dimensional array of shape `(n_samples,).
|
||||
"""
|
||||
pos = force_single_precision(pos, "pos")
|
||||
# We first calculate convert the distance to box coordinates and then
|
||||
# convert to Cartesian coordinates.
|
||||
pos = force_single_precision(pos)
|
||||
|
||||
pos[:, 0] = box.mpc2box(pos[:, 0])
|
||||
X = radec_to_cartesian(pos, isdeg)
|
||||
# Then we move the origin to match the box coordinates
|
||||
X += 0.5
|
||||
return evaluate_cartesian(*fields, pos=X)
|
||||
cart_pos = radec_to_cartesian(pos) + 0.5
|
||||
|
||||
return evaluate_cartesian(*fields, pos=cart_pos)
|
||||
|
||||
|
||||
def observer_vobs(velocity_field):
|
||||
"""
|
||||
Calculate the observer velocity from a velocity field. Assumes an observer
|
||||
in the centre of the box.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
velocity_field : 4-dimensional array of shape `(3, grid, grid, grid)`
|
||||
|
||||
Returns
|
||||
-------
|
||||
1-dimensional array of shape `(3,)`
|
||||
"""
|
||||
pos = numpy.asanyarray([0.5, 0.5, 0.5]).reshape(1, 3)
|
||||
vobs = numpy.full(3, numpy.nan, dtype=numpy.float32)
|
||||
for i in range(3):
|
||||
vobs[i] = evaluate_cartesian(velocity_field[i, ...], pos=pos)[0]
|
||||
return vobs
|
||||
|
||||
|
||||
def make_sky(field, angpos, dist, box, volume_weight=True, verbose=True):
|
||||
r"""
|
||||
Make a sky map of a scalar field. The observer is in the centre of the
|
||||
box the field is evaluated along directions `angpos`. Along each
|
||||
direction, the field is evaluated distances `dist_marg` and summed.
|
||||
Uses CIC interpolation.
|
||||
box the field is evaluated along directions `angpos` (RA [0, 360) deg,
|
||||
dec [-90, 90] deg). Along each direction, the field is evaluated distances
|
||||
`dist` (`Mpc / h`) and summed. Uses CIC interpolation.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
field : 3-dimensional array of shape `(grid, grid, grid)`
|
||||
Field to be interpolated
|
||||
angpos : 2-dimensional arrays of shape `(ndir, 2)`
|
||||
Directions to evaluate the field. Assumed to be RA
|
||||
:math:`\in [0, 360]` and dec :math:`\in [-90, 90]` degrees,
|
||||
respectively.
|
||||
Directions to evaluate the field.
|
||||
dist : 1-dimensional array
|
||||
Uniformly spaced radial distances to evaluate the field.
|
||||
box : :py:class:`csiborgtools.read.CSiBORGBox`
|
||||
The simulation box information and transformations.
|
||||
volume_weight : bool, optional
|
||||
Whether to weight the field by the volume of the pixel, i.e. a
|
||||
:math:`r^2` correction.
|
||||
Whether to weight the field by the volume of the pixel.
|
||||
verbose : bool, optional
|
||||
Verbosity flag.
|
||||
|
||||
|
@ -152,22 +162,9 @@ def make_sky(field, angpos, dist, box, volume_weight=True, verbose=True):
|
|||
@jit(nopython=True)
|
||||
def divide_nonzero(field0, field1):
|
||||
"""
|
||||
Divide two fields where the second one is not zero. If the second field
|
||||
is zero, the first one is left unchanged. Operates in-place.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
field0 : 3-dimensional array of shape `(grid, grid, grid)`
|
||||
Field to be divided.
|
||||
field1 : 3-dimensional array of shape `(grid, grid, grid)`
|
||||
Field to divide by.
|
||||
|
||||
Returns
|
||||
-------
|
||||
field0 : 3-dimensional array of shape `(grid, grid, grid)`
|
||||
Field divided by the second one.
|
||||
Perform in-place `field0 /= field1` but only where `field1 != 0`.
|
||||
"""
|
||||
assert field0.shape == field1.shape
|
||||
assert field0.shape == field1.shape, "Field shapes must match."
|
||||
|
||||
imax, jmax, kmax = field0.shape
|
||||
for i in range(imax):
|
||||
|
@ -177,134 +174,89 @@ def divide_nonzero(field0, field1):
|
|||
field0[i, j, k] /= field1[i, j, k]
|
||||
|
||||
|
||||
def observer_vobs(velocity_field):
|
||||
@jit(nopython=True)
|
||||
def make_gridpos(grid_size):
|
||||
"""Make a regular grid of positions and distances from the center."""
|
||||
grid_pos = numpy.full((grid_size**3, 3), numpy.nan, dtype=numpy.float32)
|
||||
grid_dist = numpy.full(grid_size**3, numpy.nan, dtype=numpy.float32)
|
||||
|
||||
n = 0
|
||||
for i in range(grid_size):
|
||||
px = (i - 0.5 * (grid_size - 1)) / grid_size
|
||||
px2 = px**2
|
||||
for j in range(grid_size):
|
||||
py = (j - 0.5 * (grid_size - 1)) / grid_size
|
||||
py2 = py**2
|
||||
for k in range(grid_size):
|
||||
pz = (k - 0.5 * (grid_size - 1)) / grid_size
|
||||
pz2 = pz**2
|
||||
|
||||
grid_pos[n, 0] = px
|
||||
grid_pos[n, 1] = py
|
||||
grid_pos[n, 2] = pz
|
||||
|
||||
grid_dist[n] = (px2 + py2 + pz2)**0.5
|
||||
|
||||
n += 1
|
||||
|
||||
return grid_pos, grid_dist
|
||||
|
||||
|
||||
def field2rsp(field, radvel_field, box, MAS, init_value=0.):
|
||||
"""
|
||||
Calculate the observer velocity from a velocity field. Assumes the observer
|
||||
is in the centre of the box.
|
||||
Forward model a real space scalar field to redshift space.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
velocity_field : 4-dimensional array of shape `(3, grid, grid, grid)`
|
||||
Velocity field to calculate the observer velocity from.
|
||||
|
||||
Returns
|
||||
-------
|
||||
vobs : 1-dimensional array of shape `(3,)`
|
||||
Observer velocity in units of `velocity_field`.
|
||||
"""
|
||||
pos = numpy.asanyarray([0.5, 0.5, 0.5]).reshape(1, 3)
|
||||
vobs = numpy.full(3, numpy.nan, dtype=numpy.float32)
|
||||
for i in range(3):
|
||||
vobs[i] = evaluate_cartesian(velocity_field[i, ...], pos=pos)[0]
|
||||
return vobs
|
||||
|
||||
|
||||
def field2rsp(*fields, parts, vobs, box, nbatch=30, flip_partsxz=True,
|
||||
init_value=0., verbose=True):
|
||||
"""
|
||||
Forward model real space scalar fields to redshift space. Attaches field
|
||||
values to particles, those are then moved to redshift space and from their
|
||||
positions reconstructs back the field on a grid by NGP interpolation.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
fields : (list of) 3-dimensional array of shape `(grid, grid, grid)`
|
||||
Real space fields to be evolved to redshift space.
|
||||
parts : 2-dimensional array of shape `(n_parts, 6)`
|
||||
Particle positions and velocities in real space. Must be organised as
|
||||
`x, y, z, vx, vy, vz`.
|
||||
vobs : 1-dimensional array of shape `(3,)`
|
||||
Observer velocity in units matching `parts`.
|
||||
field : 3-dimensional array of shape `(grid, grid, grid)`
|
||||
Real space field to be evolved to redshift space.
|
||||
radvel_field : 3-dimensional array of shape `(grid, grid, grid)`
|
||||
Radial velocity field in `km / s`. Expected to account for the observer
|
||||
velocity.
|
||||
box : :py:class:`csiborgtools.read.CSiBORGBox`
|
||||
The simulation box information and transformations.
|
||||
nbatch : int, optional
|
||||
Number of batches to use when moving particles to redshift space.
|
||||
Particles are assumed to be lazily loaded to memory.
|
||||
flip_partsxz : bool, optional
|
||||
Whether to flip the x and z coordinates of the particles. This is
|
||||
because of a RAMSES bug.
|
||||
MAS : str
|
||||
Mass assignment. Must be one of `NGP`, `CIC`, `TSC` or `PCS`.
|
||||
init_value : float, optional
|
||||
Initial value of the RSP field on the grid.
|
||||
verbose : bool, optional
|
||||
Verbosity flag.
|
||||
|
||||
Returns
|
||||
-------
|
||||
rsp_fields : (list of) 3-dimensional array of shape `(grid, grid, grid)`
|
||||
3-dimensional array of shape `(grid, grid, grid)`
|
||||
"""
|
||||
raise NotImplementedError("Figure out what to do with Vobs.")
|
||||
nfields = len(fields)
|
||||
# Check that all fields have the same shape.
|
||||
if nfields > 1:
|
||||
assert all(fields[0].shape == fields[i].shape
|
||||
for i in range(1, nfields))
|
||||
grid = field.shape[0]
|
||||
H0_inv = 1. / 100 / box.box2mpc(1.)
|
||||
|
||||
rsp_fields = [numpy.full(field.shape, init_value, dtype=numpy.float32)
|
||||
for field in fields]
|
||||
cellcounts = numpy.zeros(rsp_fields[0].shape, dtype=numpy.float32)
|
||||
# Calculate the regular grid positions and distances from the center.
|
||||
grid_pos, grid_dist = make_gridpos(grid)
|
||||
grid_dist = grid_dist.reshape(-1, 1)
|
||||
|
||||
nparts = parts.shape[0]
|
||||
batch_size = nparts // nbatch
|
||||
start = 0
|
||||
for __ in trange(nbatch + 1) if verbose else range(nbatch + 1):
|
||||
# We first load the batch of particles into memory and flip x and z.
|
||||
end = min(start + batch_size, nparts)
|
||||
pos = parts[start:end]
|
||||
pos, vel = pos[:, :3], pos[:, 3:6]
|
||||
if flip_partsxz:
|
||||
pos[:, [0, 2]] = pos[:, [2, 0]]
|
||||
vel[:, [0, 2]] = vel[:, [2, 0]]
|
||||
# Then move the particles to redshift space.
|
||||
# TODO here the function is now called differently and pos assumes
|
||||
# different units.
|
||||
rsp_pos = real2redshift(pos, vel, [0.5, 0.5, 0.5], box,
|
||||
in_box_units=True, periodic_wrap=True,
|
||||
make_copy=True)
|
||||
# ... and count the number of particles in each grid cell.
|
||||
MASL.MA(rsp_pos, cellcounts, 1., "NGP")
|
||||
# Move the grid positions to redshift space.
|
||||
grid_pos *= (1 + H0_inv * radvel_field.reshape(-1, 1) / grid_dist)
|
||||
grid_pos += 0.5
|
||||
grid_pos = periodic_wrap_grid(grid_pos)
|
||||
|
||||
# Now finally we evaluate the field at the particle positions in real
|
||||
# space and then assign the values to the grid in redshift space.
|
||||
for i in range(nfields):
|
||||
values = evaluate_cartesian(fields[i], pos=pos)
|
||||
MASL.MA(rsp_pos, rsp_fields[i], 1., "NGP", W=values)
|
||||
if end == nparts:
|
||||
break
|
||||
start = end
|
||||
rsp_field = numpy.full(field.shape, init_value, dtype=numpy.float32)
|
||||
cell_counts = numpy.zeros(rsp_field.shape, dtype=numpy.float32)
|
||||
|
||||
# We divide by the number of particles in each cell.
|
||||
for i in range(len(fields)):
|
||||
divide_nonzero(rsp_fields[i], cellcounts)
|
||||
# Interpolate the field to the grid positions.
|
||||
MASL.MA(grid_pos, rsp_field, 1., MAS, W=field.reshape(-1,))
|
||||
MASL.MA(grid_pos, cell_counts, 1., MAS)
|
||||
divide_nonzero(rsp_field, cell_counts)
|
||||
|
||||
if len(fields) == 1:
|
||||
return rsp_fields[0]
|
||||
return rsp_fields
|
||||
return rsp_field
|
||||
|
||||
|
||||
@jit(nopython=True)
|
||||
def fill_outside(field, fill_value, rmax, boxsize):
|
||||
"""
|
||||
Fill cells outside of a sphere of radius `rmax` with `fill_value`. Centered
|
||||
in the middle of the box.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
field : 3-dimensional array of shape `(grid, grid, grid)`
|
||||
Field to be filled.
