mirror of
https://github.com/Richard-Sti/csiborgtools_public.git
synced 2025-07-12 00:53:02 +00:00
Reorganise funcs
This commit is contained in:
parent
e34a791e05
commit
aa43fbf66e
2 changed files with 523 additions and 500 deletions
|
@ -26,287 +26,21 @@ from abc import ABC, abstractmethod
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from astropy import units as u
|
from astropy import units as u
|
||||||
from astropy.cosmology import FlatLambdaCDM, z_at_value
|
from astropy.cosmology import FlatLambdaCDM, z_at_value
|
||||||
from h5py import File
|
|
||||||
from jax import jit
|
from jax import jit
|
||||||
from jax import numpy as jnp
|
from jax import numpy as jnp
|
||||||
from jax.scipy.special import logsumexp, erf
|
from jax.scipy.special import erf, logsumexp
|
||||||
from numpyro import factor, sample, plate
|
from numpyro import factor, plate, sample
|
||||||
from numpyro.distributions import Normal, Uniform, MultivariateNormal
|
from numpyro.distributions import MultivariateNormal, Normal, Uniform
|
||||||
from quadax import simpson
|
from quadax import simpson
|
||||||
from tqdm import trange
|
from tqdm import trange
|
||||||
|
|
||||||
|
from ..params import SPEED_OF_LIGHT
|
||||||
|
from ..utils import fprint
|
||||||
from .selection import toy_log_magnitude_selection
|
from .selection import toy_log_magnitude_selection
|
||||||
from ..params import SPEED_OF_LIGHT, simname2Omega_m
|
|
||||||
from ..utils import fprint, radec_to_galactic, radec_to_supergalactic
|
|
||||||
|
|
||||||
H0 = 100 # km / s / Mpc
|
H0 = 100 # km / s / Mpc
|
||||||
|
|
||||||
|
|
||||||
###############################################################################
|
|
||||||
# Data loader #
|
|
||||||
###############################################################################
|
|
||||||
|
|
||||||
|
|
||||||
class DataLoader:
|
|
||||||
"""
|
|
||||||
Data loader for the line of sight (LOS) interpolated fields and the
|
|
||||||
corresponding catalogues.
|
|
||||||
|
|
||||||
Parameters
|
|
||||||
----------
|
|
||||||
simname : str
|
|
||||||
Simulation name.
|
|
||||||
ksim : int or list of int
|
|
||||||
Index of the simulation to read in (not the IC index).
|
|
||||||
catalogue : str
|
|
||||||
Name of the catalogue with LOS objects.
|
|
||||||
catalogue_fpath : str
|
|
||||||
Path to the LOS catalogue file.
|
|
||||||
paths : csiborgtools.read.Paths
|
|
||||||
Paths object.
|
|
||||||
ksmooth : int, optional
|
|
||||||
Smoothing index.
|
|
||||||
store_full_velocity : bool, optional
|
|
||||||
Whether to store the full 3D velocity field. Otherwise stores only
|
|
||||||
the radial velocity.
|
|
||||||
verbose : bool, optional
|
|
||||||
Verbose flag.
|
|
||||||
"""
|
|
||||||
def __init__(self, simname, ksim, catalogue, catalogue_fpath, paths,
|
|
||||||
ksmooth=None, store_full_velocity=False, verbose=True):
|
|
||||||
fprint("reading the catalogue,", verbose)
|
|
||||||
self._cat = self._read_catalogue(catalogue, catalogue_fpath)
|
|
||||||
self._catname = catalogue
|
|
||||||
|
|
||||||
fprint("reading the interpolated field.", verbose)
|
|
||||||
self._field_rdist, self._los_density, self._los_velocity = self._read_field( # noqa
|
|
||||||
simname, ksim, catalogue, ksmooth, paths)
|
|
||||||
|
|
||||||
if len(self._cat) != self._los_density.shape[1]:
|
|
||||||
raise ValueError("The number of objects in the catalogue does not "
|
|
||||||
"match the number of objects in the field.")
|
|
||||||
|
|
||||||
fprint("calculating the radial velocity.", verbose)
|
|
||||||
nobject = self._los_density.shape[1]
|
|
||||||
dtype = self._los_density.dtype
|
|
||||||
|
|
||||||
if simname in ["Carrick2015", "Lilow2024"]:
|
|
||||||
# Carrick+2015 and Lilow+2024 are in galactic coordinates
|
|
||||||
d1, d2 = radec_to_galactic(self._cat["RA"], self._cat["DEC"])
|
|
||||||
elif simname in ["CF4", "CLONES"]:
|
|
||||||
# CF4 is in supergalactic coordinates
|
|
||||||
d1, d2 = radec_to_supergalactic(self._cat["RA"], self._cat["DEC"])
|
|
||||||
else:
|
|
||||||
d1, d2 = self._cat["RA"], self._cat["DEC"]
|
|
||||||
|
|
||||||
num_sims = len(self._los_density)
|
|
||||||
if "IndranilVoid" in simname:
|
|
||||||
self._los_radial_velocity = self._los_velocity
|
|
||||||
self._los_velocity = None
|
|
||||||
else:
|
|
||||||
radvel = np.empty(
|
|
||||||
(num_sims, nobject, len(self._field_rdist)), dtype)
|
|
||||||
for k in range(num_sims):
|
|
||||||
for i in range(nobject):
|
|
||||||
radvel[k, i, :] = radial_velocity_los(
|
|
||||||
self._los_velocity[k, :, i, ...], d1[i], d2[i])
|
|
||||||
self._los_radial_velocity = radvel
|
|
||||||
|
|
||||||
if not store_full_velocity:
|
|
||||||
self._los_velocity = None
|
|
||||||
|
|
||||||
self._Omega_m = simname2Omega_m(simname)
|
|
||||||
|
|
||||||
# Normalize the CSiBORG & CLONES density by the mean matter density
|
|
||||||
if "csiborg" in simname or simname == "CLONES":
|
|
||||||
cosmo = FlatLambdaCDM(H0=H0, Om0=self._Omega_m)
|
|
||||||
mean_rho_matter = cosmo.critical_density0.to("Msun/kpc^3").value
|
|
||||||
mean_rho_matter *= self._Omega_m
|
|
||||||
self._los_density /= mean_rho_matter
|
|
||||||
|
|
||||||
# Since Carrick+2015 and CF4 provide `rho / <rho> - 1`
|
|
||||||
if simname in ["Carrick2015", "CF4", "CF4gp"]:
|
|
||||||
self._los_density += 1
|
|
||||||
|
|
||||||
# But some CF4 delta values are < -1. Check that CF4 really reports
|
|
||||||
# this.
|
|
||||||
if simname in ["CF4", "CF4gp"]:
|
|
||||||
self._los_density = np.clip(self._los_density, 1e-2, None,)
|
|
||||||
|
|
||||||
# Lilow+2024 outside of the range data is NaN. Replace it with some
|
|
||||||
# finite values. This is OK because the PV tracers are not so far.
|
|
||||||
if simname == "Lilow2024":
|
|
||||||
self._los_density[np.isnan(self._los_density)] = 1.
|
|
||||||
self._los_radial_velocity[np.isnan(self._los_radial_velocity)] = 0.
|
|
||||||
|
|
||||||
self._mask = np.ones(len(self._cat), dtype=bool)
|
|
||||||
self._catname = catalogue
|
|
||||||
|
|
||||||
@property
|
|
||||||
def cat(self):
|
|
||||||
"""The distance indicators catalogue (structured array)."""
