mirror of
https://github.com/Richard-Sti/csiborgtools_public.git
synced 2025-06-08 18:01:11 +00:00
Rename repo
This commit is contained in:
parent
942c36b142
commit
a9e98f5a2d
13 changed files with 0 additions and 0 deletions
20
csiborgtools/io/__init__.py
Normal file
20
csiborgtools/io/__init__.py
Normal file
|
@ -0,0 +1,20 @@
|
|||
# Copyright (C) 2022 Richard Stiskalek
|
||||
# This program is free software; you can redistribute it and/or modify it
|
||||
# under the terms of the GNU General Public License as published by the
|
||||
# Free Software Foundation; either version 3 of the License, or (at your
|
||||
# option) any later version.
|
||||
#
|
||||
# This program is distributed in the hope that it will be useful, but
|
||||
# WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
|
||||
# Public License for more details.
|
||||
#
|
||||
# You should have received a copy of the GNU General Public License along
|
||||
# with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||
|
||||
from .readsim import (get_csiborg_ids, get_sim_path, get_snapshot_path, # noqa
|
||||
read_info, # noqa
|
||||
open_particle, open_unbinding, read_particle, # noqa
|
||||
read_clumpid, read_clumps, read_mmain) # noqa
|
||||
from .readobs import (read_planck2015, read_2mpp) # noqa
|
106
csiborgtools/io/readobs.py
Normal file
106
csiborgtools/io/readobs.py
Normal file
|
@ -0,0 +1,106 @@
|
|||
# Copyright (C) 2022 Richard Stiskalek
|
||||
# This program is free software; you can redistribute it and/or modify it
|
||||
# under the terms of the GNU General Public License as published by the
|
||||
# Free Software Foundation; either version 3 of the License, or (at your
|
||||
# option) any later version.
|
||||
#
|
||||
# This program is distributed in the hope that it will be useful, but
|
||||
# WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
|
||||
# Public License for more details.
|
||||
#
|
||||
# You should have received a copy of the GNU General Public License along
|
||||
# with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||
"""
|
||||
Scripts to read in observation.
|
||||
"""
|
||||
|
||||
import numpy
|
||||
from astropy.io import fits
|
||||
|
||||
from ..utils import (add_columns, cols_to_structured)
|
||||
|
||||
|
||||
def read_planck2015(fpath, dist_cosmo, max_comdist=None):
|
||||
r"""
|
||||
Read the Planck 2nd Sunyaev-Zeldovich source catalogue [1]. The following
|
||||
is performed:
|
||||
- removes clusters without a redshift estimate,
|
||||
- calculates the comoving distance with the provided cosmology.
|
||||
- Converts `MSZ` from units of :math:`1e14 M_\odot` to :math:`M_\odot`
|
||||
|
||||
Parameters
|
||||
----------
|
||||
fpath : str
|
||||
Path to the source catalogue.
|
||||
dist_cosmo : `astropy.cosmology` object
|
||||
The cosmology to calculate cluster comoving distance from redshift.
|
||||
max_comdist : float, optional
|
||||
Maximum comoving distance threshold in units of :math:`\mathrm{MPc}`.
|
||||
By default `None` and no threshold is applied.
|
||||
|
||||
References
|
||||
----------
|
||||
[1] https://heasarc.gsfc.nasa.gov/W3Browse/all/plancksz2.html
|
||||
|
||||
Returns
|
||||
-------
|
||||
out : `astropy.io.fits.FITS_rec`
|
||||
The catalogue structured array.
|
||||
"""
|
||||
data = fits.open(fpath)[1].data
|
||||
# Convert FITS to a structured array
|
||||
out = numpy.full(data.size, numpy.nan, dtype=data.dtype.descr)
|
||||
for name in out.dtype.names:
|
||||
out[name] = data[name]
|
||||
# Take only clusters with redshifts
|
||||
out = out[out["REDSHIFT"] >= 0]
|
||||
# Add comoving distance
|
||||
dist = dist_cosmo.comoving_distance(out["REDSHIFT"]).value
|
||||
out = add_columns(out, dist, "COMDIST")
|
||||
# Convert masses
|
||||
for par in ("MSZ", "MSZ_ERR_UP", "MSZ_ERR_LOW"):
|
||||
out[par] *= 1e14
|
||||
# Distance threshold
|
||||
if max_comdist is not None:
|
||||
out = out[out["COMDIST"] < max_comdist]
|
||||
|
||||
return out
|
||||
|
||||
|
||||
def read_2mpp(fpath, dist_cosmo):
|
||||
"""
|
||||
Read in the 2M++ galaxy redshift catalogue [1], with the catalogue at [2].