|
||||
fill_value : float
|
||||
Value to fill the field with.
|
||||
rmax : float
|
||||
Radius outside of which to fill the field..
|
||||
boxsize : float
|
||||
Size of the box.
|
||||
|
||||
Returns
|
||||
-------
|
||||
field : 3-dimensional array of shape `(grid, grid, grid)`
|
||||
Fill cells outside of a sphere of radius `rmax` around the box centre with
|
||||
`fill_value`.
|
||||
"""
|
||||
imax, jmax, kmax = field.shape
|
||||
assert imax == jmax == kmax
|
||||
N = imax
|
||||
|
||||
# Squared radial distance from the center of the box in box units.
|
||||
rmax_box2 = (N * rmax / boxsize)**2
|
||||
|
||||
|
|
|
@ -15,31 +15,16 @@
|
|||
"""
|
||||
Utility functions for the field module.
|
||||
"""
|
||||
from warnings import warn
|
||||
|
||||
import healpy
|
||||
import numpy
|
||||
import smoothing_library as SL
|
||||
|
||||
|
||||
def force_single_precision(x, name):
|
||||
def force_single_precision(x):
|
||||
"""
|
||||
Convert `x` to float32 if it is not already.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : array
|
||||
Array to convert.
|
||||
name : str
|
||||
Name of the array.
|
||||
|
||||
Returns
|
||||
-------
|
||||
x : array
|
||||
Converted array.
|
||||
Attempt to convert an array `x` to float 32.
|
||||
"""
|
||||
if x.dtype != numpy.float32:
|
||||
warn(f"Converting `{name}` to float32.", UserWarning, stacklevel=1)
|
||||
x = x.astype(numpy.float32)
|
||||
return x
|
||||
|
||||
|
@ -47,21 +32,6 @@ def force_single_precision(x, name):
|
|||
def smoothen_field(field, smooth_scale, boxsize, threads=1):
|
||||
"""
|
||||
Smooth a field with a Gaussian filter.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
field : 3-dimensional array of shape `(grid, grid, grid)`
|
||||
Field to be smoothed.
|
||||
smooth_scale : float, optional
|
||||
Gaussian kernal scale to smoothen the density field, in box units.
|
||||
boxsize : float
|
||||
Size of the box.
|
||||
threads : int, optional
|
||||
Number of threads. By default 1.
|
||||
|
||||
Returns
|
||||
-------
|
||||
smoothed_field : 3-dimensional array of shape `(grid, grid, grid)`
|
||||
"""
|
||||
W_k = SL.FT_filter(boxsize, smooth_scale, field.shape[0], "Gaussian",
|
||||
threads)
|
||||
|
@ -70,19 +40,10 @@ def smoothen_field(field, smooth_scale, boxsize, threads=1):
|
|||
|
||||
def nside2radec(nside):
|
||||
"""
|
||||
Generate RA and declination for HEALPix pixel centres.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
nside : int
|
||||
HEALPix nside parameter.
|
||||
|
||||
Returns
|
||||
-------
|
||||
radec : array of shape `(npix, 2)`
|
||||
RA and declination in degrees.
|
||||
Generate RA [0, 360] deg. and declination [-90, 90] deg. for HEALPix pixel
|
||||
centres at a given nside.
|
||||
"""
|
||||
pixs = numpy.arange(healpy.nside2npix(nside))
|
||||
theta, phi = healpy.pix2ang(nside, pixs)
|
||||
theta -= numpy.pi / 2
|
||||
return numpy.rad2deg(numpy.vstack([phi, theta]).T)
|
||||
return 180 / numpy.pi * numpy.vstack([phi, theta]).T
|
||||
|
|
|
@ -151,7 +151,7 @@ class RealisationsMatcher(BaseMatcher):
|
|||
|
||||
Returns
|
||||
-------
|
||||
dlogmass : float
|
||||
float
|
||||
"""
|
||||
return self._dlogmass
|
||||
|
||||
|
@ -169,7 +169,7 @@ class RealisationsMatcher(BaseMatcher):
|
|||
|
||||
Returns
|
||||
-------
|
||||
mass_kind : str
|
||||
str
|
||||
"""
|
||||
return self._mass_kind
|
||||
|
||||
|
@ -186,7 +186,7 @@ class RealisationsMatcher(BaseMatcher):
|
|||
|
||||
Returns
|
||||
-------
|
||||
overlapper : :py:class:`csiborgtools.match.ParticleOverlap`
|
||||
:py:class:`csiborgtools.match.ParticleOverlap`
|
||||
"""
|
||||
return self._overlapper
|
||||
|
||||
|
@ -661,20 +661,7 @@ class ParticleOverlap(BaseMatcher):
|
|||
|
||||
def pos2cell(pos, ncells):
|
||||
"""
|
||||
Convert position to cell number. If `pos` is in
|
||||
`numpy.typecodes["AllInteger"]` assumes it to already be the cell
|
||||
number.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
pos : 1-dimensional array
|
||||
Array of positions along an axis in the box.
|
||||
ncells : int
|
||||
Number of cells along the axis.
|
||||
|
||||
Returns
|
||||
-------
|
||||
cells : 1-dimensional array
|
||||
Convert position to cell number if there are `ncells` cells along the axis.
|
||||
"""
|
||||
if pos.dtype.char in numpy.typecodes["AllInteger"]:
|
||||
return pos
|
||||
|
@ -684,17 +671,7 @@ def pos2cell(pos, ncells):
|
|||
def read_nshift(smooth_kwargs):
|
||||
"""
|
||||
Determine the number of cells to pad the density field if smoothing is
|
||||
applied. It defaults to the ceiling of three times the smoothing scale.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
smooth_kwargs : dict or None
|
||||
Arguments to be passed to :py:func:`scipy.ndimage.gaussian_filter`.
|
||||
If `None`, no smoothing is applied.
|
||||
|
||||
Returns
|
||||
-------
|
||||
nshift : int
|
||||
applied. Defaults to the ceiling of three times the smoothing scale.
|
||||
"""
|
||||
return 0 if smooth_kwargs is None else ceil(3 * smooth_kwargs["sigma"])
|
||||
|
||||
|
@ -702,8 +679,7 @@ def read_nshift(smooth_kwargs):
|
|||
@jit(nopython=True)
|
||||
def fill_delta(delta, xcell, ycell, zcell, xmin, ymin, zmin, weights):
|
||||
"""
|
||||
Fill array `delta` by adding `weights` to the specified cells. This is a
|
||||
JIT implementation.
|
||||
Fill array `delta` by adding `weights` to the specified cells.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
|
@ -730,8 +706,8 @@ def fill_delta(delta, xcell, ycell, zcell, xmin, ymin, zmin, weights):
|
|||
@jit(nopython=True)
|
||||
def fill_delta_indxs(delta, xcell, ycell, zcell, xmin, ymin, zmin, weights):
|
||||
"""
|
||||
Fill array `delta` by adding `weights` to the specified cells and return
|
||||
indices where `delta` was assigned a value. This is a JIT implementation.
|
||||
Fill array `delta` by adding `weights` to the specified cells. Returns
|
||||
the indices where `delta` was assigned a value.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
|
@ -1161,6 +1137,9 @@ def matching_max(cat0, catx, mass_kind, mult, periodic, overlap=None,
|
|||
out[i]["hid0"] = hid0
|
||||
out[i]["mass0"] = 10**mass0[i]
|
||||
|
||||
if not numpy.isfinite(rad0[i]):
|
||||
continue
|
||||
|
||||
neigh_dists, neigh_inds = knnx.radius_neighbors(pos0[i].reshape(1, -1),
|
||||
mult * rad0[i])
|
||||
neigh_dists, neigh_inds = neigh_dists[0], neigh_inds[0]
|
||||
|
|
|
@ -26,5 +26,4 @@ from .pk_summary import PKReader # noqa
|
|||
from .readsim import (MmainReader, CSiBORGReader, QuijoteReader, halfwidth_mask, # noqa
|
||||
load_halo_particles) # noqa
|
||||
from .tpcf_summary import TPCFReader # noqa
|
||||
from .utils import (cartesian_to_radec, cols_to_structured, radec_to_cartesian, # noqa
|
||||
read_h5, real2redshift) # noqa
|
||||
from .utils import (cols_to_structured, read_h5) # noqa
|
||||
|
|
|
@ -31,9 +31,9 @@ from sklearn.neighbors import NearestNeighbors
|
|||
from .box_units import CSiBORGBox, QuijoteBox
|
||||
from .paths import Paths
|
||||
from .readsim import CSiBORGReader
|
||||
from .utils import (add_columns, cartesian_to_radec, cols_to_structured,
|
||||
flip_cols, radec_to_cartesian, real2redshift)
|
||||
from ..utils import periodic_distance_two_points
|
||||
from .utils import add_columns, cols_to_structured, flip_cols
|
||||
from ..utils import (periodic_distance_two_points, real2redshift,
|
||||
cartesian_to_radec, radec_to_cartesian)
|
||||
|
||||
|
||||
class BaseCatalogue(ABC):
|
||||
|
@ -631,6 +631,9 @@ class QuijoteHaloCatalogue(BaseCatalogue):
|
|||
Load initial positions from `fit_init.py`.
|
||||
with_lagpatch : bool, optional
|
||||
Load halos with a resolved Lagrangian patch.
|
||||
load_backup : bool, optional
|
||||
Load halos from the backup catalogue that do not have corresponding
|
||||
snapshots.
|
||||
"""
|
||||
_nsnap = None
|
||||
_origin = None
|
||||
|
@ -638,14 +641,15 @@ class QuijoteHaloCatalogue(BaseCatalogue):
|
|||
def __init__(self, nsim, paths, nsnap,
|
||||
observer_location=[500., 500., 500.],
|
||||
bounds=None, load_fitted=True, load_initial=True,
|
||||
with_lagpatch=False):
|
||||
with_lagpatch=False, load_backup=False):
|
||||
self.nsim = nsim
|
||||
self.paths = paths
|
||||
self.nsnap = nsnap
|
||||
self.observer_location = observer_location
|
||||
self._box = QuijoteBox(nsnap, nsim, paths)
|
||||
# NOTE watch out about here setting nsim = 0
|
||||
self._box = QuijoteBox(nsnap, 0, paths)
|
||||
|
||||
fpath = self.paths.fof_cat(nsim, "quijote")
|
||||
fpath = self.paths.fof_cat(nsim, "quijote", load_backup)
|
||||
fof = FoF_catalog(fpath, self.nsnap, long_ids=False, swap=False,
|
||||
SFR=False, read_IDs=False)
|
||||
|
||||
|
@ -667,6 +671,10 @@ class QuijoteHaloCatalogue(BaseCatalogue):
|
|||
# particles unassigned to any FoF group.
|
||||
data["index"] = 1 + numpy.arange(data.size, dtype=numpy.int32)
|
||||
|
||||
if load_backup and (load_initial or load_fitted):
|
||||
raise ValueError("Cannot load initial/fitted data for the backup "
|
||||
"catalogues.")
|
||||
|
||||
if load_initial:
|
||||
data = self.load_initial(data, paths, "quijote")
|
||||
if load_fitted:
|
||||
|
|
|
@ -214,7 +214,7 @@ class Paths:
|
|||
fout = fout.replace(".npy", "_sorted.npy")
|
||||
return fout
|
||||
|
||||
def fof_cat(self, nsim, simname):
|
||||
def fof_cat(self, nsim, simname, from_quijote_backup=False):
|
||||
r"""
|
||||
Path to the :math:`z = 0` FoF halo catalogue.