|
|
||||||
return self._cat[self._mask]
|
|
||||||
|
|
||||||
@property
|
|
||||||
def catname(self):
|
|
||||||
"""Catalogue name."""
|
|
||||||
return self._catname
|
|
||||||
|
|
||||||
@property
|
|
||||||
def rdist(self):
|
|
||||||
"""Radial distances at which the field was interpolated."""
|
|
||||||
return self._field_rdist
|
|
||||||
|
|
||||||
@property
|
|
||||||
def los_density(self):
|
|
||||||
"""
|
|
||||||
Density field along the line of sight `(n_sims, n_objects, n_steps)`
|
|
||||||
"""
|
|
||||||
return self._los_density[:, self._mask, ...]
|
|
||||||
|
|
||||||
@property
|
|
||||||
def los_velocity(self):
|
|
||||||
"""
|
|
||||||
Velocity field along the line of sight `(n_sims, 3, n_objects,
|
|
||||||
n_steps)`.
|
|
||||||
"""
|
|
||||||
if self._los_velocity is None:
|
|
||||||
raise ValueError("The 3D velocities were not stored.")
|
|
||||||
|
|
||||||
return self._los_velocity[:, :, self._mask, ...]
|
|
||||||
|
|
||||||
@property
|
|
||||||
def los_radial_velocity(self):
|
|
||||||
"""
|
|
||||||
Radial velocity along the line of sight `(n_sims, n_objects, n_steps)`.
|
|
||||||
"""
|
|
||||||
return self._los_radial_velocity[:, self._mask, ...]
|
|
||||||
|
|
||||||
def _read_field(self, simname, ksims, catalogue, ksmooth, paths):
|
|
||||||
nsims = paths.get_ics(simname)
|
|
||||||
if isinstance(ksims, int):
|
|
||||||
ksims = [ksims]
|
|
||||||
|
|
||||||
# For no-field read in Carrick+2015 but then zero it.
|
|
||||||
if simname == "no_field":
|
|
||||||
simname = "Carrick2015"
|
|
||||||
to_wipe = simname == "no_field"
|
|
||||||
|
|
||||||
if not all(0 <= ksim < len(nsims) for ksim in ksims):
|
|
||||||
raise ValueError(f"Invalid simulation index: `{ksims}`")
|
|
||||||
|
|
||||||
if "Pantheon+" in catalogue:
|
|
||||||
fpath = paths.field_los(simname, "Pantheon+")
|
|
||||||
elif "CF4_TFR" in catalogue:
|
|
||||||
fpath = paths.field_los(simname, "CF4_TFR")
|
|
||||||
else:
|
|
||||||
fpath = paths.field_los(simname, catalogue)
|
|
||||||
|
|
||||||
los_density = [None] * len(ksims)
|
|
||||||
los_velocity = [None] * len(ksims)
|
|
||||||
|
|
||||||
for n, ksim in enumerate(ksims):
|
|
||||||
nsim = nsims[ksim]
|
|
||||||
|
|
||||||
with File(fpath, 'r') as f:
|
|
||||||
has_smoothed = True if f[f"density_{nsim}"].ndim > 2 else False
|
|
||||||
if has_smoothed and (ksmooth is None or not isinstance(ksmooth, int)): # noqa
|
|
||||||
raise ValueError("The output contains smoothed field but "
|
|
||||||
"`ksmooth` is None. It must be provided.")
|
|
||||||
|
|
||||||
indx = (..., ksmooth) if has_smoothed else (...)
|
|
||||||
los_density[n] = f[f"density_{nsim}"][indx]
|
|
||||||
los_velocity[n] = f[f"velocity_{nsim}"][indx]
|
|
||||||
rdist = f[f"rdist_{nsim}"][...]
|
|
||||||
|
|
||||||
los_density = np.stack(los_density)
|
|
||||||
los_velocity = np.stack(los_velocity)
|
|
||||||
|
|
||||||
if to_wipe:
|
|
||||||
los_density = np.ones_like(los_density)
|
|
||||||
los_velocity = np.zeros_like(los_velocity)
|
|
||||||
|
|
||||||
return rdist, los_density, los_velocity
|
|
||||||
|
|
||||||
def _read_catalogue(self, catalogue, catalogue_fpath):
|
|
||||||
if catalogue == "A2":
|
|
||||||
with File(catalogue_fpath, 'r') as f:
|
|
||||||
dtype = [(key, np.float32) for key in f.keys()]
|
|
||||||
arr = np.empty(len(f["RA"]), dtype=dtype)
|
|
||||||
for key in f.keys():
|
|
||||||
arr[key] = f[key][:]
|
|
||||||
elif catalogue in ["LOSS", "Foundation", "SFI_gals", "2MTF",
|
|
||||||
"Pantheon+", "SFI_gals_masked", "SFI_groups",
|
|
||||||
"Pantheon+_groups", "Pantheon+_groups_zSN",
|
|
||||||
"Pantheon+_zSN"]:
|
|
||||||
with File(catalogue_fpath, 'r') as f:
|
|
||||||
if "Pantheon+" in catalogue:
|
|
||||||
grp = f["Pantheon+"]
|
|
||||||
else:
|
|
||||||
grp = f[catalogue]
|
|
||||||
|
|
||||||
dtype = [(key, np.float32) for key in grp.keys()]
|
|
||||||
arr = np.empty(len(grp["RA"]), dtype=dtype)
|
|
||||||
for key in grp.keys():
|
|
||||||
arr[key] = grp[key][:]
|
|
||||||
elif "CB2_" in catalogue:
|
|
||||||
with File(catalogue_fpath, 'r') as f:
|
|
||||||
dtype = [(key, np.float32) for key in f.keys()]
|
|
||||||
arr = np.empty(len(f["RA"]), dtype=dtype)
|
|
||||||
for key in f.keys():
|
|
||||||
arr[key] = f[key][:]
|
|
||||||
elif "UPGLADE" in catalogue:
|
|
||||||
with File(catalogue_fpath, 'r') as f:
|
|
||||||
dtype = [(key, np.float32) for key in f.keys()]
|
|
||||||
arr = np.empty(len(f["RA"]), dtype=dtype)
|
|
||||||
for key in f.keys():
|
|
||||||
if key == "mask":
|
|
||||||
continue
|
|
||||||
|
|
||||||
arr[key] = f[key][:]
|
|
||||||
elif catalogue in ["CF4_GroupAll"] or "CF4_TFR" in catalogue:
|
|
||||||
with File(catalogue_fpath, 'r') as f:
|
|
||||||
dtype = [(key, np.float32) for key in f.keys()]
|
|
||||||
dtype += [("DEC", np.float32)]
|
|
||||||
arr = np.empty(len(f["RA"]), dtype=dtype)
|
|
||||||
|
|
||||||
for key in f.keys():
|
|
||||||
arr[key] = f[key][:]
|
|
||||||
arr["DEC"] = arr["DE"]
|
|
||||||
|
|
||||||
if "CF4_TFR" in catalogue:
|
|
||||||
arr["RA"] *= 360 / 24
|
|
||||||
else:
|
|
||||||
raise ValueError(f"Unknown catalogue: `{catalogue}`.")
|
|
||||||
|
|
||||||
return arr
|
|
||||||
|
|
||||||
|
|
||||||
###############################################################################
|
|
||||||
# Supplementary flow functions #
|
|
||||||
###############################################################################
|
|
||||||
|
|
||||||
|
|
||||||
def radial_velocity_los(los_velocity, ra, dec):
|
|
||||||
"""
|
|
||||||
Calculate the radial velocity along the LOS from the 3D velocity
|
|
||||||
along the LOS `(3, n_steps)`.
