mirror of
https://github.com/Richard-Sti/csiborgtools_public.git
synced 2025-05-14 06:31:11 +00:00
Add density field plot and start preparing CSiBORG2 (#94)
* Add RAMSES2HDF5 conversion * Upload changes * Clean up * More clean up * updates * Little change * pep9 * Add basic SPH calculation for a snapshot * Add submit script * Remove echo * Little changes * Send off changes * Little formatting * Little updates * Add nthreads argument * Upload chagnes * Add nthreads arguemnts * Some local changes.. * Update scripts * Add submission script * Update script * Update params * Rename CSiBORGBox to CSiBORG1box * Rename CSiBORG1 reader * Move files * Rename folder again * Add basic plotting here * Add new skeletons * Move def * Update nbs * Edit directories * Rename files * Add units to converted snapshots * Fix empty dataset bug * Delete file * Edits to submission scripts * Edit paths * Update .gitignore * Fix attrs * Update weighting * Fix RA/dec bug * Add FORNAX cluster * Little edit * Remove boxes since will no longer need * Move func back * Edit to include sort by membership * Edit paths * Purge basic things * Start removing * Bring file back * Scratch * Update the rest * Improve the entire file * Remove old things * Remove old * Delete old things * Fully updates * Rename file * Edit submit script * Little things * Add print statement * Add here cols_to_structured * Edit halo cat * Remove old import * Add comment * Update paths manager * Move file * Remove file * Add chains
This commit is contained in:
parent
6042a87111
commit
aaa14fc880
30 changed files with 1682 additions and 1728 deletions
737
scripts_independent/process_snapshot.py
Normal file
737
scripts_independent/process_snapshot.py
Normal file
|
@ -0,0 +1,737 @@
|
|||
# Copyright (C) 2023 Richard Stiskalek
|
||||
# This program is free software; you can redistribute it and/or modify it
|
||||
# under the terms of the GNU General Public License as published by the
|
||||
# Free Software Foundation; either version 3 of the License, or (at your
|
||||
# option) any later version.
|
||||
#
|
||||
# This program is distributed in the hope that it will be useful, but
|
||||
# WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
|
||||
# Public License for more details.
|
||||
#
|
||||
# You should have received a copy of the GNU General Public License along
|
||||
# with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||
"""
|
||||
Script to process simulation snapshots to sorted HDF5 files. Be careful
|
||||
because reading the HDF5 file may require `hdf5plugin` package to be installed.
|
||||
The snapshot particles are sorted by their halo ID, so that particles of a halo
|
||||
can be accessed by slicing the array.
|
||||
|
||||
CSiBORG1 reader will complain unless it can find the halomaker FOF files
|
||||
where it expects them:
|
||||
fdir = f"/mnt/extraspace/rstiskalek/csiborg1/chain_{self.nsim}/FOF"
|
||||
"""
|
||||
from abc import ABC, abstractmethod
|
||||
from argparse import ArgumentParser
|
||||
from datetime import datetime
|
||||
from gc import collect
|
||||
from glob import glob, iglob
|
||||
from os import makedirs
|
||||
from os.path import basename, dirname, exists, join
|
||||
from warnings import catch_warnings, filterwarnings, warn
|
||||
|
||||
import hdf5plugin
|
||||
import numpy
|
||||
import pynbody
|
||||
import readgadget
|
||||
from astropy import constants, units
|
||||
from h5py import File
|
||||
from numba import jit
|
||||
from readfof import FoF_catalog
|
||||
from tqdm import tqdm, trange
|
||||
|
||||
MSUNCGS = constants.M_sun.cgs.value
|
||||
BLOSC_KWARGS = {"cname": "blosclz",
|
||||
"clevel": 9,
|
||||
"shuffle": hdf5plugin.Blosc.SHUFFLE,
|
||||
}
|
||||
|
||||
|
||||
###############################################################################
|
||||
# Utility functions #
|
||||
###############################################################################
|
||||
|
||||
|
||||
def now():
|
||||
"""
|
||||
Return current time.
|
||||
"""
|
||||
return datetime.now()
|
||||
|
||||
|
||||
def flip_cols(arr, col1, col2):
|
||||
"""
|
||||
Flip values in columns `col1` and `col2` of a structured array `arr`.
|
||||
"""
|
||||
if col1 not in arr.dtype.names or col2 not in arr.dtype.names:
|
||||
raise ValueError(f"Both `{col1}` and `{col2}` must exist in `arr`.")