|
||||
|
||||
|
@ -224,13 +224,24 @@ class Paths:
|
|||
IC realisation index.
|
||||
simname : str
|
||||
Simulation name. Must be one of `csiborg` or `quijote`.
|
||||
from_quijote_backup : bool, optional
|
||||
Whether to return the path to the Quijote FoF catalogue from the
|
||||
backup.
|
||||
|
||||
|
||||
Returns
|
||||
-------
|
||||
path : str
|
||||
"""
|
||||
if simname == "csiborg":
|
||||
fdir = join(self.postdir, "FoF_membership", )
|
||||
try_create_directory(fdir)
|
||||
return join(fdir, f"halo_catalog_{nsim}_FOF.txt")
|
||||
elif simname == "quijote":
|
||||
return join(self.quijote_dir, "Halos_fiducial", str(nsim))
|
||||
if from_quijote_backup:
|
||||
return join(self.quijote_dir, "halos_backup", str(nsim))
|
||||
else:
|
||||
return join(self.quijote_dir, "Halos_fiducial", str(nsim))
|
||||
else:
|
||||
raise ValueError(f"Unknown simulation name `{simname}`.")
|
||||
|
||||
|
@ -285,7 +296,7 @@ class Paths:
|
|||
try_create_directory(fdir)
|
||||
return join(fdir, f"{kind}_{str(nsim).zfill(5)}.{ftype}")
|
||||
|
||||
def get_ics(self, simname):
|
||||
def get_ics(self, simname, from_quijote_backup=False):
|
||||
"""
|
||||
Get available IC realisation IDs for either the CSiBORG or Quijote
|
||||
simulation suite.
|
||||
|
@ -294,6 +305,8 @@ class Paths:
|
|||
----------
|
||||
simname : str
|
||||
Simulation name. Must be `csiborg` or `quijote`.
|
||||
from_quijote_backup : bool, optional
|
||||
Whether to return the ICs from the Quijote backup.
|
||||
|
||||
Returns
|
||||
-------
|
||||
|
@ -311,10 +324,13 @@ class Paths:
|
|||
except ValueError:
|
||||
pass
|
||||
elif simname == "quijote" or simname == "quijote_full":
|
||||
files = glob(
|
||||
"/mnt/extraspace/rstiskalek/Quijote/Snapshots_fiducial/*")
|
||||
if from_quijote_backup:
|
||||
files = glob(join(self.quijote_dir, "halos_backup", "*"))
|
||||
else:
|
||||
warn(("Taking only the snapshots that also have "
|
||||
"a FoF catalogue!"))
|
||||
files = glob(join(self.quijote_dir, "Snapshots_fiducial", "*"))
|
||||
files = [int(f.split("/")[-1]) for f in files]
|
||||
warn("Taking only the snapshots that also have a FoF catalogue!")
|
||||
files = [f for f in files if f < 100]
|
||||
else:
|
||||
raise ValueError(f"Unknown simulation name `{simname}`.")
|
||||
|
@ -545,7 +561,7 @@ class Paths:
|
|||
|
||||
return join(fdir, fname)
|
||||
|
||||
def field(self, kind, MAS, grid, nsim, in_rsp, smooth_scale=None):
|
||||
def field(self, kind, MAS, grid, nsim, in_rsp):
|
||||
r"""
|
||||
Path to the files containing the calculated density fields in CSiBORG.
|
||||
|
||||
|
@ -562,8 +578,6 @@ class Paths:
|
|||
IC realisation index.
|
||||
in_rsp : bool
|
||||
Whether the calculation is performed in redshift space.
|
||||
smooth_scale : float, optional
|
||||
Smoothing scale in :math:`\mathrm{Mpc}/h`
|
||||
|
||||
Returns
|
||||
-------
|
||||
|
@ -579,12 +593,32 @@ class Paths:
|
|||
kind = kind + "_rsp"
|
||||
|
||||
fname = f"{kind}_{MAS}_{str(nsim).zfill(5)}_grid{grid}.npy"
|
||||
if smooth_scale is not None and smooth_scale > 0:
|
||||
smooth_scale = float(smooth_scale)
|
||||
fname = fname.replace(".npy", f"smooth{smooth_scale}.npy")
|
||||
return join(fdir, fname)
|
||||
|
||||
def halo_counts(self, simname, nsim):
|
||||
def observer_peculiar_velocity(self, MAS, grid, nsim):
|
||||
"""
|
||||
Path to the files containing the observer peculiar velocity.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
MAS : str
|
||||
Mass-assignment scheme.
|
||||
grid : int
|
||||
Grid size.
|
||||
nsim : int
|
||||
IC realisation index.
|
||||
|
||||
Returns
|
||||
-------
|
||||
path : str
|
||||
"""
|
||||
fdir = join(self.postdir, "environment")
|
||||
try_create_directory(fdir)
|
||||
|
||||
fname = f"obs_vp_{MAS}_{str(nsim).zfill(5)}_{grid}.npz"
|
||||
return join(fdir, fname)
|
||||
|
||||
def halo_counts(self, simname, nsim, from_quijote_backup=False):
|
||||
"""
|
||||
Path to the files containing the binned halo counts.
|
||||
|
||||
|
@ -594,6 +628,9 @@ class Paths:
|
|||
Simulation name. Must be `csiborg`, `quijote` or `quijote_full`.
|
||||
nsim : int
|
||||
IC realisation index.
|
||||
from_quijote_backup : bool, optional
|
||||
Whether to return the path to the Quijote halo counts from the
|
||||
backup catalogues.
|
||||
|
||||
Returns
|
||||
-------
|
||||
|
@ -602,6 +639,8 @@ class Paths:
|
|||
fdir = join(self.postdir, "HMF")
|
||||
try_create_directory(fdir)
|
||||
fname = f"halo_counts_{simname}_{str(nsim).zfill(5)}.npz"
|
||||
if from_quijote_backup:
|
||||
fname = fname.replace("halo_counts", "halo_counts_backup")
|
||||
return join(fdir, fname)
|
||||
|
||||
def cross_nearest(self, simname, run, kind, nsim=None, nobs=None):
|
||||
|
|
|
@ -12,126 +12,11 @@
|
|||
# You should have received a copy of the GNU General Public License along
|
||||
# with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||
"""
|
||||
Various coordinate transformations.
|
||||
"""
|
||||
from os.path import isfile
|
||||
|
||||
import numpy
|
||||
from h5py import File
|
||||
|
||||
###############################################################################
|
||||
# Coordinate transforms #
|
||||
###############################################################################
|
||||
|
||||
|
||||
def cartesian_to_radec(X, indeg=True):
|
||||
"""
|
||||
Calculate the radial distance, RA, dec from Cartesian coordinates. Note,
|
||||
RA is in range [0, 360) degrees and dec in range [-90, 90] degrees.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : 2-dimensional array `(nsamples, 3)`
|
||||
Cartesian coordinates.
|
||||
indeg : bool, optional
|
||||
Whether to return RA and DEC in degrees.
|
||||
|
||||
Returns
|
||||
-------
|
||||
out : 2-dimensional array `(nsamples, 3)`
|
||||
Radial distance, RA and dec.
|
||||
"""
|
||||
x, y, z = X[:, 0], X[:, 1], X[:, 2]
|
||||
dist = numpy.linalg.norm(X, axis=1)
|
||||
dec = numpy.arcsin(z / dist)
|
||||
ra = numpy.arctan2(y, x)
|
||||
ra[ra < 0] += 2 * numpy.pi # Wrap RA to [0, 2pi)
|
||||
if indeg:
|
||||
ra = numpy.rad2deg(ra)
|
||||
dec = numpy.rad2deg(dec)
|
||||
return numpy.vstack([dist, ra, dec]).T
|
||||
|
||||
|
||||
def radec_to_cartesian(X, isdeg=True):
|
||||
"""
|
||||
Calculate Cartesian coordinates from radial distance, RA, dec. Note, RA is
|
||||
expected in range [0, 360) degrees and dec in range [-90, 90] degrees.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : 2-dimensional array `(nsamples, 3)`
|
||||
Radial distance, RA and dec.
|
||||
isdeg : bool, optional
|
||||
Whether to return RA and DEC in degrees.
|
||||
|
||||
Returns
|
||||
-------
|
||||
out : 2-dimensional array `(nsamples, 3)`
|
||||
Cartesian coordinates.
|
||||
"""
|
||||
dist, ra, dec = X[:, 0], X[:, 1], X[:, 2]
|
||||
if isdeg:
|
||||
ra = numpy.deg2rad(ra)
|
||||
dec = numpy.deg2rad(dec)
|
||||
x = dist * numpy.cos(dec) * numpy.cos(ra)
|
||||
y = dist * numpy.cos(dec) * numpy.sin(ra)
|
||||
z = dist * numpy.sin(dec)
|
||||
return numpy.vstack([x, y, z]).T
|
||||
|
||||
|
||||
def real2redshift(pos, vel, observer_location, box, periodic_wrap=True,
|
||||
subtract_observer=False, make_copy=True):
|
||||
r"""
|
||||
Convert real-space position to redshift space position.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
pos : 2-dimensional array `(nsamples, 3)`
|
||||
Real-space Cartesian components in :math:`\mathrm{cMpc} / h`.
|
||||
vel : 2-dimensional array `(nsamples, 3)`
|
||||
Cartesian velocity in :math:`\mathrm{km} \mathrm{s}^{-1}`.
|
||||
observer_location: 1-dimensional array `(3,)`
|
||||
Observer location in :math:`\mathrm{cMpc} / h`.
|
||||
box : py:class:`csiborg.read.CSiBORGBox`
|
||||
Box units.
|
||||
periodic_wrap : bool, optional
|
||||
Whether to wrap around the box, particles may be outside the default
|
||||
bounds once RSD is applied.
|
||||
subtract_observer : bool, optional
|
||||
If True, subtract the observer's location from the returned
|
||||
positions.
|
||||
make_copy : bool, optional
|
||||
Whether to make a copy of `pos` before modifying it.
|
||||
|
||||
Returns
|
||||
-------
|
||||
pos : 2-dimensional array `(nsamples, 3)`
|
||||
Redshift-space Cartesian position in :math:`\mathrm{cMpc} / h`.
|
||||
"""
|
||||
if make_copy:
|
||||
pos = numpy.copy(pos)
|
||||
|
||||
# Place the observer at the origin
|
||||
pos -= observer_location
|
||||
# Dot product of position vector and velocity
|
||||
vr_dot = numpy.sum(pos * vel, axis=1)
|
||||
# Compute the norm squared of the displacement
|
||||
norm2 = numpy.sum(pos**2, axis=1)
|
||||
pos *= (1 + box._aexp / box.H0 * vr_dot / norm2).reshape(-1, 1)
|
||||
|
||||
# Place the observer back at the original location
|
||||
if not subtract_observer:
|
||||
pos += observer_location
|
||||
|
||||
if periodic_wrap:
|
||||
boxsize = box.box2mpc(1.)
|
||||
# Wrap around the box.
|
||||
pos = numpy.where(pos > boxsize, pos - boxsize, pos)
|
||||
pos = numpy.where(pos < 0, pos + boxsize, pos)
|
||||
|
||||
return pos
|
||||
|
||||
|
||||
###############################################################################
|
||||
# Array manipulation #
|
||||
|
@ -140,19 +25,7 @@ def real2redshift(pos, vel, observer_location, box, periodic_wrap=True,
|
|||
|
||||
def cols_to_structured(N, cols):
|
||||
"""
|
||||
Allocate a structured array from `cols`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
N : int
|
||||
Structured array size.
|
||||
cols: list of tuples
|
||||
Column names and dtypes. Each tuple must be written as `(name, dtype)`.
|
||||
|
||||
Returns
|
||||
-------
|
||||
out : structured array
|
||||
Initialized structured array.
|
||||
Allocate a structured array from `cols`, a list of (name, dtype) tuples.