|
|
||||||
"""
|
|
||||||
types = (float, np.float32, np.float64)
|
|
||||||
if not isinstance(ra, types) and not isinstance(dec, types):
|
|
||||||
raise ValueError("RA and dec must be floats.")
|
|
||||||
|
|
||||||
if los_velocity.ndim != 2 and los_velocity.shape[0] != 3:
|
|
||||||
raise ValueError("The shape of `los_velocity` must be (3, n_steps).")
|
|
||||||
|
|
||||||
ra_rad, dec_rad = np.deg2rad(ra), np.deg2rad(dec)
|
|
||||||
|
|
||||||
vx, vy, vz = los_velocity
|
|
||||||
return (vx * np.cos(ra_rad) * np.cos(dec_rad)
|
|
||||||
+ vy * np.sin(ra_rad) * np.cos(dec_rad)
|
|
||||||
+ vz * np.sin(dec_rad))
|
|
||||||
|
|
||||||
|
|
||||||
###############################################################################
|
###############################################################################
|
||||||
# JAX Flow model #
|
# JAX Flow model #
|
||||||
###############################################################################
|
###############################################################################
|
||||||
|
@ -990,235 +724,6 @@ def PV_validation_model(models, distmod_hyperparams_per_model,
|
||||||
factor("ll", ll)
|
factor("ll", ll)
|
||||||
|
|
||||||
|
|
||||||
###############################################################################
|
|
||||||
# Shortcut to create a model #
|
|
||||||
###############################################################################
|
|
||||||
|
|
||||||
|
|
||||||
def read_absolute_calibration(kind, data_length, calibration_fpath):
|
|
||||||
"""
|
|
||||||
Read the absolute calibration for the CF4 TFR sample from LEDA but
|
|
||||||
preprocessed by me.
|
|
||||||
|
|
||||||
Parameters
|
|
||||||
----------
|
|
||||||
kind : str
|
|
||||||
Calibration kind: `Cepheids`, `TRGB`, `SBF`, ...
|
|
||||||
data_length : int
|
|
||||||
Number of samples in CF4 TFR (should be 9,788).
|
|
||||||
calibration_fpath : str
|
|
||||||
Path to the preprocessed calibration file.
|
|
||||||
|
|
||||||
Returns
|
|
||||||
-------
|
|
||||||
data : 3-dimensional array of shape (data_length, max_calib, 2)
|
|
||||||
Absolute calibration data.
|
|
||||||
with_calibration : 1-dimensional array of shape (data_length)
|
|
||||||
Whether the sample has a calibration.
|
|
||||||
length_calibration : 1-dimensional array of shape (data_length)
|
|
||||||
Number of calibration points per sample.
|
|
||||||
"""
|
|
||||||
data = {}
|
|
||||||
with File(calibration_fpath, 'r') as f:
|
|
||||||
for key in f[kind].keys():
|
|
||||||
x = f[kind][key][:]
|
|
||||||
|
|
||||||
# Get rid of points without uncertainties
|
|
||||||
x = x[~np.isnan(x[:, 1])]
|
|
||||||
|
|
||||||
data[key] = x
|
|
||||||
|
|
||||||
max_calib = max(len(val) for val in data.values())
|
|
||||||
|
|
||||||
out = np.full((data_length, max_calib, 2), np.nan)
|
|
||||||
with_calibration = np.full(data_length, False)
|
|
||||||
length_calibration = np.full(data_length, 0)
|
|
||||||
for i in data.keys():
|
|
||||||
out[int(i), :len(data[i]), :] = data[i]
|
|
||||||
with_calibration[int(i)] = True
|
|
||||||
length_calibration[int(i)] = len(data[i])
|
|
||||||
|
|
||||||
return out, with_calibration, length_calibration
|
|
||||||
|
|
||||||
|
|
||||||
def get_model(loader, zcmb_min=None, zcmb_max=None, mag_selection=None,
|
|
||||||
absolute_calibration=None, calibration_fpath=None):
|
|
||||||
"""
|
|
||||||
Get a model and extract the relevant data from the loader.
|
|
||||||
|
|
||||||
Parameters
|
|
||||||
----------
|
|
||||||
loader : DataLoader
|
|
||||||
DataLoader instance.
|
|
||||||
zcmb_min : float, optional
|
|
||||||
Minimum observed redshift in the CMB frame to include.
|
|
||||||
zcmb_max : float, optional
|
|
||||||
Maximum observed redshift in the CMB frame to include.
|
|
||||||
mag_selection : dict, optional
|
|
||||||
Magnitude selection parameters.
|
|
||||||
add_absolute_calibration : bool, optional
|
|
||||||
Whether to add an absolute calibration for CF4 TFRs.
|
|
||||||
calibration_fpath : str, optional
|
|
||||||
|
|
||||||
Returns
|
|
||||||
-------
|
|
||||||
model : NumPyro model
|
|
||||||
"""
|
|
||||||
zcmb_min = 0.0 if zcmb_min is None else zcmb_min
|
|
||||||
zcmb_max = np.infty if zcmb_max is None else zcmb_max
|
|
||||||
|
|
||||||
los_overdensity = loader.los_density
|
|
||||||
los_velocity = loader.los_radial_velocity
|
|
||||||
kind = loader._catname
|
|
||||||
|
|
||||||
if absolute_calibration is not None and "CF4_TFR_" not in kind:
|
|
||||||
raise ValueError("Absolute calibration supported only for the CF4 TFR sample.") # noqa
|
|
||||||
|
|
||||||
if kind in ["LOSS", "Foundation"]:
|
|
||||||
keys = ["RA", "DEC", "z_CMB", "mB", "x1", "c", "e_mB", "e_x1", "e_c"]
|
|
||||||
RA, dec, zCMB, mag, x1, c, e_mag, e_x1, e_c = (
|
|
||||||
loader.cat[k] for k in keys)
|
|
||||||
e_zCMB = None
|
|
||||||
|
|
||||||
mask = (zCMB < zcmb_max) & (zCMB > zcmb_min)
|
|
||||||
calibration_params = {"mag": mag[mask], "x1": x1[mask], "c": c[mask],
|
|
||||||
"e_mag": e_mag[mask], "e_x1": e_x1[mask],
|
|
||||||
"e_c": e_c[mask]}
|
|
||||||
|
|
||||||
model = PV_LogLikelihood(
|
|
||||||
los_overdensity[:, mask], los_velocity[:, mask],
|
|
||||||
RA[mask], dec[mask], zCMB[mask], e_zCMB, calibration_params,
|
|
||||||
None, mag_selection, loader.rdist, loader._Omega_m, "SN",
|
|
||||||
name=kind)
|
|
||||||
elif "Pantheon+" in kind:
|
|
||||||
keys = ["RA", "DEC", "zCMB", "mB", "x1", "c", "biasCor_m_b", "mBERR",
|
|
||||||