|
||||
|
||||
arr[col1], arr[col2] = numpy.copy(arr[col2]), numpy.copy(arr[col1])
|
||||
|
||||
|
||||
def convert_str_to_num(s):
|
||||
"""
|
||||
Convert a string representation of a number to its appropriate numeric type
|
||||
(int or float).
|
||||
|
||||
Parameters
|
||||
----------
|
||||
s : str
|
||||
The string representation of the number.
|
||||
|
||||
Returns
|
||||
-------
|
||||
num : int or float
|
||||
"""
|
||||
try:
|
||||
return int(s)
|
||||
except ValueError:
|
||||
try:
|
||||
return float(s)
|
||||
except ValueError:
|
||||
warn(f"Cannot convert string '{s}' to number", UserWarning)
|
||||
return s
|
||||
|
||||
|
||||
def cols_to_structured(N, cols):
|
||||
"""
|
||||
Allocate a structured array from `cols`, a list of (name, dtype) tuples.
|
||||
"""
|
||||
if not (isinstance(cols, list)
|
||||
and all(isinstance(c, tuple) and len(c) == 2 for c in cols)):
|
||||
raise TypeError("`cols` must be a list of (name, dtype) tuples.")
|
||||
|
||||
names, formats = zip(*cols)
|
||||
dtype = {"names": names, "formats": formats}
|
||||
|
||||
return numpy.full(N, numpy.nan, dtype=dtype)
|
||||
|
||||
|
||||
###############################################################################
|
||||
# Base reader of snapshots #
|
||||
###############################################################################
|
||||
|
||||
|
||||
class BaseReader(ABC):
|
||||
"""Base reader layout that every subsequent reader should follow."""
|
||||
@abstractmethod
|
||||
def read_info(self):
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def read_snapshot(self, kind):
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def read_halo_id(self, pids):
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def read_halos(self):
|
||||
pass
|
||||
|
||||
|
||||
###############################################################################
|
||||
# CSiBORG particle reader #
|
||||
###############################################################################
|
||||
|
||||
|
||||
class CSiBORG1Reader:
|
||||
"""
|
||||
Object to read in CSiBORG snapshots from the binary files and halo
|
||||
catalogues.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
nsim : int
|
||||
IC realisation index.
|
||||
which_snapshot : str
|
||||
Which snapshot to read. Options are `initial` or `final`.
|
||||
"""
|
||||
def __init__(self, nsim, which_snapshot):
|
||||
self.nsim = nsim
|
||||
base_dir = "/mnt/extraspace/hdesmond/"
|
||||
|
||||
if which_snapshot == "initial":
|
||||
self.nsnap = 1
|
||||
raise RuntimeError("TODO not implemented")
|
||||
self.source_dir = None
|
||||
elif which_snapshot == "final":
|
||||
sourcedir = join(base_dir, f"ramses_out_{nsim}")
|
||||
self.nsnap = max([int(basename(f).replace("output_", ""))
|
||||
for f in glob(join(sourcedir, "output_*"))])
|
||||
self.source_dir = join(sourcedir,
|
||||
f"output_{str(self.nsnap).zfill(5)}")
|
||||
else:
|
||||
raise ValueError(f"Unknown snapshot option `{which_snapshot}`.")
|
||||
|
||||
self.output_dir = f"/mnt/extraspace/rstiskalek/csiborg1/chain_{self.nsim}" # noqa
|
||||
self.output_snap = join(self.output_dir,
|
||||
f"snapshot_{str(self.nsnap).zfill(5)}.hdf5")
|
||||
self.output_cat = join(self.output_dir,
|
||||
f"fof_{str(self.nsnap).zfill(5)}.hdf5")
|
||||
self.halomaker_dir = join(self.output_dir, "FOF")
|
||||
|
||||
def read_info(self):
|
||||
filename = glob(join(self.source_dir, "info_*"))
|
||||
if len(filename) > 1:
|
||||
raise ValueError("Found too many `info` files.")