|
||||
Removes fake galaxies used to fill the zone of avoidance.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
fpath : str
|
||||
File path to the catalogue.
|
||||
|
||||
Returns
|
||||
-------
|
||||
out : structured array
|
||||
The catalogue.
|
||||
|
||||
References
|
||||
----------
|
||||
[1] The 2M++ galaxy redshift catalogue; Lavaux, Guilhem, Hudson, Michael J.
|
||||
[2] https://cdsarc.cds.unistra.fr/viz-bin/cat/J/MNRAS/416/2840#/article
|
||||
"""
|
||||
from scipy.constants import c
|
||||
# Read the catalogue and select non-fake galaxies
|
||||
cat = numpy.genfromtxt(fpath, delimiter="|", )
|
||||
cat = cat[cat[:, 12] == 0, :]
|
||||
|
||||
F64 = numpy.float64
|
||||
cols = [("RA", F64), ("DEC", F64), ("Ksmag", F64), ("ZCMB", F64),
|
||||
("CDIST_CMB", F64)]
|
||||
out = cols_to_structured(cat.shape[0], cols)
|
||||
out["RA"] = cat[:, 1]
|
||||
out["DEC"] = cat[:, 2]
|
||||
out["Ksmag"] = cat[:, 5]
|
||||
out["ZCMB"] = cat[:, 7] / (c * 1e-3)
|
||||
out["CDIST_CMB"] = dist_cosmo.comoving_distance(out["ZCMB"]).value
|
||||
return out
|
431
csiborgtools/io/readsim.py
Normal file
431
csiborgtools/io/readsim.py
Normal file
|
@ -0,0 +1,431 @@
|
|||
# Copyright (C) 2022 Richard Stiskalek, Harry Desmond
|
||||
# This program is free software; you can redistribute it and/or modify it
|
||||
# under the terms of the GNU General Public License as published by the
|
||||
# Free Software Foundation; either version 3 of the License, or (at your
|
||||
# option) any later version.
|
||||
#
|
||||
# This program is distributed in the hope that it will be useful, but
|
||||
# WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
|
||||
# Public License for more details.
|
||||
#
|
||||
# You should have received a copy of the GNU General Public License along
|
||||
# with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||
|
||||
"""Functions to read in the particle and clump files."""
|
||||
|
||||
import numpy
|
||||
from scipy.io import FortranFile
|
||||
from os import listdir
|
||||
from os.path import (join, isfile)
|
||||
from glob import glob
|
||||
from tqdm import tqdm
|
||||
|
||||
from ..utils import cols_to_structured
|
||||
|
||||
|
||||
F16 = numpy.float16
|
||||
F32 = numpy.float32
|
||||
F64 = numpy.float64
|
||||
I32 = numpy.int32
|
||||
I64 = numpy.int64
|
||||
|
||||
|
||||
def get_csiborg_ids(srcdir):
|
||||
"""
|
||||
Get CSiBORG simulation IDs from the list of folders in `srcdir`.
|
||||
Assumes that the folders look like `ramses_out_X` and extract the `X`
|
||||
integer. Removes `5511` from the list of IDs.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
srcdir : string
|
||||
The folder where CSiBORG simulations are stored.
|
||||
|
||||
Returns
|
||||
-------
|
||||
ids : 1-dimensional array
|
||||
Array of CSiBORG simulation IDs.
|
||||
"""
|
||||
files = glob(join(srcdir, "ramses_out*"))
|
||||
# Select only file names
|
||||
files = [f.split("/")[-1] for f in files]
|
||||
# Remove files with inverted ICs
|
||||
files = [f for f in files if "_inv" not in f]
|
||||
# Remove the filename with _old
|
||||
files = [f for f in files if "OLD" not in f]
|
||||
ids = [int(f.split("_")[-1]) for f in files]
|
||||
try:
|
||||
ids.remove(5511)
|
||||
except ValueError:
|
||||
pass
|
||||
return numpy.sort(ids)
|
||||
|
||||
|
||||
def get_sim_path(n, fname="ramses_out_{}", srcdir="/mnt/extraspace/hdesmond"):
|
||||
"""
|
||||
Get a path to a CSiBORG simulation.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
n : int
|
||||
The index of the initial conditions (IC) realisation.
|
||||
fname : str, optional
|
||||
The file name. By default `ramses_out_{}`, where `n` is the IC index.
|
||||
srcdir : str, optional
|
||||
The file path to the folder where realisations of the ICs are stored.
|
||||
|
||||
Returns
|
||||
-------
|
||||
path : str
|
||||
Path to the `n`th CSiBORG simulation.