"x1ERR", "cERR", "biasCorErr_m_b", "zCMB_SN", "zCMB_Group",
|
|
||||||
"zCMBERR"]
|
|
||||||
|
|
||||||
RA, dec, zCMB, mB, x1, c, bias_corr_mB, e_mB, e_x1, e_c, e_bias_corr_mB, zCMB_SN, zCMB_Group, e_zCMB = (loader.cat[k] for k in keys) # noqa
|
|
||||||
mB -= bias_corr_mB
|
|
||||||
e_mB = np.sqrt(e_mB**2 + e_bias_corr_mB**2)
|
|
||||||
|
|
||||||
mask = (zCMB < zcmb_max) & (zCMB > zcmb_min)
|
|
||||||
|
|
||||||
if kind == "Pantheon+_groups":
|
|
||||||
mask &= np.isfinite(zCMB_Group)
|
|
||||||
|
|
||||||
if kind == "Pantheon+_groups_zSN":
|
|
||||||
mask &= np.isfinite(zCMB_Group)
|
|
||||||
zCMB = zCMB_SN
|
|
||||||
|
|
||||||
if kind == "Pantheon+_zSN":
|
|
||||||
zCMB = zCMB_SN
|
|
||||||
|
|
||||||
calibration_params = {"mag": mB[mask], "x1": x1[mask], "c": c[mask],
|
|
||||||
"e_mag": e_mB[mask], "e_x1": e_x1[mask],
|
|
||||||
"e_c": e_c[mask]}
|
|
||||||
model = PV_LogLikelihood(
|
|
||||||
los_overdensity[:, mask], los_velocity[:, mask],
|
|
||||||
RA[mask], dec[mask], zCMB[mask], e_zCMB[mask], calibration_params,
|
|
||||||
None, mag_selection, loader.rdist, loader._Omega_m, "SN",
|
|
||||||
name=kind)
|
|
||||||
elif kind in ["SFI_gals", "2MTF", "SFI_gals_masked"]:
|
|
||||||
keys = ["RA", "DEC", "z_CMB", "mag", "eta", "e_mag", "e_eta"]
|
|
||||||
RA, dec, zCMB, mag, eta, e_mag, e_eta = (loader.cat[k] for k in keys)
|
|
||||||
|
|
||||||
mask = (zCMB < zcmb_max) & (zCMB > zcmb_min)
|
|
||||||
calibration_params = {"mag": mag[mask], "eta": eta[mask],
|
|
||||||
"e_mag": e_mag[mask], "e_eta": e_eta[mask]}
|
|
||||||
model = PV_LogLikelihood(
|
|
||||||
los_overdensity[:, mask], los_velocity[:, mask],
|
|
||||||
RA[mask], dec[mask], zCMB[mask], None, calibration_params, None,
|
|
||||||
mag_selection, loader.rdist, loader._Omega_m, "TFR", name=kind)
|
|
||||||
elif "CF4_TFR_" in kind:
|
|
||||||
# The full name can be e.g. "CF4_TFR_not2MTForSFI_i" or "CF4_TFR_i".
|
|
||||||
band = kind.split("_")[-1]
|
|
||||||
if band not in ['g', 'r', 'i', 'z', 'w1', 'w2']:
|
|
||||||
raise ValueError(f"Band `{band}` not recognized.")
|
|
||||||
|
|
||||||
keys = ["RA", "DEC", "Vcmb", f"{band}", "lgWmxi", "elgWi",
|
|
||||||
"not_matched_to_2MTF_or_SFI", "Qs", "Qw"]
|
|
||||||
RA, dec, z_obs, mag, eta, e_eta, not_matched_to_2MTF_or_SFI, Qs, Qw = (
|
|
||||||
loader.cat[k] for k in keys)
|
|
||||||
l, b = radec_to_galactic(RA, dec)
|
|
||||||
|
|
||||||
not_matched_to_2MTF_or_SFI = not_matched_to_2MTF_or_SFI.astype(bool)
|
|
||||||
# NOTE: fiducial uncertainty until we can get the actual values.
|
|
||||||
e_mag = 0.05 * np.ones_like(mag)
|
|
||||||
|
|
||||||
z_obs /= SPEED_OF_LIGHT
|
|
||||||
eta -= 2.5
|
|
||||||
|
|
||||||
fprint("selecting only galaxies with mag > 5 and eta > -0.3.")
|
|
||||||
mask = (mag > 5) & (eta > -0.3)
|
|
||||||
fprint("selecting only galaxies with |b| > 7.5.")
|
|
||||||
mask &= np.abs(b) > 7.5
|
|
||||||
mask &= (z_obs < zcmb_max) & (z_obs > zcmb_min)
|
|
||||||
|
|
||||||
if "not2MTForSFI" in kind:
|
|
||||||
mask &= not_matched_to_2MTF_or_SFI
|
|
||||||
elif "2MTForSFI" in kind:
|
|
||||||
mask &= ~not_matched_to_2MTF_or_SFI
|
|
||||||
|
|
||||||
fprint("employing a quality cut on the galaxies.")
|
|
||||||
if "w" in band:
|
|
||||||
mask &= Qw == 5
|
|
||||||
else:
|
|
||||||
mask &= Qs == 5
|
|
||||||
|
|
||||||
# Read the absolute calibration
|
|
||||||
if absolute_calibration is not None:
|
|
||||||
CF4_length = len(RA)
|
|
||||||
distmod, with_calibration, length_calibration = read_absolute_calibration( # noqa
|
|
||||||
"Cepheids", CF4_length, calibration_fpath)
|
|
||||||
|
|
||||||
distmod = distmod[mask]
|
|
||||||
with_calibration = with_calibration[mask]
|
|
||||||
length_calibration = length_calibration[mask]
|
|
||||||
fprint(f"found {np.sum(with_calibration)} galaxies with absolute calibration.") # noqa
|
|
||||||
|
|
||||||
distmod = distmod[with_calibration]
|
|
||||||
length_calibration = length_calibration[with_calibration]
|
|
||||||
|
|
||||||
abs_calibration_params = {
|
|
||||||
"calibration_distmod": distmod,
|
|
||||||
"data_with_calibration": with_calibration,
|
|
||||||
"length_calibration": length_calibration}
|
|
||||||
else:
|
|
||||||
abs_calibration_params = None
|
|
||||||
|
|
||||||
calibration_params = {"mag": mag[mask], "eta": eta[mask],
|
|
||||||
"e_mag": e_mag[mask], "e_eta": e_eta[mask]}
|
|
||||||
model = PV_LogLikelihood(
|
|
||||||
los_overdensity[:, mask], los_velocity[:, mask],
|
|
||||||
RA[mask], dec[mask], z_obs[mask], None, calibration_params,
|
|
||||||
abs_calibration_params, mag_selection, loader.rdist,
|
|
||||||
loader._Omega_m, "TFR", name=kind)
|
|
||||||
elif kind in ["CF4_GroupAll"]:
|
|
||||||
# Note, this for some reason works terribly.
|
|
||||||
keys = ["RA", "DE", "Vcmb", "DMzp", "eDM"]
|
|
||||||
RA, dec, zCMB, mu, e_mu = (loader.cat[k] for k in keys)
|
|
||||||
|
|
||||||
zCMB /= SPEED_OF_LIGHT
|
|
||||||
mask = (zCMB < zcmb_max) & (zCMB > zcmb_min) & np.isfinite(mu)
|
|
||||||
|
|
||||||
# The distance moduli in CF4 are most likely given assuming h = 0.75
|
|
||||||
mu += 5 * np.log10(0.75)
|
|
||||||
|
|
||||||
calibration_params = {"mu": mu[mask], "e_mu": e_mu[mask]}
|
|
||||||
model = PV_LogLikelihood(
|
|
||||||
los_overdensity[:, mask], los_velocity[:, mask],
|
|
||||||
RA[mask], dec[mask], zCMB[mask], None, calibration_params, None,
|
|
||||||
mag_selection, loader.rdist, loader._Omega_m, "simple",
|
|
||||||
name=kind)
|
|
||||||
else:
|
|
||||||
raise ValueError(f"Catalogue `{kind}` not recognized.")