|
||||
filename = filename[0]
|
||||
|
||||
with open(filename, "r") as f:
|
||||
info = f.read().split()
|
||||
# Throw anything below ordering line out
|
||||
info = numpy.asarray(info[:info.index("ordering")])
|
||||
# Get indexes of lines with `=`. Indxs before/after be keys/vals
|
||||
eqs = numpy.asarray([i for i in range(info.size) if info[i] == '='])
|
||||
|
||||
keys = info[eqs - 1]
|
||||
vals = info[eqs + 1]
|
||||
return {key: convert_str_to_num(val) for key, val in zip(keys, vals)}
|
||||
|
||||
def read_snapshot(self, kind):
|
||||
with catch_warnings():
|
||||
filterwarnings("ignore", category=UserWarning)
|
||||
sim = pynbody.load(self.source_dir)
|
||||
|
||||
info = self.read_info()
|
||||
|
||||
if kind == "pid":
|
||||
x = numpy.array(sim["iord"], dtype=numpy.uint32)
|
||||
elif kind == "pos":
|
||||
x = numpy.array(sim[kind], dtype=numpy.float32)
|
||||
# Convert box units to Mpc / h
|
||||
box2mpc = (info["unit_l"] / units.kpc.to(units.cm) / info["aexp"]
|
||||
* 1e-3 * info["H0"] / 100)
|
||||
x *= box2mpc
|
||||
elif kind == "mass":
|
||||
x = numpy.array(sim[kind], dtype=numpy.float32)
|
||||
# Convert box units to Msun / h
|
||||
box2msun = (info["unit_d"] * info["unit_l"]**3 / MSUNCGS
|
||||
* info["H0"] / 100)
|
||||
x *= box2msun
|
||||
elif kind == "vel":
|
||||
x = numpy.array(sim[kind], dtype=numpy.float16)
|
||||
# Convert box units to km / s
|
||||
box2kms = (1e-2 * info["unit_l"] / info["unit_t"] / info["aexp"]
|
||||
* 1e-3)
|
||||
x *= box2kms
|
||||
else:
|
||||
raise ValueError(f"Unknown kind `{kind}`. "
|
||||
"Options are: `pid`, `pos`, `vel` or `mass`.")
|
||||
|
||||
# Because of a RAMSES bug x and z are flipped.
|
||||
if kind in ["pos", "vel"]:
|
||||
print(f"For kind `{kind}` flipping x and z.")
|
||||
x[:, [0, 2]] = x[:, [2, 0]]
|
||||
|
||||
del sim
|
||||
collect()
|
||||
|
||||
return x
|
||||
|
||||
def read_halo_id(self, pids):
|
||||
fpath = join(self.halomaker_dir, "*particle_membership*")
|
||||
fpath = next(iglob(fpath, recursive=True), None)
|
||||
if fpath is None:
|
||||
raise FileNotFoundError(f"Found no Halomaker files in `{self.halomaker_dir}`.") # noqa
|
||||
|
||||
print(f"{now()}: mapping particle IDs to their indices.")
|
||||
pids_idx = {pid: i for i, pid in enumerate(pids)}
|
||||
|
||||
# Unassigned particle IDs are assigned a halo ID of 0.
|
||||
print(f"{now()}: mapping HIDs to their array indices.")
|
||||
hids = numpy.zeros(pids.size, dtype=numpy.int32)
|
||||
|
||||
# Read line-by-line to avoid loading the whole file into memory.
|
||||
with open(fpath, 'r') as file:
|
||||
for line in tqdm(file, desc="Reading membership"):
|
||||
hid, pid = map(int, line.split())
|
||||
hids[pids_idx[pid]] = hid
|
||||
|
||||
del pids_idx
|
||||
collect()
|
||||
|
||||
return hids
|
||||
|
||||
def read_halos(self):
|
||||
info = self.read_info()
|
||||
h = info["H0"] / 100
|
||||
|
||||
fpath = join(self.halomaker_dir, "fort.132")
|
||||
hid = numpy.genfromtxt(fpath, usecols=0, dtype=numpy.int32)
|
||||
pos = numpy.genfromtxt(fpath, usecols=(1, 2, 3), dtype=numpy.float32)
|
||||
totmass = numpy.genfromtxt(fpath, usecols=4, dtype=numpy.float32)
|
||||
m200c = numpy.genfromtxt(fpath, usecols=5, dtype=numpy.float32)
|
||||
|
||||
dtype = {"names": ["index", "x", "y", "z", "totpartmass", "m200c"],
|
||||
"formats": [numpy.int32] + [numpy.float32] * 5}
|
||||
out = numpy.full(hid.size, numpy.nan, dtype=dtype)