|
||||
"""
|
||||
return join(srcdir, fname.format(n))
|
||||
|
||||
|
||||
def get_snapshot_path(Nsnap, simpath):
|
||||
"""
|
||||
Get a path to a CSiBORG IC realisation snapshot.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
Nsnap : int
|
||||
Snapshot index.
|
||||
simpath : str
|
||||
Path to the CSiBORG IC realisation.
|
||||
|
||||
Returns
|
||||
-------
|
||||
snappath : str
|
||||
Path to the CSiBORG IC realisation snapshot.
|
||||
"""
|
||||
return join(simpath, "output_{}".format(str(Nsnap).zfill(5)))
|
||||
|
||||
|
||||
def read_info(Nsnap, simpath):
|
||||
"""
|
||||
Read CSiBORG simulation snapshot info.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
Nsnap : int
|
||||
Snapshot index.
|
||||
simpath : str
|
||||
Path to the CSiBORG IC realisation.
|
||||
|
||||
Returns
|
||||
-------
|
||||
info : dict
|
||||
Dictionary of info paramaters. Note that both keys and values are
|
||||
strings.
|
||||
"""
|
||||
# Open the info file
|
||||
snappath = get_snapshot_path(Nsnap, simpath)
|
||||
filename = join(snappath, "info_{}.txt".format(str(Nsnap).zfill(5)))
|
||||
with open(filename, "r") as f:
|
||||
info = f.read().split()
|
||||
# Throw anything below ordering line out
|
||||
info = numpy.asarray(info[:info.index("ordering")])
|
||||
# Get indexes of lines with `=`. Indxs before/after be keys/vals
|
||||
eqindxs = numpy.asarray([i for i in range(info.size) if info[i] == '='])
|
||||
|
||||
keys = info[eqindxs - 1]
|
||||
vals = info[eqindxs + 1]
|
||||
return {key: val for key, val in zip(keys, vals)}
|
||||
|
||||
|
||||
def open_particle(n, simpath, verbose=True):
|
||||
"""
|
||||
Open particle files to a given CSiBORG simulation.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
n : int
|
||||
The index of a redshift snapshot.
|
||||
simpath : str
|
||||
The complete path to the CSiBORG simulation.
|
||||
verbose : bool, optional
|
||||
Verbosity flag.
|
||||
|
||||
Returns
|
||||
-------
|
||||
nparts : 1-dimensional array
|
||||
Number of parts assosiated with each CPU.
|
||||
partfiles : list of `scipy.io.FortranFile`
|
||||
Opened part files.
|
||||
"""
|
||||
# Zeros filled snapshot number and the snapshot path
|
||||
nout = str(n).zfill(5)
|
||||
snappath = get_snapshot_path(n, simpath)
|
||||
ncpu = int(read_info(n, simpath)["ncpu"])
|
||||
|
||||
if verbose:
|
||||
print("Reading in output `{}` with ncpu = `{}`.".format(nout, ncpu))
|
||||
|
||||
# Check whether the unbinding file exists.
|
||||
snapdirlist = listdir(snappath)
|
||||
unbinding_file = "unbinding_{}.out00001".format(nout)
|
||||
if unbinding_file not in snapdirlist:
|
||||
raise FileNotFoundError(
|
||||
"Couldn't find `{}` in `{}`. Use mergertreeplot.py -h or --help "
|
||||
"to print help message.".format(unbinding_file, snappath))
|
||||
|
||||
# First read the headers. Reallocate arrays and fill them.
|
||||
nparts = numpy.zeros(ncpu, dtype=int)
|
||||
partfiles = [None] * ncpu
|
||||
for cpu in range(ncpu):
|
||||
cpu_str = str(cpu + 1).zfill(5)
|
||||
fpath = join(snappath, "part_{}.out{}".format(nout, cpu_str))
|
||||
|
||||
f = FortranFile(fpath)
|
||||
# Read in this order
|
||||
ncpuloc = f.read_ints()
|
||||
if ncpuloc != ncpu:
|
||||
infopath = join(snappath, "info_{}.txt".format(nout))
|
||||
raise ValueError("`ncpu = {}` of `{}` disagrees with `ncpu = {}` "
|
||||
"of `{}`.".format(ncpu, infopath, ncpuloc, fpath))
|
||||
ndim = f.read_ints()
|
||||
nparts[cpu] = f.read_ints()
|
||||
localseed = f.read_ints()
|
||||
nstar_tot = f.read_ints()
|
||||
mstar_tot = f.read_reals('d')
|
||||
mstar_lost = f.read_reals('d')
|
||||
nsink = f.read_ints()
|
||||
|
||||
partfiles[cpu] = f
|
||||
del ndim, localseed, nstar_tot, mstar_tot, mstar_lost, nsink
|
||||
|
||||
return nparts, partfiles
|
||||
|
||||
|
||||
def read_sp(dtype, partfile):
|
||||
"""
|
||||
Utility function to read a single particle file, depending on the dtype.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
dtype : str
|
||||
The dtype of the part file to be read now.