|
|
||||||
|
|
||||||
fprint(f"selected {np.sum(mask)}/{len(mask)} galaxies in catalogue `{kind}`") # noqa
|
|
||||||
|
|
||||||
return model
|
|
||||||
|
|
||||||
|
|
||||||
###############################################################################
|
###############################################################################
|
||||||
# Predicting z_cosmo from z_obs #
|
# Predicting z_cosmo from z_obs #
|
||||||
###############################################################################
|
###############################################################################
|
||||||
|
|
518
csiborgtools/flow/io.py
Normal file
518
csiborgtools/flow/io.py
Normal file
|
@ -0,0 +1,518 @@
|
||||||
|
# Copyright (C) 2024 Richard Stiskalek
|
||||||
|
# This program is free software; you can redistribute it and/or modify it
|
||||||
|
# under the terms of the GNU General Public License as published by the
|
||||||
|
# Free Software Foundation; either version 3 of the License, or (at your
|
||||||
|
# option) any later version.
|
||||||
|
#
|
||||||
|
# This program is distributed in the hope that it will be useful, but
|
||||||
|
# WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
|
||||||
|
# Public License for more details.
|
||||||
|
#
|
||||||
|
# You should have received a copy of the GNU General Public License along
|
||||||
|
# with this program; if not, write to the Free Software Foundation, Inc.,
|
||||||
|
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
from astropy.cosmology import FlatLambdaCDM
|
||||||
|
from h5py import File
|
||||||
|
|
||||||
|
from ..params import SPEED_OF_LIGHT, simname2Omega_m
|
||||||
|
from ..utils import fprint, radec_to_galactic, radec_to_supergalactic
|
||||||
|
from .flow_model import PV_LogLikelihood
|
||||||
|
|
||||||
|
H0 = 100 # km / s / Mpc
|
||||||
|
|
||||||
|
|
||||||
|
##############################################################################
|
||||||
|
# Data loader #
|
||||||
|
###############################################################################
|
||||||
|
|
||||||
|
|
||||||
|
class DataLoader:
|
||||||
|
"""
|
||||||
|
Data loader for the line of sight (LOS) interpolated fields and the
|
||||||
|
corresponding catalogues.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
simname : str
|
||||||
|
Simulation name.
|
||||||
|
ksim : int or list of int
|
||||||
|
Index of the simulation to read in (not the IC index).
|
||||||
|
catalogue : str
|
||||||
|
Name of the catalogue with LOS objects.
|
||||||
|
catalogue_fpath : str
|
||||||
|
Path to the LOS catalogue file.
|
||||||
|
paths : csiborgtools.read.Paths
|
||||||
|
Paths object.
|
||||||
|
ksmooth : int, optional
|
||||||
|
Smoothing index.
|
||||||
|
store_full_velocity : bool, optional
|
||||||
|
Whether to store the full 3D velocity field. Otherwise stores only
|
||||||
|
the radial velocity.
|
||||||
|
verbose : bool, optional
|
||||||
|
Verbose flag.
|
||||||
|
"""
|
||||||
|
def __init__(self, simname, ksim, catalogue, catalogue_fpath, paths,
|
||||||
|
ksmooth=None, store_full_velocity=False, verbose=True):
|
||||||
|
fprint("reading the catalogue,", verbose)
|
||||||
|
self._cat = self._read_catalogue(catalogue, catalogue_fpath)
|
||||||
|
self._catname = catalogue
|
||||||
|
|
||||||
|
fprint("reading the interpolated field.", verbose)
|
||||||
|
self._field_rdist, self._los_density, self._los_velocity = self._read_field( # noqa
|
||||||
|
simname, ksim, catalogue, ksmooth, paths)
|
||||||
|
|
||||||
|
if len(self._cat) != self._los_density.shape[1]:
|
||||||
|
raise ValueError("The number of objects in the catalogue does not "
|
||||||
|
"match the number of objects in the field.")
|
||||||
|
|
||||||
|
fprint("calculating the radial velocity.", verbose)
|
||||||
|
nobject = self._los_density.shape[1]
|
||||||
|
dtype = self._los_density.dtype
|
||||||
|
|
||||||
|
if simname in ["Carrick2015", "Lilow2024"]:
|
||||||
|
# Carrick+2015 and Lilow+2024 are in galactic coordinates
|
||||||
|
d1, d2 = radec_to_galactic(self._cat["RA"], self._cat["DEC"])
|
||||||
|
elif simname in ["CF4", "CLONES"]:
|
||||||
|
# CF4 is in supergalactic coordinates
|
||||||
|
d1, d2 = radec_to_supergalactic(self._cat["RA"], self._cat["DEC"])
|
||||||
|
else:
|
||||||
|
d1, d2 = self._cat["RA"], self._cat["DEC"]
|
||||||
|
|
||||||
|
num_sims = len(self._los_density)
|
||||||
|
if "IndranilVoid" in simname:
|
||||||
|
self._los_radial_velocity = self._los_velocity
|
||||||
|
self._los_velocity = None
|
||||||
|
else:
|
||||||
|
radvel = np.empty(
|
||||||
|
(num_sims, nobject, len(self._field_rdist)), dtype)
|
||||||
|
for k in range(num_sims):
|
||||||
|
for i in range(nobject):
|
||||||
|
radvel[k, i, :] = radial_velocity_los(
|
||||||
|
self._los_velocity[k, :, i, ...], d1[i], d2[i])
|
||||||
|
self._los_radial_velocity = radvel
|
||||||
|
|
||||||
|
if not store_full_velocity:
|
||||||
|
self._los_velocity = None
|
||||||
|
|
||||||
|
self._Omega_m = simname2Omega_m(simname)
|
||||||
|
|
||||||
|
# Normalize the CSiBORG & CLONES density by the mean matter density
|
||||||
|
if "csiborg" in simname or simname == "CLONES":
|
||||||
|
cosmo = FlatLambdaCDM(H0=H0, Om0=self._Omega_m)
|
||||||
|
mean_rho_matter = cosmo.critical_density0.to("Msun/kpc^3").value
|
||||||
|
mean_rho_matter *= self._Omega_m
|
||||||
|
self._los_density /= mean_rho_matter
|
||||||
|
|
||||||
|
# Since Carrick+2015 and CF4 provide `rho / <rho> - 1`
|
||||||
|
if simname in ["Carrick2015", "CF4", "CF4gp"]:
|
||||||
|
self._los_density += 1
|
||||||
|
|
||||||
|
# But some CF4 delta values are < -1. Check that CF4 really reports
|
||||||
|
# this.
|
||||||
|
if simname in ["CF4", "CF4gp"]:
|
||||||
|
self._los_density = np.clip(self._los_density, 1e-2, None,)
|
||||||
|
|
||||||
|
# Lilow+2024 outside of the range data is NaN. Replace it with some
|
||||||
|
# finite values. This is OK because the PV tracers are not so far.
|
||||||
|
if simname == "Lilow2024":
|
||||||
|
self._los_density[np.isnan(self._los_density)] = 1.
|
||||||
|
self._los_radial_velocity[np.isnan(self._los_radial_velocity)] = 0.