|
||||
"""
|
||||
if not (isinstance(cols, list)
|
||||
and all(isinstance(c, tuple) and len(c) == 2 for c in cols)):
|
||||
|
@ -167,19 +40,6 @@ def cols_to_structured(N, cols):
|
|||
def add_columns(arr, X, cols):
|
||||
"""
|
||||
Add new columns `X` to a record array `arr`. Creates a new array.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
arr : structured array
|
||||
Structured array to add columns to.
|
||||
X : (list of) 1-dimensional array(s)
|
||||
Columns to be added.
|
||||
cols : str or list of str
|
||||
Column names to be added.
|
||||
|
||||
Returns
|
||||
-------
|
||||
out : structured array
|
||||
"""
|
||||
cols = [cols] if isinstance(cols, str) else cols
|
||||
|
||||
|
@ -214,17 +74,6 @@ def add_columns(arr, X, cols):
|
|||
def rm_columns(arr, cols):
|
||||
"""
|
||||
Remove columns `cols` from a structured array `arr`. Allocates a new array.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
arr : structured array
|
||||
Structured array to remove columns from.
|
||||
cols : str or list of str
|
||||
Column names to be removed.
|
||||
|
||||
Returns
|
||||
-------
|
||||
out : structured array
|
||||
"""
|
||||
# Ensure cols is a list
|
||||
cols = [cols] if isinstance(cols, str) else cols
|
||||
|
@ -247,16 +96,7 @@ def rm_columns(arr, cols):
|
|||
|
||||
def flip_cols(arr, col1, col2):
|
||||
"""
|
||||
Flip values in columns `col1` and `col2`. `arr` is modified in place.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
arr : structured array
|
||||
Array whose columns are to be flipped.
|
||||
col1 : str
|
||||
First column name.
|
||||
col2 : str
|
||||
Second column name.
|
||||
Flip values in columns `col1` and `col2` of a structured array `arr`.
|
||||
"""
|
||||
if col1 not in arr.dtype.names or col2 not in arr.dtype.names:
|
||||
raise ValueError(f"Both `{col1}` and `{col2}` must exist in `arr`.")
|
||||
|
|
|
@ -16,34 +16,25 @@
|
|||
import numpy
|
||||
from numba import jit
|
||||
|
||||
###############################################################################
|
||||
# Positions #
|
||||
###############################################################################
|
||||
|
||||
|
||||
@jit(nopython=True, fastmath=True, boundscheck=False)
|
||||
def center_of_mass(points, mass, boxsize):
|
||||
def center_of_mass(particle_positions, particles_mass, boxsize):
|
||||
"""
|
||||
Calculate the center of mass of a halo while assuming periodic boundary
|
||||
conditions of a cubical box. Assuming that particle positions are in
|
||||
`[0, boxsize)` range. This is a JIT implementation.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
points : 2-dimensional array of shape (n_particles, 3)
|
||||
Particle position array.
|
||||
mass : 1-dimensional array of shape `(n_particles, )`
|
||||
Particle mass array.
|
||||
boxsize : float
|
||||
Box size in the same units as `parts` coordinates.
|
||||
|
||||
Returns
|
||||
-------
|
||||
cm : 1-dimensional array of shape `(3, )`
|
||||
conditions of a cubical box.
|
||||
"""
|
||||
cm = numpy.zeros(3, dtype=points.dtype)
|
||||
totmass = sum(mass)
|
||||
cm = numpy.zeros(3, dtype=particle_positions.dtype)
|
||||
totmass = sum(particles_mass)
|
||||
|
||||
# Convert positions to unit circle coordinates in the complex plane,
|
||||
# calculate the weighted average and convert it back to box coordinates.
|
||||
for i in range(3):
|
||||
cm_i = sum(mass * numpy.exp(2j * numpy.pi * points[:, i] / boxsize))
|
||||
cm_i = sum(particles_mass * numpy.exp(
|
||||
2j * numpy.pi * particle_positions[:, i] / boxsize))
|
||||
cm_i /= totmass
|
||||
|
||||
cm_i = numpy.arctan2(cm_i.imag, cm_i.real) * boxsize / (2 * numpy.pi)
|
||||
|
@ -55,24 +46,11 @@ def center_of_mass(points, mass, boxsize):
|
|||
return cm
|
||||
|
||||
|
||||
@jit(nopython=True)
|
||||
def periodic_distance(points, reference, boxsize):
|
||||
@jit(nopython=True, fastmath=True, boundscheck=False)
|
||||
def periodic_distance(points, reference_point, boxsize):
|
||||
"""
|
||||
Compute the 3D distance between multiple points and a reference point using
|
||||
periodic boundary conditions. This is an optimized JIT implementation.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
points : 2-dimensional array of shape `(n_points, 3)`
|
||||
Points to calculate the distance from the reference point.
|
||||
reference : 1-dimensional array of shape `(3, )`
|
||||
Reference point.
|
||||
boxsize : float
|
||||
Box size.
|
||||
|
||||
Returns
|
||||
-------
|
||||
dist : 1-dimensional array of shape `(n_points, )`
|
||||
periodic boundary conditions.
|
||||
"""
|
||||
npoints = len(points)
|
||||
half_box = boxsize / 2
|
||||
|
@ -80,7 +58,7 @@ def periodic_distance(points, reference, boxsize):
|
|||
dist = numpy.zeros(npoints, dtype=points.dtype)
|
||||
for i in range(npoints):
|
||||
for j in range(3):
|
||||
dist_1d = abs(points[i, j] - reference[j])
|
||||
dist_1d = abs(points[i, j] - reference_point[j])
|
||||
|
||||
if dist_1d > (half_box):
|
||||
dist_1d = boxsize - dist_1d
|
||||
|
@ -94,23 +72,7 @@ def periodic_distance(points, reference, boxsize):
|
|||
|
||||
@jit(nopython=True, fastmath=True, boundscheck=False)
|
||||
def periodic_distance_two_points(p1, p2, boxsize):
|
||||
"""
|
||||
Compute the 3D distance between two points using periodic boundary
|
||||
conditions. This is an optimized JIT implementation.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
p1 : 1-dimensional array of shape `(3, )`
|
||||
First point.
|
||||
p2 : 1-dimensional array of shape `(3, )`
|
||||
Second point.
|
||||
boxsize : float
|
||||
Box size.
|
||||
|
||||
Returns
|
||||
-------
|
||||
dist : 1-dimensional array of shape `(n_points, )`
|
||||
"""
|
||||
"""Compute the 3D distance between two points in a periodic box."""
|
||||
half_box = boxsize / 2
|
||||
|
||||
dist = 0
|
||||
|
@ -125,47 +87,133 @@ def periodic_distance_two_points(p1, p2, boxsize):
|
|||
return dist**0.5
|
||||
|
||||
|
||||
@jit(nopython=True)
|
||||
def periodic_wrap_grid(pos, boxsize=1):
|
||||
"""Wrap positions in a periodic box."""
|
||||
for n in range(pos.shape[0]):
|
||||
for i in range(3):
|
||||
if pos[n, i] > boxsize:
|
||||
pos[n, i] -= boxsize
|
||||
elif pos[n, i] < 0:
|
||||
pos[n, i] += boxsize
|
||||
|
||||
return pos
|
||||
|
||||
|
||||
@jit(nopython=True, fastmath=True, boundscheck=False)
|
||||
def delta2ncells(delta):
|
||||
def delta2ncells(field):
|
||||
"""
|
||||
Calculate the number of cells in `delta` that are non-zero.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
delta : 3-dimensional array
|
||||
Halo density field.
|
||||
|
||||
Returns
|
||||
-------
|
||||
ncells : int
|
||||
Number of non-zero cells.
|
||||
Calculate the number of cells in `field` that are non-zero.
|
||||
"""
|
||||
tot = 0
|
||||
imax, jmax, kmax = delta.shape
|
||||
imax, jmax, kmax = field.shape
|
||||
for i in range(imax):
|
||||
for j in range(jmax):
|
||||
for k in range(kmax):
|
||||
if delta[i, j, k] > 0:
|
||||
if field[i, j, k] > 0:
|
||||
tot += 1
|
||||
return tot
|
||||
|
||||
|
||||
def cartesian_to_radec(X):
|
||||
"""
|
||||
Calculate the radial distance, RA [0, 360) deg and dec [-90, 90] deg.
|
||||
"""
|
||||
x, y, z = X[:, 0], X[:, 1], X[:, 2]
|
||||
|
||||
dist = numpy.linalg.norm(X, axis=1)
|
||||
dec = numpy.arcsin(z / dist)
|
||||
ra = numpy.arctan2(y, x)
|
||||
ra[ra < 0] += 2 * numpy.pi
|
||||
|
||||
ra *= 180 / numpy.pi
|
||||
dec *= 180 / numpy.pi
|
||||
|
||||
return numpy.vstack([dist, ra, dec]).T
|
||||
|
||||
|
||||
def radec_to_cartesian(X):
|
||||
"""
|
||||
Calculate Cartesian coordinates from radial distance, RA [0, 360) deg and
|
||||
dec [-90, 90] deg.
|
||||
"""
|
||||
dist, ra, dec = X[:, 0], X[:, 1], X[:, 2]
|
||||
|
||||
ra *= numpy.pi / 180
|
||||
dec *= numpy.pi / 180
|
||||
cdec = numpy.cos(dec)
|
||||
|
||||
return numpy.vstack([
|
||||
dist * cdec * numpy.cos(ra),
|
||||
dist * cdec * numpy.sin(ra),
|
||||
dist * numpy.sin(dec)
|
||||
]).T
|
||||
|
||||
|
||||
def real2redshift(pos, vel, observer_location, observer_velocity, box,
|
||||
periodic_wrap=True, make_copy=True):
|
||||
r"""
|
||||
Convert real-space position to redshift space position.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
pos : 2-dimensional array `(nsamples, 3)`
|
||||
Real-space Cartesian components in `Mpc / h`.
|
||||
vel : 2-dimensional array `(nsamples, 3)`
|
||||
Cartesian velocity in `km / s`.
|
||||
observer_location: 1-dimensional array `(3,)`
|
||||
Observer location in `Mpc / h`.
|
||||
observer_velocity: 1-dimensional array `(3,)`
|
||||
Observer velocity in `km / s`.
|
||||
box : py:class:`csiborg.read.CSiBORGBox`
|
||||
Box units.
|
||||
periodic_wrap : bool, optional
|
||||
Whether to wrap around the box, particles may be outside the default
|
||||
bounds once RSD is applied.
|
||||
make_copy : bool, optional
|
||||
Whether to make a copy of `pos` before modifying it.
|
||||
|
||||
Returns
|
||||
-------
|
||||
pos : 2-dimensional array `(nsamples, 3)`
|
||||
Redshift-space Cartesian position in `Mpc / h`.
|
||||
"""
|
||||
if make_copy:
|
||||
pos = numpy.copy(pos)
|
||||
vel = numpy.copy(vel)
|
||||
|
||||
H0_inv = 1. / 100
|
||||
|
||||
# Place the observer at the origin
|
||||
pos -= observer_location
|
||||
vel -= observer_velocity
|
||||
|
||||
vr_dot = numpy.einsum('ij,ij->i', pos, vel)
|
||||
norm2 = numpy.einsum('ij,ij->i', pos, pos)
|
||||
|
||||
pos *= (1 + H0_inv * vr_dot / norm2).reshape(-1, 1)
|
||||
|
||||
# Place the observer back
|
||||
pos += observer_location
|
||||
if not make_copy:
|
||||
vel += observer_velocity
|
||||
|
||||
if periodic_wrap:
|
||||
boxsize = box.box2mpc(1.)
|
||||
pos = periodic_wrap_grid(pos, boxsize)
|
||||
|
||||
return pos
|
||||
|
||||
|
||||
###############################################################################
|
||||
# Statistics #
|
||||
###############################################################################
|
||||
|
||||
|
||||
@jit(nopython=True, fastmath=True, boundscheck=False)
|
||||
def number_counts(x, bin_edges):
|
||||
"""
|
||||
Calculate counts of samples in bins.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : 1-dimensional array
|
||||
Samples' values.
|
||||
bin_edges : 1-dimensional array
|
||||
Bin edges.