|
||||
out["index"] = hid
|
||||
out["x"] = pos[:, 0] * h + 677.7 / 2
|
||||
out["y"] = pos[:, 1] * h + 677.7 / 2
|
||||
out["z"] = pos[:, 2] * h + 677.7 / 2
|
||||
|
||||
# Because of a RAMSES bug x and z are flipped.
|
||||
flip_cols(out, "x", "z")
|
||||
out["totpartmass"] = totmass * 1e11 * h
|
||||
out["m200c"] = m200c * 1e11 * h
|
||||
|
||||
return out
|
||||
|
||||
|
||||
###############################################################################
|
||||
# CSiBORG2 particle reader #
|
||||
###############################################################################
|
||||
|
||||
|
||||
class CSiBORG2Reader(BaseReader):
|
||||
"""
|
||||
Object to read in CSiBORG2 snapshots. Because this is Gadget4 the final
|
||||
snapshot is already sorted, however we still have to sort the initial
|
||||
snapshot.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
nsim : int
|
||||
IC realisation index.
|
||||
which_snapshot : str
|
||||
Which snapshot to read. Options are `initial` or `final`.
|
||||
"""
|
||||
def __init__(self, nsim, which_snapshot, kind):
|
||||
self.nsim = nsim
|
||||
if kind not in ["main", "random", "varysmall"]:
|
||||
raise ValueError(f"Unknown kind `{kind}`.")
|
||||
base_dir = f"/mnt/extraspace/rstiskalek/csiborg2_{kind}"
|
||||
|
||||
if which_snapshot == "initial":
|
||||
self.nsnap = 0
|
||||
elif which_snapshot == "final":
|
||||
self.nsnap = 99
|
||||
else:
|
||||
raise ValueError(f"Unknown snapshot option `{which_snapshot}`.")
|
||||
|
||||
self.source_dir = join(
|
||||
base_dir, f"chain_{nsim}", "output",
|
||||
f"snapshot_{str(self.nsnap).zfill(3)}_full.hdf5")
|
||||
|
||||
self.output_dir = join(base_dir, f"chain_{nsim}", "output")
|
||||
self.output_snap = join(
|
||||
self.output_dir,
|
||||
f"snapshot_{str(self.nsnap).zfill(3)}_sorted.hdf5")
|
||||
self.output_cat = None
|
||||
|
||||
def read_info(self):
|
||||
fpath = join(dirname(self.source_dir), "snapshot_99_full.hdf5")
|
||||
|
||||
with File(fpath, 'r') as f:
|
||||
header = f["Header"]
|
||||
params = f["Parameters"]
|
||||
|
||||
out = {"BoxSize": header.attrs["BoxSize"],
|
||||
"MassTable": header.attrs["MassTable"],
|
||||
"NumPart_Total": header.attrs["NumPart_Total"],
|
||||
"Omega_m": params.attrs["Omega0"],
|
||||
"Omega_l": params.attrs["OmegaLambda"],
|
||||
"Omega_b": params.attrs["OmegaBaryon"],
|
||||
"h": params.attrs["HubbleParam"],
|
||||
"redshift": header.attrs["Redshift"],
|
||||
}
|
||||
return out
|
||||
|
||||
def read_snapshot(self, kind):
|
||||
raise RuntimeError("TODO Not implemented.")
|
||||
|
||||
def read_halo_id(self, pids):
|
||||
raise RuntimeError("TODO Not implemented.")
|
||||
|
||||
def read_halos(self):
|
||||
raise RuntimeError("TODO Not implemented.")
|
||||
|
||||
|
||||
###############################################################################
|
||||
# Quijote particle reader #
|
||||
###############################################################################
|
||||
|
||||
|
||||
class QuijoteReader:
|
||||
"""
|
||||
Object to read in Quijote snapshots from the binary files.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
nsim : int
|
||||
IC realisation index.
|
||||
which_snapshot : str
|
||||
Which snapshot to read. Options are `initial` or `final`.
|
||||
"""
|
||||
def __init__(self, nsim, which_snapshot):
|
||||
self.nsim = nsim
|
||||
quijote_dir = "/mnt/extraspace/rstiskalek/quijote"
|
||||
|
||||
if which_snapshot == "initial":
|
||||
self.nsnap = -1
|
||||
snap_str = "ICs"
|
||||
self.source_dir = join(quijote_dir, "Snapshots_fiducial",
|
||||
str(nsim), "ICs", "ics")
|
||||
elif which_snapshot == "final":
|
||||
self.nsnap = 4
|
||||
snap_str = str(self.nsnap).zfill(3)
|
||||
self.source_dir = join(
|
||||
quijote_dir, "Snapshots_fiducial",
|
||||
str(nsim), f"snapdir_{snap_str}", f"snap_{snap_str}")
|
||||
else:
|
||||
raise ValueError(f"Unknown snapshot option `{which_snapshot}`.")