|
||||||
|
|
||||||
|
self._mask = np.ones(len(self._cat), dtype=bool)
|
||||||
|
self._catname = catalogue
|
||||||
|
|
||||||
|
@property
|
||||||
|
def cat(self):
|
||||||
|
"""The distance indicators catalogue (structured array)."""
|
||||||
|
return self._cat[self._mask]
|
||||||
|
|
||||||
|
@property
|
||||||
|
def catname(self):
|
||||||
|
"""Catalogue name."""
|
||||||
|
return self._catname
|
||||||
|
|
||||||
|
@property
|
||||||
|
def rdist(self):
|
||||||
|
"""Radial distances at which the field was interpolated."""
|
||||||
|
return self._field_rdist
|
||||||
|
|
||||||
|
@property
|
||||||
|
def los_density(self):
|
||||||
|
"""
|
||||||
|
Density field along the line of sight `(n_sims, n_objects, n_steps)`
|
||||||
|
"""
|
||||||
|
return self._los_density[:, self._mask, ...]
|
||||||
|
|
||||||
|
@property
|
||||||
|
def los_velocity(self):
|
||||||
|
"""
|
||||||
|
Velocity field along the line of sight `(n_sims, 3, n_objects,
|
||||||
|
n_steps)`.
|
||||||
|
"""
|
||||||
|
if self._los_velocity is None:
|
||||||
|
raise ValueError("The 3D velocities were not stored.")
|
||||||
|
|
||||||
|
return self._los_velocity[:, :, self._mask, ...]
|
||||||
|
|
||||||
|
@property
|
||||||
|
def los_radial_velocity(self):
|
||||||
|
"""
|
||||||
|
Radial velocity along the line of sight `(n_sims, n_objects, n_steps)`.
|
||||||
|
"""
|
||||||
|
return self._los_radial_velocity[:, self._mask, ...]
|
||||||
|
|
||||||
|
def _read_field(self, simname, ksims, catalogue, ksmooth, paths):
|
||||||
|
nsims = paths.get_ics(simname)
|
||||||
|
if isinstance(ksims, int):
|
||||||
|
ksims = [ksims]
|
||||||
|
|
||||||
|
# For no-field read in Carrick+2015 but then zero it.
|
||||||
|
if simname == "no_field":
|
||||||
|
simname = "Carrick2015"
|
||||||
|
to_wipe = simname == "no_field"
|
||||||
|
|
||||||
|
if not all(0 <= ksim < len(nsims) for ksim in ksims):
|
||||||
|
raise ValueError(f"Invalid simulation index: `{ksims}`")
|
||||||
|
|
||||||
|
if "Pantheon+" in catalogue:
|
||||||
|
fpath = paths.field_los(simname, "Pantheon+")
|
||||||
|
elif "CF4_TFR" in catalogue:
|
||||||
|
fpath = paths.field_los(simname, "CF4_TFR")
|
||||||
|
else:
|
||||||
|
fpath = paths.field_los(simname, catalogue)
|
||||||
|
|
||||||
|
los_density = [None] * len(ksims)
|
||||||
|
los_velocity = [None] * len(ksims)
|
||||||
|
|
||||||
|
for n, ksim in enumerate(ksims):
|
||||||
|
nsim = nsims[ksim]
|
||||||
|
|
||||||
|
with File(fpath, 'r') as f:
|
||||||
|
has_smoothed = True if f[f"density_{nsim}"].ndim > 2 else False
|
||||||
|
if has_smoothed and (ksmooth is None or not isinstance(ksmooth, int)): # noqa
|
||||||
|
raise ValueError("The output contains smoothed field but "
|
||||||
|
"`ksmooth` is None. It must be provided.")
|
||||||
|
|
||||||
|
indx = (..., ksmooth) if has_smoothed else (...)
|
||||||
|
los_density[n] = f[f"density_{nsim}"][indx]
|
||||||
|
los_velocity[n] = f[f"velocity_{nsim}"][indx]
|
||||||
|
rdist = f[f"rdist_{nsim}"][...]
|
||||||
|
|
||||||
|
los_density = np.stack(los_density)
|
||||||
|
los_velocity = np.stack(los_velocity)
|
||||||
|
|
||||||
|
if to_wipe:
|
||||||
|
los_density = np.ones_like(los_density)
|
||||||
|
los_velocity = np.zeros_like(los_velocity)
|
||||||
|
|
||||||
|
return rdist, los_density, los_velocity
|
||||||
|
|
||||||
|
def _read_catalogue(self, catalogue, catalogue_fpath):
|
||||||
|
if catalogue == "A2":
|
||||||
|
with File(catalogue_fpath, 'r') as f:
|
||||||
|
dtype = [(key, np.float32) for key in f.keys()]
|
||||||
|
arr = np.empty(len(f["RA"]), dtype=dtype)
|
||||||
|
for key in f.keys():
|
||||||
|
arr[key] = f[key][:]
|
||||||
|
elif catalogue in ["LOSS", "Foundation", "SFI_gals", "2MTF",
|
||||||
|
"Pantheon+", "SFI_gals_masked", "SFI_groups",
|
||||||
|
"Pantheon+_groups", "Pantheon+_groups_zSN",
|
||||||
|
"Pantheon+_zSN"]:
|
||||||
|
with File(catalogue_fpath, 'r') as f:
|
||||||
|
if "Pantheon+" in catalogue:
|
||||||
|
grp = f["Pantheon+"]
|
||||||
|
else:
|
||||||
|
grp = f[catalogue]
|
||||||
|
|
||||||
|
dtype = [(key, np.float32) for key in grp.keys()]
|
||||||
|
arr = np.empty(len(grp["RA"]), dtype=dtype)
|
||||||
|
for key in grp.keys():
|
||||||
|
arr[key] = grp[key][:]
|
||||||
|
elif "CB2_" in catalogue:
|
||||||
|
with File(catalogue_fpath, 'r') as f:
|
||||||
|
dtype = [(key, np.float32) for key in f.keys()]
|
||||||
|
arr = np.empty(len(f["RA"]), dtype=dtype)
|
||||||
|
for key in f.keys():
|
||||||
|
arr[key] = f[key][:]
|
||||||
|
elif "UPGLADE" in catalogue:
|
||||||
|
with File(catalogue_fpath, 'r') as f:
|
||||||
|
dtype = [(key, np.float32) for key in f.keys()]
|
||||||
|
arr = np.empty(len(f["RA"]), dtype=dtype)
|
||||||
|
for key in f.keys():
|
||||||
|
if key == "mask":
|
||||||
|
continue
|
||||||
|
|
||||||
|
arr[key] = f[key][:]
|
||||||
|
elif catalogue in ["CF4_GroupAll"] or "CF4_TFR" in catalogue:
|
||||||
|
with File(catalogue_fpath, 'r') as f:
|
||||||
|
dtype = [(key, np.float32) for key in f.keys()]
|
||||||
|
dtype += [("DEC", np.float32)]
|
||||||
|
arr = np.empty(len(f["RA"]), dtype=dtype)
|
||||||
|
|
||||||
|
for key in f.keys():
|
||||||
|
arr[key] = f[key][:]
|
||||||
|
arr["DEC"] = arr["DE"]
|
||||||
|
|
||||||
|
if "CF4_TFR" in catalogue:
|
||||||
|
arr["RA"] *= 360 / 24
|
||||||
|
else:
|
||||||
|
raise ValueError(f"Unknown catalogue: `{catalogue}`.")