|
||||
|
||||
Returns
|
||||
-------
|
||||
counts : 1-dimensional array
|
||||
Bin counts.
|
||||
"""
|
||||
out = numpy.full(bin_edges.size - 1, numpy.nan, dtype=numpy.float32)
|
||||
for i in range(bin_edges.size - 1):
|
||||
|
|
108
scripts/field_obs_vp.py
Normal file
108
scripts/field_obs_vp.py
Normal file
|
@ -0,0 +1,108 @@
|
|||
# Copyright (C) 2022 Richard Stiskalek
|
||||
# This program is free software; you can redistribute it and/or modify it
|
||||
# under the terms of the GNU General Public License as published by the
|
||||
# Free Software Foundation; either version 3 of the License, or (at your
|
||||
# option) any later version.
|
||||
#
|
||||
# This program is distributed in the hope that it will be useful, but
|
||||
# WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
|
||||
# Public License for more details.
|
||||
#
|
||||
# You should have received a copy of the GNU General Public License along
|
||||
# with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||
"""
|
||||
Script to calculate the peculiar velocity of an observer in the centre of the
|
||||
CSiBORG box.
|
||||
"""
|
||||
from argparse import ArgumentParser
|
||||
from distutils.util import strtobool
|
||||
|
||||
import numpy
|
||||
from mpi4py import MPI
|
||||
|
||||
from taskmaster import work_delegation
|
||||
from tqdm import tqdm
|
||||
from utils import get_nsims
|
||||
|
||||
try:
|
||||
import csiborgtools
|
||||
except ModuleNotFoundError:
|
||||
import sys
|
||||
sys.path.append("../")
|
||||
import csiborgtools
|
||||
|
||||
|
||||
def observer_peculiar_velocity(nsim, parser_args):
|
||||
"""
|
||||
Calculate the peculiar velocity of an observer in the centre of the box
|
||||
for several smoothing scales.
|
||||
"""
|
||||
pos = numpy.array([0.5, 0.5, 0.5]).reshape(-1, 3)
|
||||
boxsize = 677.7
|
||||
smooth_scales = [0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0]
|
||||
|
||||
observer_vp = numpy.full((len(smooth_scales), 3), numpy.nan,
|
||||
dtype=numpy.float32)
|
||||
|
||||
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
|
||||
field_path = paths.field("velocity", parser_args.MAS, parser_args.grid,
|
||||
nsim, in_rsp=False)
|
||||
field0 = numpy.load(field_path)
|
||||
|
||||
for j, smooth_scale in enumerate(tqdm(smooth_scales,
|
||||
desc="Smoothing the fields",
|
||||
disable=not parser_args.verbose)):
|
||||
if smooth_scale > 0:
|
||||
field = [None, None, None]
|
||||
for k in range(3):
|
||||
field[k] = csiborgtools.field.smoothen_field(
|
||||
field0[k], smooth_scale, boxsize)
|
||||
else:
|
||||
field = field0
|
||||
|
||||
v = csiborgtools.field.evaluate_cartesian(
|
||||
field[0], field[1], field[2], pos=pos)
|
||||
observer_vp[j, 0] = v[0][0]
|
||||
observer_vp[j, 1] = v[1][0]
|
||||
observer_vp[j, 2] = v[2][0]
|
||||
|
||||
fout = paths.observer_peculiar_velocity(parser_args.MAS, parser_args.grid,
|
||||
nsim)
|
||||
if parser_args.verbose:
|
||||
print(f"Saving to ... `{fout}`")
|
||||
numpy.savez(fout, smooth_scales=smooth_scales, observer_vp=observer_vp)
|
||||
return observer_vp
|
||||
|
||||
|
||||
###############################################################################
|
||||
# Command line interface #
|
||||
###############################################################################
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = ArgumentParser()
|
||||
parser.add_argument("--nsims", type=int, nargs="+", default=None,
|
||||
help="IC realisations. `-1` for all simulations.")
|
||||
parser.add_argument("--kind", type=str,
|
||||
choices=["density", "rspdensity", "velocity", "radvel",
|
||||
"potential", "environment"],
|
||||
help="What derived field to calculate?")
|
||||
parser.add_argument("--MAS", type=str,
|
||||
choices=["NGP", "CIC", "TSC", "PCS"])
|
||||
parser.add_argument("--grid", type=int, help="Grid resolution.")
|
||||
parser.add_argument("--verbose", type=lambda x: bool(strtobool(x)),
|
||||
help="Verbosity flag for reading in particles.")
|
||||
parser.add_argument("--simname", type=str, default="csiborg",
|
||||
help="Verbosity flag for reading in particles.")
|
||||
parser_args = parser.parse_args()
|
||||
|
||||
comm = MPI.COMM_WORLD
|
||||
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
|
||||
nsims = get_nsims(parser_args, paths)
|
||||
|
||||
def main(nsim):
|
||||
return observer_peculiar_velocity(nsim, parser_args)
|
||||
|
||||
work_delegation(main, nsims, comm, master_verbose=True)
|
|
@ -43,44 +43,29 @@ from utils import get_nsims
|
|||
def density_field(nsim, parser_args, to_save=True):
|
||||
"""
|
||||
Calculate the density field in the CSiBORG simulation.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
nsim : int
|
||||
Simulation index.
|
||||
parser_args : argparse.Namespace
|
||||
Parsed arguments.
|
||||
to_save : bool, optional
|
||||
Whether to save the output to disk.
|
||||
|
||||
Returns
|
||||
-------
|
||||
field : 3-dimensional array
|
||||
"""
|
||||
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
|
||||
nsnap = max(paths.get_snapshots(nsim, "csiborg"))
|
||||
box = csiborgtools.read.CSiBORGBox(nsnap, nsim, paths)
|
||||
parts = csiborgtools.read.read_h5(paths.particles(nsim, "csiborg"))
|
||||
parts = parts["particles"]
|
||||
gen = csiborgtools.field.DensityField(box, parser_args.MAS)
|
||||
|
||||
if parser_args.kind == "density":
|
||||
field = gen(parts, parser_args.grid, in_rsp=False,
|
||||
verbose=parser_args.verbose)
|
||||
if parser_args.in_rsp:
|
||||
field = csiborgtools.field.field2rsp(*field, parts=parts, box=box,
|
||||
verbose=parser_args.verbose)
|
||||
if not parser_args.in_rsp:
|
||||
parts = csiborgtools.read.read_h5(paths.particles(nsim, "csiborg"))
|
||||
parts = parts["particles"]
|
||||
|
||||
gen = csiborgtools.field.DensityField(box, parser_args.MAS)
|
||||
field = gen(parts, parser_args.grid, verbose=parser_args.verbose)
|
||||
else:
|
||||
field = gen(parts, parser_args.grid, in_rsp=parser_args.in_rsp,
|
||||
verbose=parser_args.verbose)
|
||||
field = numpy.load(paths.field(
|
||||
"density", parser_args.MAS, parser_args.grid, nsim, False))
|
||||
radvel_field = numpy.load(paths.field(
|
||||
"radvel", parser_args.MAS, parser_args.grid, nsim, False))
|
||||
|
||||
if parser_args.smooth_scale > 0:
|
||||
field = csiborgtools.field.smoothen_field(
|
||||
field, parser_args.smooth_scale, box.boxsize * box.h, threads=1)
|
||||
field = csiborgtools.field.field2rsp(field, radvel_field, box,
|
||||
parser_args.MAS)
|
||||
|
||||
if to_save:
|
||||
fout = paths.field(parser_args.kind, parser_args.MAS, parser_args.grid,
|
||||
nsim, parser_args.in_rsp, parser_args.smooth_scale)
|
||||
nsim, parser_args.in_rsp)
|
||||
print(f"{datetime.now()}: saving output to `{fout}`.")
|
||||
numpy.save(fout, field)
|
||||
return field
|
||||
|
@ -93,35 +78,20 @@ def density_field(nsim, parser_args, to_save=True):
|
|||
|
||||
def velocity_field(nsim, parser_args, to_save=True):
|
||||
"""
|
||||
Calculate the velocity field in the CSiBORG simulation.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
nsim : int
|
||||
Simulation index.
|
||||
parser_args : argparse.Namespace
|
||||
Parsed arguments.
|
||||
to_save : bool, optional
|
||||
Whether to save the output to disk.
|
||||
|
||||
Returns
|
||||
-------
|
||||
velfield : 4-dimensional array
|
||||
Calculate the velocity field in a CSiBORG simulation.
|
||||
"""
|
||||
if parser_args.in_rsp:
|
||||
raise NotImplementedError("Velocity field in RSP is not implemented.")
|
||||
if parser_args.smooth_scale > 0:
|
||||
raise NotImplementedError(
|
||||
"Smoothed velocity field is not implemented.")
|
||||
|
||||
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
|
||||
mpart = 1.1641532e-10 # Particle mass in CSiBORG simulations.
|
||||
nsnap = max(paths.get_snapshots(nsim, "csiborg"))
|
||||
box = csiborgtools.read.CSiBORGBox(nsnap, nsim, paths)
|
||||
|
||||
parts = csiborgtools.read.read_h5(paths.particles(nsim, "csiborg"))
|
||||
parts = parts["particles"]
|
||||
|
||||
gen = csiborgtools.field.VelocityField(box, parser_args.MAS)
|
||||
field = gen(parts, parser_args.grid, mpart, verbose=parser_args.verbose)
|
||||
field = gen(parts, parser_args.grid, verbose=parser_args.verbose)
|
||||
|
||||
if to_save:
|
||||
fout = paths.field("velocity", parser_args.MAS, parser_args.grid,
|
||||
|
@ -131,57 +101,6 @@ def velocity_field(nsim, parser_args, to_save=True):
|
|||
return field
|
||||
|
||||
|
||||
###############################################################################
|
||||
# Potential field #
|
||||
###############################################################################
|
||||
|
||||
|
||||
def potential_field(nsim, parser_args, to_save=True):
|
||||
"""
|
||||
Calculate the potential field in the CSiBORG simulation.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
nsim : int
|
||||
Simulation index.
|
||||
parser_args : argparse.Namespace
|
||||
Parsed arguments.
|
||||
to_save : bool, optional
|
||||
Whether to save the output to disk.
|
||||
|
||||
Returns
|
||||
-------
|
||||
potential : 3-dimensional array
|
||||
"""
|
||||
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
|
||||
nsnap = max(paths.get_snapshots(nsim, "csiborg"))
|
||||
box = csiborgtools.read.CSiBORGBox(nsnap, nsim, paths)
|
||||
|
||||
# Load the real space overdensity field
|
||||
density_gen = csiborgtools.field.DensityField(box, parser_args.MAS)
|
||||
rho = numpy.load(paths.field("density", parser_args.MAS, parser_args.grid,
|
||||
nsim, in_rsp=False))
|
||||
if parser_args.smooth_scale > 0:
|
||||
rho = csiborgtools.field.smoothen_field(rho, parser_args.smooth_scale,
|
||||
box.boxsize * box.h, threads=1)
|
||||
rho = density_gen.overdensity_field(rho)
|
||||
# Calculate the real space potentiel field
|
||||
gen = csiborgtools.field.PotentialField(box, parser_args.MAS)
|
||||
field = gen(rho)
|
||||
|
||||
if parser_args.in_rsp:
|
||||
parts = csiborgtools.read.read_h5(paths.particles(nsim, "csiborg"))
|
||||
parts = parts["particles"]
|
||||
field = csiborgtools.field.field2rsp(*field, parts=parts, box=box,
|
||||
verbose=parser_args.verbose)
|
||||
if to_save:
|
||||
fout = paths.field(parser_args.kind, parser_args.MAS, parser_args.grid,
|
||||
nsim, parser_args.in_rsp, parser_args.smooth_scale)
|
||||
print(f"{datetime.now()}: saving output to `{fout}`.")
|
||||
numpy.save(fout, field)
|
||||
return field
|
||||
|
||||
|
||||
###############################################################################
|
||||
# Radial velocity field #
|
||||
###############################################################################
|
||||
|
@ -190,33 +109,21 @@ def potential_field(nsim, parser_args, to_save=True):
|
|||
def radvel_field(nsim, parser_args, to_save=True):
|
||||
"""
|
||||
Calculate the radial velocity field in the CSiBORG simulation.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
nsim : int
|
||||
Simulation index.