|
||||
|
||||
self.fof_dir = join(quijote_dir, "Halos_fiducial", str(nsim))
|
||||
self.output_dir = f"/mnt/extraspace/rstiskalek/quijote/fiducial_processed/chain_{self.nsim}" # noqa
|
||||
self.output_snap = join(self.output_dir, f"snapshot_{snap_str}.hdf5")
|
||||
self.output_cat = join(self.output_dir, f"fof_{snap_str}.hdf5")
|
||||
|
||||
def read_info(self):
|
||||
header = readgadget.header(self.source_dir)
|
||||
out = {"BoxSize": header.boxsize / 1e3, # Mpc/h
|
||||
"Nall": header.nall[1], # Tot num of particles
|
||||
"PartMass": header.massarr[1] * 1e10, # Part mass in Msun/h
|
||||
"Omega_m": header.omega_m,
|
||||
"Omega_l": header.omega_l,
|
||||
"h": header.hubble,
|
||||
"redshift": header.redshift,
|
||||
}
|
||||
out["TotMass"] = out["Nall"] * out["PartMass"]
|
||||
out["Hubble"] = (100.0 * numpy.sqrt(
|
||||
header.omega_m * (1.0 + header.redshift)**3 + header.omega_l))
|
||||
return out
|
||||
|
||||
def read_snapshot(self, kind):
|
||||
info = self.read_info()
|
||||
ptype = [1] # DM
|
||||
|
||||
if kind == "pid":
|
||||
return readgadget.read_block(self.source_dir, "ID ", ptype)
|
||||
elif kind == "pos":
|
||||
pos = readgadget.read_block(self.source_dir, "POS ", ptype) / 1e3
|
||||
return pos.astype(numpy.float32)
|
||||
elif kind == "vel":
|
||||
vel = readgadget.read_block(self.source_dir, "VEL ", ptype)
|
||||
vel = vel.astype(numpy.float16)
|
||||
vel *= (1 + info["redshift"]) # km / s
|
||||
return vel
|
||||
elif kind == "mass":
|
||||
return numpy.full(info["Nall"], info["PartMass"],
|
||||
dtype=numpy.float32)
|
||||
else:
|
||||
raise ValueError(f"Unknown kind `{kind}`. "
|
||||
"Options are: `pid`, `pos`, `vel` or `mass`.")
|
||||
|
||||
def read_halo_id(self, pids):
|
||||
cat = FoF_catalog(self.fof_dir, self.nsnap)
|
||||
|
||||
group_pids = cat.GroupIDs
|
||||
group_len = cat.GroupLen
|
||||
|
||||
# Create a mapping from particle ID to FoF group ID.
|
||||
print(f"{now()}: mapping particle IDs to their indices.")
|
||||
ks = numpy.insert(numpy.cumsum(group_len), 0, 0)
|
||||
with catch_warnings():
|
||||
# Ignore because we are casting NaN as integer.
|
||||
filterwarnings("ignore", category=RuntimeWarning)
|
||||
pid2hid = numpy.full((group_pids.size, 2), numpy.nan,
|
||||
dtype=numpy.uint64)
|
||||
for i, (k0, kf) in enumerate(zip(ks[:-1], ks[1:])):
|
||||
pid2hid[k0:kf, 0] = i + 1
|
||||
pid2hid[k0:kf, 1] = group_pids[k0:kf]
|
||||
pid2hid = {pid: hid for hid, pid in pid2hid}
|
||||
|
||||
# Create the final array of hids matchign the snapshot array.
|
||||
# Unassigned particles have hid 0.
|
||||
print(f"{now()}: mapping HIDs to their array indices.")