|
||||||
|
|
||||||
|
return arr
|
||||||
|
|
||||||
|
|
||||||
|
###############################################################################
|
||||||
|
# Supplementary flow functions #
|
||||||
|
###############################################################################
|
||||||
|
|
||||||
|
|
||||||
|
def radial_velocity_los(los_velocity, ra, dec):
|
||||||
|
"""
|
||||||
|
Calculate the radial velocity along the LOS from the 3D velocity
|
||||||
|
along the LOS `(3, n_steps)`.
|
||||||
|
"""
|
||||||
|
types = (float, np.float32, np.float64)
|
||||||
|
if not isinstance(ra, types) and not isinstance(dec, types):
|
||||||
|
raise ValueError("RA and dec must be floats.")
|
||||||
|
|
||||||
|
if los_velocity.ndim != 2 and los_velocity.shape[0] != 3:
|
||||||
|
raise ValueError("The shape of `los_velocity` must be (3, n_steps).")
|
||||||
|
|
||||||
|
ra_rad, dec_rad = np.deg2rad(ra), np.deg2rad(dec)
|
||||||
|
|
||||||
|
vx, vy, vz = los_velocity
|
||||||
|
return (vx * np.cos(ra_rad) * np.cos(dec_rad)
|
||||||
|
+ vy * np.sin(ra_rad) * np.cos(dec_rad)
|
||||||
|
+ vz * np.sin(dec_rad))
|
||||||
|
|
||||||
|
|
||||||
|
##############################################################################
|
||||||
|
# Shortcut to create a model #
|
||||||
|
###############################################################################
|
||||||
|
|
||||||
|
|
||||||
|
def read_absolute_calibration(kind, data_length, calibration_fpath):
|
||||||
|
"""
|
||||||
|
Read the absolute calibration for the CF4 TFR sample from LEDA but
|
||||||
|
preprocessed by me.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
kind : str
|
||||||
|
Calibration kind: `Cepheids`, `TRGB`, `SBF`, ...
|
||||||
|
data_length : int
|
||||||
|
Number of samples in CF4 TFR (should be 9,788).
|
||||||
|
calibration_fpath : str
|
||||||
|
Path to the preprocessed calibration file.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
data : 3-dimensional array of shape (data_length, max_calib, 2)
|
||||||
|
Absolute calibration data.
|
||||||
|
with_calibration : 1-dimensional array of shape (data_length)
|
||||||
|
Whether the sample has a calibration.
|
||||||
|
length_calibration : 1-dimensional array of shape (data_length)
|
||||||
|
Number of calibration points per sample.
|
||||||
|
"""
|
||||||
|
data = {}
|
||||||
|
with File(calibration_fpath, 'r') as f:
|
||||||
|
for key in f[kind].keys():
|
||||||
|
x = f[kind][key][:]
|
||||||
|
|
||||||
|
# Get rid of points without uncertainties
|
||||||
|
x = x[~np.isnan(x[:, 1])]
|
||||||
|
|
||||||
|
data[key] = x
|
||||||
|
|
||||||
|
max_calib = max(len(val) for val in data.values())
|
||||||
|
|
||||||
|
out = np.full((data_length, max_calib, 2), np.nan)
|
||||||
|
with_calibration = np.full(data_length, False)
|
||||||
|
length_calibration = np.full(data_length, 0)
|
||||||
|
for i in data.keys():
|
||||||
|
out[int(i), :len(data[i]), :] = data[i]
|
||||||
|
with_calibration[int(i)] = True
|
||||||
|
length_calibration[int(i)] = len(data[i])
|
||||||
|
|
||||||
|
return out, with_calibration, length_calibration
|
||||||
|
|
||||||
|
|
||||||
|
def get_model(loader, zcmb_min=None, zcmb_max=None, mag_selection=None,
|
||||||
|
absolute_calibration=None, calibration_fpath=None):
|
||||||
|
"""
|
||||||
|
Get a model and extract the relevant data from the loader.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
loader : DataLoader
|
||||||
|
DataLoader instance.
|
||||||
|
zcmb_min : float, optional
|
||||||
|
Minimum observed redshift in the CMB frame to include.
|
||||||
|
zcmb_max : float, optional
|
||||||
|
Maximum observed redshift in the CMB frame to include.
|
||||||
|
mag_selection : dict, optional
|
||||||
|
Magnitude selection parameters.
|
||||||
|
add_absolute_calibration : bool, optional
|
||||||
|
Whether to add an absolute calibration for CF4 TFRs.
|
||||||
|
calibration_fpath : str, optional
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
model : NumPyro model
|
||||||
|
"""
|
||||||
|
zcmb_min = 0.0 if zcmb_min is None else zcmb_min
|
||||||
|
zcmb_max = np.infty if zcmb_max is None else zcmb_max
|
||||||
|
|
||||||
|
los_overdensity = loader.los_density
|
||||||
|
los_velocity = loader.los_radial_velocity
|
||||||
|
kind = loader._catname
|
||||||
|
|
||||||
|
if absolute_calibration is not None and "CF4_TFR_" not in kind:
|
||||||
|
raise ValueError("Absolute calibration supported only for the CF4 TFR sample.") # noqa
|
||||||
|
|
||||||
|
if kind in ["LOSS", "Foundation"]:
|
||||||
|
keys = ["RA", "DEC", "z_CMB", "mB", "x1", "c", "e_mB", "e_x1", "e_c"]
|
||||||
|
RA, dec, zCMB, mag, x1, c, e_mag, e_x1, e_c = (
|
||||||
|
loader.cat[k] for k in keys)
|
||||||
|
e_zCMB = None
|
||||||
|
|
||||||
|
mask = (zCMB < zcmb_max) & (zCMB > zcmb_min)
|
||||||
|
calibration_params = {"mag": mag[mask], "x1": x1[mask], "c": c[mask],
|
||||||
|
"e_mag": e_mag[mask], "e_x1": e_x1[mask],
|
||||||
|
"e_c": e_c[mask]}
|
||||||
|
|
||||||
|
model = PV_LogLikelihood(
|
||||||
|
los_overdensity[:, mask], los_velocity[:, mask],
|
||||||
|
RA[mask], dec[mask], zCMB[mask], e_zCMB, calibration_params,
|
||||||
|
None, mag_selection, loader.rdist, loader._Omega_m, "SN",
|
||||||
|
name=kind)
|
||||||
|
elif "Pantheon+" in kind:
|
||||||
|
keys = ["RA", "DEC", "zCMB", "mB", "x1", "c", "biasCor_m_b", "mBERR",
|
||||||
|
"x1ERR", "cERR", "biasCorErr_m_b", "zCMB_SN", "zCMB_Group",
|
||||||
|
"zCMBERR"]
|
||||||
|
|
||||||
|
RA, dec, zCMB, mB, x1, c, bias_corr_mB, e_mB, e_x1, e_c, e_bias_corr_mB, zCMB_SN, zCMB_Group, e_zCMB = (loader.cat[k] for k in keys) # noqa
|
||||||
|
mB -= bias_corr_mB
|
||||||
|
e_mB = np.sqrt(e_mB**2 + e_bias_corr_mB**2)
|
||||||
|
|
||||||
|
mask = (zCMB < zcmb_max) & (zCMB > zcmb_min)
|
||||||
|
|
||||||
|
if kind == "Pantheon+_groups":
|
||||||
|
mask &= np.isfinite(zCMB_Group)
|
||||||
|
|
||||||
|
if kind == "Pantheon+_groups_zSN":
|
||||||
|
mask &= np.isfinite(zCMB_Group)
|
||||||
|
zCMB = zCMB_SN
|
||||||
|
|
||||||
|
if kind == "Pantheon+_zSN":
|
||||||
|
zCMB = zCMB_SN
|
||||||
|
|
||||||
|
calibration_params = {"mag": mB[mask], "x1": x1[mask], "c": c[mask],
|
||||||
|
"e_mag": e_mB[mask], "e_x1": e_x1[mask],
|
||||||
|
"e_c": e_c[mask]}
|
||||||
|
model = PV_LogLikelihood(
|
||||||
|
los_overdensity[:, mask], los_velocity[:, mask],
|
||||||
|
RA[mask], dec[mask], zCMB[mask], e_zCMB[mask], calibration_params,
|
||||||
|
None, mag_selection, loader.rdist, loader._Omega_m, "SN",
|
||||||
|
name=kind)
|
||||||
|
elif kind in ["SFI_gals", "2MTF", "SFI_gals_masked"]:
|
||||||
|
keys = ["RA", "DEC", "z_CMB", "mag", "eta", "e_mag", "e_eta"]
|
||||||
|
RA, dec, zCMB, mag, eta, e_mag, e_eta = (loader.cat[k] for k in keys)
|
||||||
|
|
||||||
|
mask = (zCMB < zcmb_max) & (zCMB > zcmb_min)
|
||||||
|
calibration_params = {"mag": mag[mask], "eta": eta[mask],
|
||||||
|
"e_mag": e_mag[mask], "e_eta": e_eta[mask]}
|
||||||
|
model = PV_LogLikelihood(
|
||||||
|
los_overdensity[:, mask], los_velocity[:, mask],
|
||||||
|
RA[mask], dec[mask], zCMB[mask], None, calibration_params, None,
|
||||||
|
mag_selection, loader.rdist, loader._Omega_m, "TFR", name=kind)
|
||||||
|
elif "CF4_TFR_" in kind:
|
||||||
|
# The full name can be e.g. "CF4_TFR_not2MTForSFI_i" or "CF4_TFR_i".
|
||||||
|
band = kind.split("_")[-1]
|
||||||
|
if band not in ['g', 'r', 'i', 'z', 'w1', 'w2']:
|
||||||
|
raise ValueError(f"Band `{band}` not recognized.")
|
||||||
|
|
||||||
|
keys = ["RA", "DEC", "Vcmb", f"{band}", "lgWmxi", "elgWi",
|
||||||
|
"not_matched_to_2MTF_or_SFI", "Qs", "Qw"]
|
||||||
|
RA, dec, z_obs, mag, eta, e_eta, not_matched_to_2MTF_or_SFI, Qs, Qw = (
|
||||||
|
loader.cat[k] for k in keys)
|
||||||
|
l, b = radec_to_galactic(RA, dec)
|
||||||
|
|
||||||
|
not_matched_to_2MTF_or_SFI = not_matched_to_2MTF_or_SFI.astype(bool)
|
||||||
|
# NOTE: fiducial uncertainty until we can get the actual values.
|
||||||
|
e_mag = 0.05 * np.ones_like(mag)
|
||||||
|
|
||||||
|
z_obs /= SPEED_OF_LIGHT
|
||||||
|
eta -= 2.5
|
||||||
|
|
||||||
|
fprint("selecting only galaxies with mag > 5 and eta > -0.3.")
|
||||||
|
mask = (mag > 5) & (eta > -0.3)
|
||||||
|
fprint("selecting only galaxies with |b| > 7.5.")
|
||||||
|
mask &= np.abs(b) > 7.5
|
||||||
|
mask &= (z_obs < zcmb_max) & (z_obs > zcmb_min)
|
||||||
|
|
||||||
|
if "not2MTForSFI" in kind:
|
||||||
|
mask &= not_matched_to_2MTF_or_SFI
|
||||||
|
elif "2MTForSFI" in kind:
|
||||||
|
mask &= ~not_matched_to_2MTF_or_SFI
|
||||||
|
|
||||||
|
fprint("employing a quality cut on the galaxies.")
|
||||||
|
if "w" in band:
|
||||||
|
mask &= Qw == 5
|
||||||
|
else:
|
||||||
|
mask &= Qs == 5
|
||||||
|
|
||||||
|
# Read the absolute calibration
|
||||||
|
if absolute_calibration is not None:
|
||||||
|
CF4_length = len(RA)
|
||||||
|
distmod, with_calibration, length_calibration = read_absolute_calibration( # noqa
|
||||||
|
"Cepheids", CF4_length, calibration_fpath)
|
||||||
|
|
||||||
|
distmod = distmod[mask]
|
||||||
|
with_calibration = with_calibration[mask]
|
||||||
|
length_calibration = length_calibration[mask]
|
||||||
|
fprint(f"found {np.sum(with_calibration)} galaxies with absolute calibration.") # noqa
|
||||||
|
|
||||||
|
distmod = distmod[with_calibration]
|
||||||
|
length_calibration = length_calibration[with_calibration]
|
||||||
|
|
||||||
|
abs_calibration_params = {
|
||||||
|
"calibration_distmod": distmod,
|
||||||
|
"data_with_calibration": with_calibration,
|
||||||
|
"length_calibration": length_calibration}
|
||||||
|
else:
|
||||||
|
abs_calibration_params = None
|
||||||
|
|
||||||
|
calibration_params = {"mag": mag[mask], "eta": eta[mask],
|
||||||
|
"e_mag": e_mag[mask], "e_eta": e_eta[mask]}
|
||||||
|
model = PV_LogLikelihood(
|
||||||
|
los_overdensity[:, mask], los_velocity[:, mask],
|
||||||
|
RA[mask], dec[mask], z_obs[mask], None, calibration_params,
|
||||||
|
abs_calibration_params, mag_selection, loader.rdist,
|
||||||
|
loader._Omega_m, "TFR", name=kind)
|
||||||
|
elif kind in ["CF4_GroupAll"]:
|
||||||
|
# Note, this for some reason works terribly.
|
||||||
|
keys = ["RA", "DE", "Vcmb", "DMzp", "eDM"]
|
||||||
|
RA, dec, zCMB, mu, e_mu = (loader.cat[k] for k in keys)
|
||||||
|
|
||||||
|
zCMB /= SPEED_OF_LIGHT
|
||||||
|
mask = (zCMB < zcmb_max) & (zCMB > zcmb_min) & np.isfinite(mu)
|
||||||
|
|
||||||
|
# The distance moduli in CF4 are most likely given assuming h = 0.75
|
||||||
|
mu += 5 * np.log10(0.75)
|
||||||
|
|
||||||
|
calibration_params = {"mu": mu[mask], "e_mu": e_mu[mask]}
|
||||||
|
model = PV_LogLikelihood(
|
||||||
|
los_overdensity[:, mask], los_velocity[:, mask],
|
||||||
|
RA[mask], dec[mask], zCMB[mask], None, calibration_params, None,
|
||||||
|
mag_selection, loader.rdist, loader._Omega_m, "simple",
|
||||||
|
name=kind)
|
||||||
|
else:
|
||||||
|
raise ValueError(f"Catalogue `{kind}` not recognized.")
|
||||||
|
|
||||||
|
fprint(f"selected {np.sum(mask)}/{len(mask)} galaxies in catalogue `{kind}`") # noqa
|
||||||
|
|
||||||
|
return model
|
Loading…
Add table
Add a link
Reference in a new issue