|
||||
parser_args : argparse.Namespace
|
||||
Parsed arguments.
|
||||
to_save : bool, optional
|
||||
Whether to save the output to disk.
|
||||
|
||||
Returns
|
||||
-------
|
||||
radvel : 3-dimensional array
|
||||
"""
|
||||
if parser_args.in_rsp:
|
||||
raise NotImplementedError("Radial vel. field in RSP not implemented.")
|
||||
if parser_args.smooth_scale > 0:
|
||||
raise NotImplementedError(
|
||||
"Smoothed radial vel. field not implemented.")
|
||||
|
||||
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
|
||||
nsnap = max(paths.get_snapshots(nsim, "csiborg"))
|
||||
box = csiborgtools.read.CSiBORGBox(nsnap, nsim, paths)
|
||||
|
||||
vel = numpy.load(paths.field("velocity", parser_args.MAS, parser_args.grid,
|
||||
nsim, parser_args.in_rsp))
|
||||
observer_velocity = csiborgtools.field.observer_vobs(vel)
|
||||
|
||||
gen = csiborgtools.field.VelocityField(box, parser_args.MAS)
|
||||
field = gen.radial_velocity(vel)
|
||||
field = gen.radial_velocity(vel, observer_velocity)
|
||||
|
||||
if to_save:
|
||||
fout = paths.field("radvel", parser_args.MAS, parser_args.grid,
|
||||
nsim, parser_args.in_rsp)
|
||||
|
@ -224,6 +131,43 @@ def radvel_field(nsim, parser_args, to_save=True):
|
|||
numpy.save(fout, field)
|
||||
return field
|
||||
|
||||
###############################################################################
|
||||
# Potential field #
|
||||
###############################################################################
|
||||
|
||||
|
||||
def potential_field(nsim, parser_args, to_save=True):
|
||||
"""
|
||||
Calculate the potential field in the CSiBORG simulation.
|
||||
"""
|
||||
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
|
||||
nsnap = max(paths.get_snapshots(nsim, "csiborg"))
|
||||
box = csiborgtools.read.CSiBORGBox(nsnap, nsim, paths)
|
||||
|
||||
if not parser_args.in_rsp:
|
||||
rho = numpy.load(paths.field(
|
||||
"density", parser_args.MAS, parser_args.grid, nsim, in_rsp=False))
|
||||
density_gen = csiborgtools.field.DensityField(box, parser_args.MAS)
|
||||
rho = density_gen.overdensity_field(rho)
|
||||
|
||||
gen = csiborgtools.field.PotentialField(box, parser_args.MAS)
|
||||
field = gen(rho)
|
||||
else:
|
||||
field = numpy.load(paths.field(
|
||||
"potential", parser_args.MAS, parser_args.grid, nsim, False))
|
||||
radvel_field = numpy.load(paths.field(
|
||||
"radvel", parser_args.MAS, parser_args.grid, nsim, False))
|
||||
|
||||
field = csiborgtools.field.field2rsp(field, radvel_field, box,
|
||||
parser_args.MAS)
|
||||
|
||||
if to_save:
|
||||
fout = paths.field(parser_args.kind, parser_args.MAS, parser_args.grid,
|
||||
nsim, parser_args.in_rsp)
|
||||
print(f"{datetime.now()}: saving output to `{fout}`.")
|
||||
numpy.save(fout, field)
|
||||
return field
|
||||
|
||||
|
||||
###############################################################################
|
||||
# Environment classification #
|
||||
|
@ -233,77 +177,47 @@ def radvel_field(nsim, parser_args, to_save=True):
|
|||
def environment_field(nsim, parser_args, to_save=True):
|
||||
"""
|
||||
Calculate the environmental classification in the CSiBORG simulation.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
nsim : int
|
||||
Simulation index.
|
||||
parser_args : argparse.Namespace
|
||||
Parsed arguments.
|
||||
to_save : bool, optional
|
||||
Whether to save the output to disk.
|
||||
|
||||
Returns
|
||||
-------
|
||||
env : 3-dimensional array
|
||||
"""
|
||||
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
|
||||
nsnap = max(paths.get_snapshots(nsim, "csiborg"))
|
||||
box = csiborgtools.read.CSiBORGBox(nsnap, nsim, paths)
|
||||
density_gen = csiborgtools.field.DensityField(box, parser_args.MAS)
|
||||
gen = csiborgtools.field.TidalTensorField(box, parser_args.MAS)
|
||||
|
||||
# Load the real space overdensity field
|
||||
if parser_args.verbose:
|
||||
print(f"{datetime.now()}: loading density field.")
|
||||
rho = numpy.load(paths.field("density", parser_args.MAS, parser_args.grid,
|
||||
nsim, in_rsp=False))
|
||||
if parser_args.smooth_scale > 0:
|
||||
rho = csiborgtools.field.smoothen_field(rho, parser_args.smooth_scale,
|
||||
box.boxsize * box.h, threads=1)
|
||||
rho = numpy.load(paths.field(
|
||||
"density", parser_args.MAS, parser_args.grid, nsim, in_rsp=False))
|
||||
density_gen = csiborgtools.field.DensityField(box, parser_args.MAS)
|
||||
rho = density_gen.overdensity_field(rho)
|
||||
# Calculate the real space tidal tensor field, delete overdensity.
|
||||
if parser_args.verbose:
|
||||
print(f"{datetime.now()}: calculating tidal tensor field.")
|
||||
tensor_field = gen(rho)
|
||||
|
||||
gen = csiborgtools.field.TidalTensorField(box, parser_args.MAS)
|
||||
field = gen(rho)
|
||||
|
||||
del rho
|
||||
collect()
|
||||
|
||||
# Optionally drag the field to RSP.
|
||||
if parser_args.in_rsp:
|
||||
parts = csiborgtools.read.read_h5(paths.particles(nsim, "csiborg"))
|
||||
parts = parts["particles"]
|
||||
fields = (tensor_field.T00, tensor_field.T11, tensor_field.T22,
|
||||
tensor_field.T01, tensor_field.T02, tensor_field.T12)
|
||||
radvel_field = numpy.load(paths.field(
|
||||
"radvel", parser_args.MAS, parser_args.grid, nsim, False))
|
||||
args = (radvel_field, box, parser_args.MAS)
|
||||
|
||||
T00, T11, T22, T01, T02, T12 = csiborgtools.field.field2rsp(
|
||||
*fields, parts=parts, box=box, verbose=parser_args.verbose)
|
||||
tensor_field.T00[...] = T00
|
||||
tensor_field.T11[...] = T11
|
||||
tensor_field.T22[...] = T22
|
||||
tensor_field.T01[...] = T01
|
||||
tensor_field.T02[...] = T02
|
||||
tensor_field.T12[...] = T12
|
||||
del T00, T11, T22, T01, T02, T12
|
||||
field.T00 = csiborgtools.field.field2rsp(field.T00, *args)
|
||||
field.T11 = csiborgtools.field.field2rsp(field.T11, *args)
|
||||
field.T22 = csiborgtools.field.field2rsp(field.T22, *args)
|
||||
field.T01 = csiborgtools.field.field2rsp(field.T01, *args)
|
||||
field.T02 = csiborgtools.field.field2rsp(field.T02, *args)
|
||||
field.T12 = csiborgtools.field.field2rsp(field.T12, *args)
|
||||
|
||||
del radvel_field
|
||||
collect()
|
||||
|
||||
# Calculate the eigenvalues of the tidal tensor field, delete tensor field.
|
||||
if parser_args.verbose:
|
||||
print(f"{datetime.now()}: calculating eigenvalues.")
|
||||
eigvals = gen.tensor_field_eigvals(tensor_field)
|
||||
del tensor_field
|
||||
eigvals = gen.tensor_field_eigvals(field)
|
||||
|
||||
del field
|
||||
collect()
|
||||
|
||||
# Classify the environment based on the eigenvalues.
|
||||
if parser_args.verbose:
|
||||
print(f"{datetime.now()}: classifying environment.")
|
||||
env = gen.eigvals_to_environment(eigvals)
|
||||
del eigvals
|
||||
collect()
|
||||
|
||||
if to_save:
|
||||
fout = paths.field("environment", parser_args.MAS, parser_args.grid,
|
||||
nsim, parser_args.in_rsp, parser_args.smooth_scale)
|
||||
nsim, parser_args.in_rsp)
|
||||
print(f"{datetime.now()}: saving output to `{fout}`.")
|
||||
numpy.save(fout, env)
|
||||
return env
|
||||
|
@ -327,8 +241,6 @@ if __name__ == "__main__":
|
|||
parser.add_argument("--grid", type=int, help="Grid resolution.")
|
||||
parser.add_argument("--in_rsp", type=lambda x: bool(strtobool(x)),
|
||||
help="Calculate in RSP?")
|
||||
parser.add_argument("--smooth_scale", type=float, default=0,
|
||||
help="Smoothing scale in Mpc/h.")
|
||||
parser.add_argument("--verbose", type=lambda x: bool(strtobool(x)),
|
||||
help="Verbosity flag for reading in particles.")
|
||||
parser.add_argument("--simname", type=str, default="csiborg",
|
||||
|
|
|
@ -37,21 +37,6 @@ except ModuleNotFoundError:
|
|||
def get_counts(nsim, bins, paths, parser_args):
|
||||
"""
|
||||
Calculate and save the number of haloes in each mass bin.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
nsim : int
|
||||
Simulation index.
|
||||
bins : 1-dimensional array
|
||||
Array of bin edges (in log10 mass).
|
||||
paths : csiborgtools.read.Paths
|
||||
Paths object.
|
||||
parser_args : argparse.Namespace
|
||||
Parsed command-line arguments.
|
||||
|
||||
Returns
|
||||
-------
|
||||
None
|
||||
"""
|
||||
simname = parser_args.simname
|
||||
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
|
||||
|
@ -75,13 +60,14 @@ def get_counts(nsim, bins, paths, parser_args):
|
|||
counts[nobs, :] = csiborgtools.number_counts(logmass, bins)
|
||||
elif simname == "quijote_full":
|
||||
cat = csiborgtools.read.QuijoteHaloCatalogue(
|
||||
nsim, paths, nsnap=4, load_fitted=False, load_initial=False)
|
||||
nsim, paths, nsnap=4, load_fitted=False, load_initial=False,
|
||||
load_backup=parser_args.from_quijote_backup)
|
||||
logmass = numpy.log10(cat["group_mass"])
|
||||
counts = csiborgtools.number_counts(logmass, bins)
|
||||
else:
|
||||
raise ValueError(f"Unknown simulation name `{simname}`.")
|
||||
|
||||
fout = paths.halo_counts(simname, nsim)
|
||||
fout = paths.halo_counts(simname, nsim, parser_args.from_quijote_backup)
|
||||
if parser_args.verbose:
|
||||
print(f"{datetime.now()}: saving halo counts to `{fout}`.")
|
||||
numpy.savez(fout, counts=counts, bins=bins, rmax=parser_args.Rmax)
|
||||
|
@ -97,6 +83,9 @@ if __name__ == "__main__":
|
|||
parser.add_argument(
|
||||
"--Rmax", type=float, default=155,
|
||||
help="High-res region radius in Mpc / h. Ignored for `quijote_full`.")
|
||||
parser.add_argument("--from_quijote_backup",
|
||||
type=lambda x: bool(strtobool(x)), default=False,
|
||||
help="Flag to indicate Quijote backup data.")
|
||||
parser.add_argument("--lims", type=float, nargs="+", default=[11., 16.],
|
||||
help="Mass limits in Msun / h.")
|
||||
parser.add_argument("--bw", type=float, default=0.2,
|
||||
|
|
|
@ -41,15 +41,6 @@ def _main(nsim, simname, verbose):
|
|||
"""
|
||||
Calculate the Lagrangian halo centre of mass and Lagrangian patch size in
|
||||
the initial snapshot.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
nsim : int
|
||||
IC realisation index.