|
||||
hids = numpy.full(pids.size, 0, dtype=numpy.uint32)
|
||||
for i in trange(pids.size):
|
||||
hids[i] = pid2hid.get(pids[i], 0)
|
||||
|
||||
return hids
|
||||
|
||||
def read_halos(self):
|
||||
fof = FoF_catalog(self.fof_dir, self.nsnap, long_ids=False, swap=False,
|
||||
SFR=False, read_IDs=False)
|
||||
|
||||
cols = [("x", numpy.float32),
|
||||
("y", numpy.float32),
|
||||
("z", numpy.float32),
|
||||
("vx", numpy.float32),
|
||||
("vy", numpy.float32),
|
||||
("vz", numpy.float32),
|
||||
("GroupMass", numpy.float32),
|
||||
("npart", numpy.int32),
|
||||
("index", numpy.int32)
|
||||
]
|
||||
data = cols_to_structured(fof.GroupLen.size, cols)
|
||||
|
||||
pos = fof.GroupPos / 1e3
|
||||
vel = fof.GroupVel * (1 + self.read_info()["redshift"])
|
||||
for i, p in enumerate(["x", "y", "z"]):
|
||||
data[p] = pos[:, i]
|
||||
data[f"v{p}"] = vel[:, i]
|
||||
data["GroupMass"] = fof.GroupMass * 1e10
|
||||
data["npart"] = fof.GroupLen
|
||||
# We want to start indexing from 1. Index 0 is reserved for
|
||||
# particles unassigned to any FoF group.
|
||||
data["index"] = 1 + numpy.arange(data.size, dtype=numpy.uint32)
|
||||
return data
|
||||
|
||||
|
||||
###############################################################################
|
||||
# Group Offsets #
|
||||
###############################################################################
|
||||
|
||||
|
||||
@jit(nopython=True, boundscheck=False)
|
||||
def minmax_halo(hid, halo_ids, start_loop=0):
|
||||
"""
|
||||
Find the start and end index of a halo in a sorted array of halo IDs.
|
||||
This is much faster than using `numpy.where` and then `numpy.min` and
|
||||
`numpy.max`.
|
||||
"""
|
||||
start = None
|
||||
end = None
|
||||
|
||||
for i in range(start_loop, halo_ids.size):
|
||||
n = halo_ids[i]
|
||||
if n == hid:
|
||||
if start is None:
|
||||
start = i
|
||||
end = i
|
||||
elif n > hid:
|
||||
break
|
||||
return start, end
|
||||
|
||||
|
||||
def make_offset_map(part_hids):
|
||||
"""
|
||||
Make group offsets for a list of particles' halo IDs. This is a
|
||||
2-dimensional array, where the first column is the halo ID, the second
|
||||
column is the start index of the halo in the particle list, and the third
|
||||
index is the end index of the halo in the particle list. The start index is
|
||||
inclusive, while the end index is exclusive.
|
||||
"""
|
||||
unique_halo_ids = numpy.unique(part_hids)
|
||||
unique_halo_ids = unique_halo_ids[unique_halo_ids != 0]
|
||||
with catch_warnings():
|
||||
filterwarnings("ignore", category=RuntimeWarning)
|
||||
halo_map = numpy.full((unique_halo_ids.size, 3), numpy.nan,
|
||||
dtype=numpy.uint32)
|
||||
start_loop, niters = 0, unique_halo_ids.size
|
||||
for i in trange(niters):
|
||||
hid = unique_halo_ids[i]
|
||||
k0, kf = minmax_halo(hid, part_hids, start_loop=start_loop)
|
||||
halo_map[i, :] = hid, k0, kf
|
||||
start_loop = kf
|
||||
|
||||
return halo_map, unique_halo_ids
|
||||
|
||||
|
||||
###############################################################################
|
||||
# Process the final snapshot and sort it by groups #
|
||||
###############################################################################
|
||||
|
||||
|
||||
def process_final_snapshot(nsim, simname):
|
||||
"""
|
||||
Read in the snapshot particles, sort them by their halo ID and dump
|
||||
into a HDF5 file. Stores the first and last index of each halo in the
|
||||
particle array for fast slicing of the array to acces particles of a single
|
||||
halo.
|
||||
"""
|
||||
if simname == "csiborg1":
|
||||
reader = CSiBORG1Reader(nsim, "final")
|
||||
elif simname == "quijote":
|
||||
reader = QuijoteReader(nsim, "final")
|
||||
else:
|
||||
raise RuntimeError(f"Simulation `{simname}` is not supported.")
|
||||
|
||||
if not exists(reader.output_dir):
|
||||
makedirs(reader.output_dir)
|
||||
|
||||
print("---- Processing Final Snapshot Information ----")
|
||||
print(f"Simulation index: {nsim}")
|
||||
print(f"Simulation name: {simname}")
|
||||
print(f"Output snapshot: {reader.output_snap}")
|
||||
print(f"Output catalogue: {reader.output_cat}")
|
||||
print("-----------------------------------------------")
|
||||
print(flush=True)
|
||||
|
||||
# First off load the particle IDs from the raw data.
|
||||
pids = reader.read_snapshot("pid")
|
||||
|
||||
# Then, load the halo ids and make sure their ordering is the same as the
|
||||
# particle IDs ordering.
|
||||
print(f"{now()}: loading HIDs.")