|
||||
simname : str
|
||||
Simulation name.
|
||||
verbose : bool
|
||||
Verbosity flag.
|
||||
"""
|
||||
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
|
||||
cols = [("index", numpy.int32),
|
||||
|
|
|
@ -29,16 +29,6 @@ def get_combs(simname):
|
|||
"""
|
||||
Get the list of all pairs of IC indices and permute them with a fixed
|
||||
seed.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
simname : str
|
||||
Simulation name.
|
||||
|
||||
Returns
|
||||
-------
|
||||
combs : list
|
||||
List of pairs of simulations.
|
||||
"""
|
||||
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
|
||||
combs = list(combinations(paths.get_ics(simname), 2))
|
||||
|
@ -50,27 +40,6 @@ def get_combs(simname):
|
|||
def main(comb, kind, simname, min_logmass, sigma, mult, verbose):
|
||||
"""
|
||||
Match a pair of simulations.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
comb : tuple
|
||||
Pair of simulation IC indices.
|
||||
kind : str
|
||||
Kind of matching.
|
||||
simname : str
|
||||
Simulation name.
|
||||
min_logmass : float
|
||||
Minimum log halo mass.
|
||||
sigma : float
|
||||
Smoothing scale in number of grid cells.
|
||||
mult : float
|
||||
Multiplicative factor for search radius.
|
||||
verbose : bool
|
||||
Verbosity flag.
|
||||
|
||||
Returns
|
||||
-------
|
||||
None
|
||||
"""
|
||||
nsim0, nsimx = comb
|
||||
if kind == "overlap":
|
||||
|
|
|
@ -52,7 +52,7 @@ def get_nsims(args, paths):
|
|||
Simulation indices.
|
||||
"""
|
||||
if args.nsims is None or args.nsims[0] == -1:
|
||||
nsims = paths.get_ics(args.simname)
|
||||
nsims = paths.get_ics(args.simname, args.from_quijote_backup)
|
||||
else:
|
||||
nsims = args.nsims
|
||||
return list(nsims)
|
||||
|
@ -93,9 +93,14 @@ def read_single_catalogue(args, config, nsim, run, rmax, paths, nobs=None):
|
|||
nsim, paths, load_fitted=True, load_inital=True,
|
||||
with_lagpatch=False)
|
||||
else:
|
||||
if args.from_quijote_backup:
|
||||
load_fitted = False
|
||||
load_initial = False
|
||||
|
||||
cat = csiborgtools.read.QuijoteHaloCatalogue(
|
||||
nsim, paths, nsnap=4, load_fitted=True, load_initial=True,
|
||||
with_lagpatch=False)
|
||||
nsim, paths, nsnap=4, load_fitted=load_fitted,
|
||||
load_initial=load_initial, with_lagpatch=False,
|
||||
load_backup=args.from_quijote_backup)
|
||||
if nobs is not None:
|
||||
# We may optionally already here pick a fiducial observer.
|
||||
cat = cat.pick_fiducial_observer(nobs, args.Rmax)
|
||||
|
|
|
@ -305,7 +305,7 @@ def plot_hmf_quijote_full(pdf=False):
|
|||
plt.close()
|
||||
|
||||
|
||||
def load_field(kind, nsim, grid, MAS, in_rsp=False, smooth_scale=None):
|
||||
def load_field(kind, nsim, grid, MAS, in_rsp=False):
|
||||
r"""
|
||||
Load a single field.
|
||||
|
||||
|
@ -321,16 +321,13 @@ def load_field(kind, nsim, grid, MAS, in_rsp=False, smooth_scale=None):
|
|||
Mass assignment scheme.
|
||||
in_rsp : bool, optional
|
||||
Whether to load the field in redshift space.
|
||||
smooth_scale : float, optional
|
||||
Smoothing scale in :math:`\mathrm{Mpc} / h`.
|
||||
|
||||
Returns
|
||||
-------
|
||||
field : n-dimensional array
|
||||
"""
|
||||
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
|
||||
return numpy.load(paths.field(kind, MAS, grid, nsim, in_rsp=in_rsp,
|
||||
smooth_scale=smooth_scale))
|
||||
return numpy.load(paths.field(kind, MAS, grid, nsim, in_rsp=in_rsp))
|
||||
|
||||
|
||||
###############################################################################
|
||||
|
@ -377,16 +374,16 @@ def plot_projected_field(kind, nsim, grid, in_rsp, smooth_scale, MAS="PCS",
|
|||
box = csiborgtools.read.CSiBORGBox(nsnap, nsim, paths)
|
||||
|
||||
if kind == "overdensity":
|
||||
field = load_field("density", nsim, grid, MAS=MAS, in_rsp=in_rsp,
|
||||
smooth_scale=smooth_scale)
|
||||
field = load_field("density", nsim, grid, MAS=MAS, in_rsp=in_rsp)
|
||||
density_gen = csiborgtools.field.DensityField(box, MAS)
|
||||
field = density_gen.overdensity_field(field) + 1
|
||||
field = density_gen.overdensity_field(field) + 2
|
||||
|
||||
field = numpy.log10(field)
|
||||
elif kind == "borg_density":
|
||||
field = File(paths.borg_mcmc(nsim), 'r')
|
||||
field = field["scalars"]["BORG_final_density"][...]
|
||||
else:
|
||||
field = load_field(kind, nsim, grid, MAS=MAS, in_rsp=in_rsp,
|
||||
smooth_scale=smooth_scale)
|
||||
field = load_field(kind, nsim, grid, MAS=MAS, in_rsp=in_rsp)
|
||||
|
||||
if kind == "velocity":
|
||||
field = field[vel_component, ...]
|
||||
|
@ -423,6 +420,9 @@ def plot_projected_field(kind, nsim, grid, in_rsp, smooth_scale, MAS="PCS",
|
|||
else:
|
||||
ax[i].imshow(img, vmin=vmin, vmax=vmax, cmap=cmap)
|
||||
|
||||
k = img.shape[0] // 2
|
||||
ax[i].scatter(k, k, marker="x", s=5, zorder=2, c="red")
|
||||
|
||||
frad = 155.5 / 677.7
|
||||
R = 155.5 / 677.7 * grid
|
||||
if slice_find is None:
|
||||
|
@ -487,6 +487,7 @@ def plot_projected_field(kind, nsim, grid, in_rsp, smooth_scale, MAS="PCS",
|
|||
else:
|
||||
fig.colorbar(im, cax=cbar_ax, label=clabel)
|
||||
|
||||
|
||||
fig.tight_layout(h_pad=0, w_pad=0)
|
||||
for ext in ["png"] if pdf is False else ["png", "pdf"]:
|
||||
fout = join(
|
||||
|
@ -587,7 +588,7 @@ def plot_sky_distribution(field, nsim, grid, nside, smooth_scale=None,
|
|||
nsnap = max(paths.get_snapshots(nsim, "csiborg"))
|
||||
box = csiborgtools.read.CSiBORGBox(nsnap, nsim, paths)
|
||||
|
||||
if field== "overdensity":
|
||||
if field == "overdensity":
|
||||
field = load_field("density", nsim, grid, MAS=MAS, in_rsp=False,
|
||||
smooth_scale=smooth_scale)
|
||||
density_gen = csiborgtools.field.DensityField(box, MAS)
|
||||
|
@ -652,7 +653,7 @@ if __name__ == "__main__":
|
|||
if False:
|
||||
plot_mass_vs_ncells(7444, pdf=False)
|
||||
|
||||
if True:
|
||||
if False:
|
||||
plot_hmf(pdf=False)
|
||||
|
||||
if False:
|
||||
|
@ -665,16 +666,17 @@ if __name__ == "__main__":
|
|||
plot_groups=False, dmin=45, dmax=60,
|
||||
plot_halos=5e13, volume_weight=True)
|
||||
|
||||
if False:
|
||||
kind = "overdensity"
|
||||
grid = 256
|
||||
if True:
|
||||
kind = "potential"
|
||||
grid = 512
|
||||
smooth_scale = 0
|
||||
# plot_projected_field("overdensity", 7444, grid, in_rsp=True,
|
||||
# highres_only=False)
|
||||
plot_projected_field(kind, 7444, grid, in_rsp=False,
|
||||
smooth_scale=smooth_scale, slice_find=0.5,
|
||||
MAS="PCS",
|
||||
highres_only=True)
|
||||
# for in_rsp in [True, False]:
|
||||
for in_rsp in [True, False]:
|
||||
plot_projected_field(kind, 7444, grid, in_rsp=in_rsp,
|
||||
smooth_scale=smooth_scale, slice_find=0.5,
|
||||
MAS="PCS", highres_only=True)
|
||||
|
||||
if False:
|
||||
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
|
||||
|
|
|
@ -191,7 +191,7 @@ def get_mtot_vs_maxpairoverlap(nsim0, simname, mass_kind, min_logmass,
|
|||
def get_max(y_):
|
||||
if len(y_) == 0:
|
||||
return 0
|
||||
return numpy.max(y_)
|
||||
return numpy.nanmax(y_)
|
||||
|
||||
reader = csiborgtools.read.NPairsOverlap(cat0, catxs, paths, min_logmass)
|
||||
|
||||
|
@ -218,7 +218,6 @@ def mtot_vs_maxpairoverlap(nsim0, simname, mass_kind, min_logmass, smoothed,
|
|||
x, y, xbins = get_mtot_vs_maxpairoverlap(nsim0, simname, mass_kind,
|
||||
min_logmass, smoothed, nbins)
|
||||
|
||||
plt.close("all")
|
||||
with plt.style.context(plt_utils.mplstyle):
|
||||
plt.figure()
|
||||
plt.hexbin(x, y, mincnt=1, gridsize=50, bins="log")
|
||||
|
@ -252,6 +251,87 @@ def mtot_vs_maxpairoverlap(nsim0, simname, mass_kind, min_logmass, smoothed,
|
|||
plt.close()
|
||||
|
||||
|
||||
# --------------------------------------------------------------------------- #
|
||||
###############################################################################
|
||||
# Total DM halo mass vs maximum pair overlap consistency #
|
||||
###############################################################################
|
||||
# --------------------------------------------------------------------------- #
|
||||
|
||||
@cache_to_disk(120)
|
||||
def get_mtot_vs_maxpairoverlap_consistency(nsim0, simname, mass_kind,
|
||||
min_logmass, smoothed):
|
||||
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
|
||||
nsimxs = csiborgtools.read.get_cross_sims(simname, nsim0, paths,
|
||||
min_logmass, smoothed=smoothed)
|
||||
cat0 = open_cat(nsim0, simname)
|
||||
catxs = open_cats(nsimxs, simname)
|
||||
|
||||
reader = csiborgtools.read.NPairsOverlap(cat0, catxs, paths, min_logmass)
|
||||
|
||||
x = numpy.log10(cat0[mass_kind])
|
||||
mask = x > min_logmass
|
||||
x = x[mask]
|
||||
nhalos = len(x)
|
||||
|
||||
y = numpy.full((len(catxs), nhalos), numpy.nan)
|
||||
for i in trange(len(catxs), desc="Stacking catalogues"):
|
||||
overlaps = reader[i].overlap(smoothed)
|
||||
for j in range(nhalos):
|
||||
# if len(overlaps[j]) > 0:
|
||||
y[i, j] = numpy.sum(overlaps[j])
|
||||
|
||||
return x, y
|
||||
|
||||
|
||||
def mtot_vs_maxpairoverlap_consistency(nsim0, simname, mass_kind, min_logmass,
|
||||
smoothed, ext="png"):
|
||||
left_edges = numpy.arange(min_logmass, 15, 0.1)
|
||||
# delete_disk_caches_for_function("get_mtot_vs_maxpairoverlap_consistency")
|
||||
x, y0 = get_mtot_vs_maxpairoverlap_consistency(nsim0, simname, mass_kind,
|
||||
min_logmass, smoothed)
|
||||
nsims, nhalos = y0.shape
|
||||
x_2, y0_2 = get_mtot_vs_maxpairoverlap_consistency(
|
||||
0, "quijote", "group_mass", min_logmass, smoothed)
|
||||
nsims2, nhalos = y0_2.shape
|
||||
|
||||
with plt.style.context(plt_utils.mplstyle):
|
||||
plt.figure()
|
||||
|
||||
yplot = numpy.full(len(left_edges), numpy.nan)
|
||||
yplot_2 = numpy.full(len(left_edges), numpy.nan)
|
||||
|
||||
for ymin in [0.3]:
|
||||
|
||||
y = numpy.sum(y0 > ymin, axis=0) / nsims
|
||||
y_2 = numpy.sum(y0_2 > ymin, axis=0) / nsims2
|
||||
|
||||
for i, left_edge in enumerate(left_edges):
|
||||
mask = x > left_edge
|
||||
yplot[i] = numpy.mean(y[mask]) #/ nsims
|
||||
mask = x_2 > left_edge
|
||||
yplot_2[i] = numpy.mean(y_2[mask]) #/ nsims
|
||||
|
||||
plt.plot(left_edges, yplot, label="CSiBORG")
|
||||
plt.plot(left_edges, yplot_2, label="Quijote")
|
||||
plt.legend()
|
||||
# y2 = numpy.concatenate(y0)
|
||||
# y2 = y2[y2 > 0]
|
||||
# m = y0 > 0
|
||||
# plt.hist(y0[m], bins=30, density=True, histtype="step")
|
||||
# m = y0_2 > 0
|
||||
# plt.hist(y0_2[m], bins=30, density=True, histtype="step")
|
||||
# plt.yscale("log")
|
||||
|
||||
|
||||
plt.tight_layout()
|
||||
fout = join(
|
||||
plt_utils.fout,
|
||||
f"mass_vs_max_pair_overlap_consistency_{simname}_{nsim0}.{ext}")
|
||||
print(f"Saving to `{fout}`.")
|
||||
plt.savefig(fout, dpi=plt_utils.dpi, bbox_inches="tight")
|
||||
plt.close()
|
||||
|
||||
|
||||
# --------------------------------------------------------------------------- #
|
||||
###############################################################################
|
||||
# Total DM halo mass vs summed pair overlaps #
|
||||
|
@ -876,8 +956,7 @@ def get_matching_max_vs_overlap(simname, nsim0, min_logmass, mult):
|
|||
|
||||
def matching_max_vs_overlap(simname, nsim0, min_logmass):
|
||||
left_edges = numpy.arange(min_logmass, 15, 0.1)
|
||||
|
||||
delete_disk_caches_for_function("get_matching_max_vs_overlap")
|
||||
nsims = 100 if simname == "csiborg" else 9
|
||||
|
||||
with plt.style.context("science"):
|
||||
fig, axs = plt.subplots(ncols=2, figsize=(3.5 * 2, 2.625))
|
||||
|
@ -891,34 +970,36 @@ def matching_max_vs_overlap(simname, nsim0, min_logmass):
|
|||
success = x["success"]
|
||||
|
||||
nbins = len(left_edges)
|
||||
y = numpy.full((nbins, 100), numpy.nan)
|
||||
y2 = numpy.full((nbins, 100), numpy.nan)
|
||||
y = numpy.full((nbins, nsims), numpy.nan)
|
||||
y2 = numpy.full(nbins, numpy.nan)
|
||||
y2err = numpy.full(nbins, numpy.nan)
|
||||
for i in range(nbins):
|
||||
m = mass0 > left_edges[i]
|
||||
for j in range(100):
|
||||
for j in range(nsims):
|
||||
y[i, j] = numpy.sum(
|
||||
max_overlap[m, j] == match_overlap[m, j])
|
||||
y[i, j] /= numpy.sum(success[m, j])
|
||||
y2[i, j] = numpy.sum(success[m, j]) / numpy.sum(m)
|
||||
|
||||
offset = numpy.random.normal(0, 0.01)
|
||||
y2[i] = numpy.mean(numpy.sum(success[m, :], axis=1) / nsims)
|
||||
y2err[i] = numpy.std(numpy.sum(success[m, :], axis=1) / nsims)
|
||||
|
||||
offset = numpy.random.normal(0, 0.015)
|
||||
|
||||
ysummary = numpy.percentile(y, [16, 50, 84], axis=1)
|
||||
axs[0].errorbar(
|
||||
left_edges + offset, ysummary[1],
|
||||
yerr=[ysummary[1] - ysummary[0], ysummary[2] - ysummary[1]],
|
||||
capsize=3, c=cols[n],
|
||||
capsize=4, c=cols[n], ls="dashed",
|
||||
label=r"$\leq {}~R_{{\rm 200c}}$".format(mult), errorevery=2)
|
||||
ysummary = numpy.percentile(y2, [16, 50, 84], axis=1)
|
||||
axs[1].errorbar(
|
||||
left_edges + offset, ysummary[1], ls="--",
|
||||
yerr=[ysummary[1] - ysummary[0], ysummary[2] - ysummary[1]],
|
||||
capsize=3, c=cols[n], errorevery=2)
|
||||
|
||||
axs[1].errorbar(left_edges + offset, y2, yerr=y2err,
|
||||
capsize=4, errorevery=2, c=cols[n], ls="dashed")
|
||||
|
||||
axs[0].legend(ncols=2, fontsize="small")
|
||||
for i in range(2):
|
||||
axs[i].set_xlabel(r"$\log M_{\rm tot, min} ~ [M_\odot / h]$")
|
||||
|
||||
axs[1].set_ylim(0)
|
||||
axs[0].set_ylabel(r"$f_{\rm agreement}$")
|
||||
axs[1].set_ylabel(r"$f_{\rm match}$")
|
||||
|
||||
|
@ -1048,7 +1129,7 @@ if __name__ == "__main__":
|
|||
smoothed = True
|
||||
nbins = 10
|
||||
ext = "png"
|
||||
plot_quijote = False
|
||||
plot_quijote = True
|
||||
min_maxoverlap = 0.
|
||||
|
||||
funcs = [
|
||||
|
@ -1128,5 +1209,19 @@ if __name__ == "__main__":
|
|||
mtot_vs_maxoverlap_property(0, "quijote", min_logmass, key,
|
||||
min_maxoverlap, smoothed)
|
||||
|
||||
if False:
|
||||
matching_max_vs_overlap("csiborg", 7444, min_logmass)
|
||||
|
||||
if plot_quijote:
|
||||
matching_max_vs_overlap("quijote", 0, min_logmass)
|
||||
|
||||
if True:
|
||||
matching_max_vs_overlap(7444, min_logmass)
|
||||
mtot_vs_maxpairoverlap_consistency(
|
||||
7444, "csiborg", "fof_totpartmass", min_logmass, smoothed,
|
||||
ext="png")
|
||||
# if plot_quijote:
|
||||
# mtot_vs_maxpairoverlap_consistency(
|
||||
# 0, "quijote", "group_mass", min_logmass, smoothed,
|
||||
# ext="png")
|
||||
|
||||
|
||||
|
|
89
scripts_plots/plot_vobs.py
Normal file
89
scripts_plots/plot_vobs.py
Normal file
|
@ -0,0 +1,89 @@
|
|||
# Copyright (C) 2023 Richard Stiskalek
|
||||
# This program is free software; you can redistribute it and/or modify it
|
||||
# under the terms of the GNU General Public License as published by the
|
||||
# Free Software Foundation; either version 3 of the License, or (at your
|
||||
# option) any later version.
|
||||
#
|
||||
# This program is distributed in the hope that it will be useful, but
|
||||
# WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
|
||||
# Public License for more details.
|
||||
#
|
||||
# You should have received a copy of the GNU General Public License along
|
||||
# with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||
|
||||
from os.path import join
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy
|
||||
import scienceplots # noqa
|
||||
from tqdm import tqdm
|
||||
|
||||
import csiborgtools
|
||||
import plt_utils
|
||||
|
||||
|
||||
def observer_peculiar_velocity(MAS, grid, ext="png"):
|
||||
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
|
||||
nsims = paths.get_ics("csiborg")
|
||||
|
||||
for n, nsim in enumerate(nsims):
|
||||
fpath = paths.observer_peculiar_velocity(MAS, grid, nsim)
|
||||
f = numpy.load(fpath)
|
||||
|
||||
if n == 0:
|
||||
data = numpy.full((len(nsims), *f["observer_vp"].shape), numpy.nan)
|
||||
smooth_scales = f["smooth_scales"]
|
||||
|
||||
data[n] = f["observer_vp"]
|
||||
|
||||
for n, smooth_scale in enumerate(tqdm(smooth_scales,
|
||||
desc="Plotting smooth scales")):
|
||||
with plt.style.context(plt_utils.mplstyle):
|
||||
fig, axs = plt.subplots(ncols=3, figsize=(3.5 * 3, 2.625),
|
||||
sharey=True)
|
||||
fig.subplots_adjust(wspace=0)
|
||||
for i, ax in enumerate(axs):
|
||||
ax.hist(data[:, n, i], bins="auto", histtype="step")
|
||||
mu, sigma = numpy.mean(data[:, n, i]), numpy.std(data[:, n, i])
|
||||
ax.set_title(r"$V_{{\rm obs, i}} = {:.3f} \pm {:.3f} ~ \mathrm{{km}} / \mathrm{{s}}$".format(mu, sigma)) # noqa
|
||||
|
||||
axs[0].set_xlabel(r"$V_{\rm obs, x} ~ [\mathrm{km} / \mathrm{s}]$")
|
||||
axs[1].set_xlabel(r"$V_{\rm obs, y} ~ [\mathrm{km} / \mathrm{s}]$")
|
||||
axs[2].set_xlabel(r"$V_{\rm obs, z} ~ [\mathrm{km} / \mathrm{s}]$")
|
||||
axs[0].set_ylabel(r"Counts")
|
||||
|
||||
fig.suptitle(r"$N_{{\rm grid}} = {}$, $\sigma_{{\rm smooth}} = {:.2f} ~ [\mathrm{{Mpc}} / h]$".format(grid, smooth_scale)) # noqa
|
||||
|
||||
fig.tight_layout(w_pad=0)
|
||||
fout = join(plt_utils.fout,
|
||||
f"observer_vp_{grid}_{smooth_scale}.{ext}")
|
||||
fig.savefig(fout, dpi=plt_utils.dpi, bbox_inches="tight")
|
||||
plt.close()
|
||||
|
||||
with plt.style.context(plt_utils.mplstyle):
|
||||
fig, axs = plt.subplots(ncols=3, figsize=(3.5 * 3, 2.625))
|
||||
for i, ax in enumerate(axs):
|
||||
|
||||
ymu = numpy.mean(data[..., i], axis=0)
|
||||
ystd = numpy.std(data[..., i], axis=0)
|
||||
ylow, yupp = ymu - ystd, ymu + ystd
|
||||
ax.plot(smooth_scales, ymu, c="k")
|
||||
ax.fill_between(smooth_scales, ylow, yupp, color="k", alpha=0.2)
|
||||
|
||||
ax.set_xlabel(r"$\sigma_{{\rm smooth}} ~ [\mathrm{{Mpc}} / h]$")
|
||||
|
||||
axs[0].set_ylabel(r"$V_{\rm obs, x} ~ [\mathrm{km} / \mathrm{s}]$")
|
||||
axs[1].set_ylabel(r"$V_{\rm obs, y} ~ [\mathrm{km} / \mathrm{s}]$")
|
||||
axs[2].set_ylabel(r"$V_{\rm obs, z} ~ [\mathrm{km} / \mathrm{s}]$")
|
||||
fig.suptitle(r"$N_{{\rm grid}} = {}$".format(grid))
|
||||
|
||||
fig.tight_layout(w_pad=0)
|
||||
fout = join(plt_utils.fout, f"observer_vp_summary_{grid}.{ext}")
|
||||
fig.savefig(fout, dpi=plt_utils.dpi, bbox_inches="tight")
|
||||
plt.close()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
observer_peculiar_velocity("PCS", 512)
|
Loading…
Reference in a new issue