|
||||
halo_ids = reader.read_halo_id(pids)
|
||||
print(f"{now()}: sorting HIDs.")
|
||||
|
||||
# Get a mask that sorts the halo ids and then write the information to
|
||||
# the data files sorted by it.
|
||||
sort_indxs = numpy.argsort(halo_ids)
|
||||
halo_ids = halo_ids[sort_indxs]
|
||||
|
||||
with File(reader.output_snap, 'w') as f:
|
||||
print(f"{now()}: creating dataset `ParticleIDs`...",
|
||||
flush=True)
|
||||
f.create_dataset("ParticleIDs", data=pids[sort_indxs],
|
||||
**hdf5plugin.Blosc(**BLOSC_KWARGS))
|
||||
del pids
|
||||
collect()
|
||||
|
||||
print(f"{now()}: creating dataset `Coordinates`...",
|
||||
flush=True)
|
||||
f.create_dataset(
|
||||
"Coordinates", data=reader.read_snapshot("pos")[sort_indxs],
|
||||
**hdf5plugin.Blosc(**BLOSC_KWARGS))
|
||||
|
||||
print(f"{now()}: creating dataset `Velocities`...",
|
||||
flush=True)
|
||||
f.create_dataset(
|
||||
"Velocities", data=reader.read_snapshot("vel")[sort_indxs],
|
||||
**hdf5plugin.Blosc(**BLOSC_KWARGS))
|
||||
|
||||
print(f"{now()}: creating dataset `Masses`...",
|
||||
flush=True)
|
||||
f.create_dataset(
|
||||
"Masses", data=reader.read_snapshot("mass")[sort_indxs],
|
||||
**hdf5plugin.Blosc(**BLOSC_KWARGS))
|
||||
|
||||
if simname == "csiborg1":
|
||||
header = f.create_dataset("Header", (0,))
|
||||
header.attrs["BoxSize"] = 677.7 # Mpc/h
|
||||
header.attrs["Omega0"] = 0.307
|
||||
header.attrs["OmegaBaryon"] = 0.0
|
||||
header.attrs["OmegaLambda"] = 0.693
|
||||
header.attrs["HubleParam"] = 0.6777
|
||||
header.attrs["Redshift"] = 0.0
|
||||
elif simname == "quijote":
|
||||
info = reader.read_info()
|
||||
|
||||
header = f.create_dataset("Header", (0,))
|
||||
header.attrs["BoxSize"] = info["BoxSize"]
|
||||
header.attrs["Omega0"] = info["Omega_m"]
|
||||
header.attrs["OmegaLambda"] = info["Omega_l"]
|
||||
header.attrs["OmegaBaryon"] = 0.0
|
||||
header.attrs["HubleParam"] = info["h"]
|
||||
header.attrs["Redshift"] = info["redshift"]
|
||||
else:
|
||||
raise ValueError(f"Unknown simname `{simname}`.")
|
||||
|
||||
print(f"{now()}: done with `{reader.output_snap}`.",
|
||||
flush=True)
|
||||
|
||||
# Lastly, create the halo mapping and default catalogue.
|
||||
print(f"{datetime.now()}: creating `GroupOffset`...")
|
||||
halo_map, unique_halo_ids = make_offset_map(halo_ids)
|
||||
# Dump the halo mapping.
|
||||
with File(reader.output_cat, "w") as f:
|
||||
f.create_dataset("GroupOffset", data=halo_map)
|
||||
|
||||
# Add the halo finder catalogue
|
||||
print(f"{now()}: adding the halo finder catalogue.")
|
||||
with File(reader.output_cat, "r+") as f:
|
||||
cat = reader.read_halos()
|
||||
hid2pos = {hid: i for i, hid in enumerate(unique_halo_ids)}
|
||||
|
||||
for key in cat.dtype.names:
|
||||
x = numpy.full(unique_halo_ids.size, numpy.nan,
|
||||
dtype=cat[key].dtype)
|
||||
|
||||
for i in range(len(cat)):
|
||||
j = hid2pos[cat["index"][i]]
|
||||
x[j] = cat[key][i]
|
||||
f.create_dataset(key, data=x)
|
||||
|
||||
|
||||
def process_initial_snapshot(nsim, simname):
|
||||
"""
|
||||
Sort the initial snapshot particles according to their final snapshot and
|
||||
add them to the final snapshot's HDF5 file.
|
||||
"""
|
||||
if simname == "csiborg1":
|
||||
reader = CSiBORG1Reader(nsim, "initial")
|
||||
output_snap_final = CSiBORG1Reader(nsim, "final").output_snap
|
||||
elif simname == "quijote":
|
||||
reader = QuijoteReader(nsim, "initial")
|
||||
output_snap_final = QuijoteReader(nsim, "final").output_snap
|
||||
elif "csiborg2" in simname:
|
||||
reader = CSiBORG2Reader(nsim, "initial", simname.split("_")[1])
|
||||
output_snap_final = CSiBORG2Reader(nsim, "final", simname.split("_")[1]).output_snap # noqa
|
||||
raise RuntimeError("TODO Not implemented.")
|
||||
else:
|
||||
raise RuntimeError(f"Simulation `{simname}` is not supported.")
|
||||
|
||||
print("---- Processing Initial Snapshot Information ----")
|
||||
print(f"Simulation index: {nsim}")
|
||||
print(f"Simulation name: {simname}")
|
||||
print(f"Output snapshot: {reader.output_snap}")
|
||||
print(f"Output catalogue: {reader.output_cat}")
|
||||
print("-----------------------------------------------")
|
||||
print(flush=True)
|
||||
|
||||
print(f"{now()}: loading and sorting the initial PID.")
|
||||
sort_indxs = numpy.argsort(reader.read_snapshot("pid"))
|
||||
|
||||
print(f"{now()}: loading the final particles.")
|
||||
with File(output_snap_final, "r") as f:
|
||||
sort_indxs_final = f["ParticleIDs"][:]
|
||||
f.close()
|
||||
|
||||
print(f"{now()}: sorting the particles according to the final snapshot.")
|
||||
sort_indxs_final = numpy.argsort(numpy.argsort(sort_indxs_final))
|
||||
sort_indxs = sort_indxs[sort_indxs_final]
|
||||
|
||||
del sort_indxs_final
|
||||
collect()
|
||||
|
||||
print(f"{now()}: loading and sorting the initial particle position.")
|
||||
pos = reader.read_snapshot("pos")[sort_indxs]
|
||||
|
||||
del sort_indxs
|
||||
collect()
|
||||
|
||||
# In Quijote some particles are positioned precisely at the edge of the
|
||||
# box. Move them to be just inside.
|
||||
if simname == "quijote":
|
||||
boxsize = reader.read_info()["BoxSize"]
|
||||
mask = pos >= boxsize
|
||||
if numpy.any(mask):
|
||||
spacing = numpy.spacing(pos[mask])
|
||||
assert numpy.max(spacing) <= 1e-3
|
||||
pos[mask] -= spacing
|
||||
|
||||
print(f"{now()}: dumping particles `{reader.output_snap}`.")
|
||||
with File(reader.output_snap, 'w') as f:
|
||||
f.create_dataset("Coordinates", data=pos,
|
||||
**hdf5plugin.Blosc(**BLOSC_KWARGS))
|
||||
|
||||
|
||||
###############################################################################
|
||||
# Process the initial snapshot and sort it like the final snapshot #
|
||||
###############################################################################
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = ArgumentParser(description="Tool to manage the `raw` simulation data.") # noqa
|
||||
parser.add_argument("--nsim", type=int, required=True,
|
||||
help="Simulation index.")
|
||||
parser.add_argument("--simname", type=str, required=True,
|
||||
choices=["csiborg1", "quijote"],
|
||||
help="Simulation name.")
|
||||
parser.add_argument("--mode", type=int, required=True, choices=[0, 1, 2],
|
||||
help="0: process final snapshot, 1: process initial snapshot, 2: process both.") # noqa
|
||||
args = parser.parse_args()
|
||||
|
||||
if args.mode == 0:
|
||||
process_final_snapshot(args.nsim, args.simname)
|
||||
elif args.mode == 1:
|
||||
process_initial_snapshot(args.nsim, args.simname)
|
||||
else:
|
||||
process_final_snapshot(args.nsim, args.simname)
|
||||
process_initial_snapshot(args.nsim, args.simname)
|
Loading…
Add table
Add a link
Reference in a new issue