|
||||
partfile : `scipy.io.FortranFile`
|
||||
Part file to read from.
|
||||
|
||||
Returns
|
||||
-------
|
||||
out : 1-dimensional array
|
||||
The data read from the part file.
|
||||
n : int
|
||||
The index of the initial conditions (IC) realisation.
|
||||
simpath : str
|
||||
The complete path to the CSiBORG simulation.
|
||||
"""
|
||||
if dtype in [F16, F32, F64]:
|
||||
return partfile.read_reals('d')
|
||||
elif dtype in [I32]:
|
||||
return partfile.read_ints()
|
||||
else:
|
||||
raise TypeError("Unexpected dtype `{}`.".format(dtype))
|
||||
|
||||
|
||||
def nparts_to_start_ind(nparts):
|
||||
"""
|
||||
Convert `nparts` array to starting indices in a pre-allocated array for
|
||||
looping over the CPU number.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
nparts : 1-dimensional array
|
||||
Number of parts assosiated with each CPU.
|
||||
|
||||
Returns
|
||||
-------
|
||||
start_ind : 1-dimensional array
|
||||
The starting indices calculated as a cumulative sum starting at 0.
|
||||
"""
|
||||
return numpy.hstack([[0], numpy.cumsum(nparts[:-1])])
|
||||
|
||||
|
||||
def read_particle(pars_extract, n, simpath, verbose=True):
|
||||
"""
|
||||
Read particle files of a simulation at a given snapshot and return
|
||||
values of `pars_extract`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
pars_extract : list of str
|
||||
Parameters to be extacted.
|
||||
n : int
|
||||
The index of the redshift snapshot.
|
||||
simpath : str
|
||||
The complete path to the CSiBORG simulation.
|
||||
verbose : bool, optional
|
||||
Verbosity flag while for reading the CPU outputs.
|
||||
|
||||
Returns
|
||||
-------
|
||||
out : structured array
|
||||
The data read from the particle file.
|
||||
"""
|
||||
# Open the particle files
|
||||
nparts, partfiles = open_particle(n, simpath)
|
||||
if verbose:
|
||||
print("Opened {} particle files.".format(nparts.size))
|
||||
ncpu = nparts.size
|
||||
# Order in which the particles are written in the FortranFile
|
||||
forder = [("x", F16), ("y", F16), ("z", F16),
|
||||
("vx", F16), ("vy", F16), ("vz", F16),
|
||||
("M", F32), ("ID", I32), ("level", I32)]
|
||||
fnames = [fp[0] for fp in forder]
|
||||
fdtypes = [fp[1] for fp in forder]
|
||||
# Check there are no strange parameters
|
||||
for p in pars_extract:
|
||||
if p not in fnames:
|
||||
raise ValueError("Undefined parameter `{}`. Must be one of `{}`."
|
||||
.format(p, fnames))
|
||||
|
||||
npart_tot = numpy.sum(nparts)
|
||||
# A dummy array is necessary for reading the fortran files.
|
||||
dum = numpy.full(npart_tot, numpy.nan, dtype=F16)
|
||||
# These are the data we read along with types
|
||||
dtype = {"names": pars_extract,
|
||||
"formats": [forder[fnames.index(p)][1] for p in pars_extract]}
|
||||
# Allocate the output structured array
|
||||
out = numpy.full(npart_tot, numpy.nan, dtype)
|
||||
start_ind = nparts_to_start_ind((nparts))
|
||||
iters = tqdm(range(ncpu)) if verbose else range(ncpu)
|
||||
for cpu in iters:
|
||||
i = start_ind[cpu]
|
||||
j = nparts[cpu]
|
||||
for (fname, fdtype) in zip(fnames, fdtypes):
|
||||
if fname in pars_extract:
|
||||
out[fname][i:i + j] = read_sp(fdtype, partfiles[cpu])
|
||||
else:
|
||||
dum[i:i + j] = read_sp(fdtype, partfiles[cpu])
|
||||
|
||||
return out
|
||||
|
||||
|
||||
def open_unbinding(cpu, n, simpath):
|
||||
"""
|
||||
Open particle files to a given CSiBORG simulation. Note that to be
|
||||
consistent CPU is incremented by 1.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
cpu : int
|
||||
The CPU index.
|
||||
n : int
|
||||
The index of a redshift snapshot.
|
||||
simpath : str
|
||||
The complete path to the CSiBORG simulation.
|
||||
|
||||
Returns
|
||||
-------
|
||||
unbinding : `scipy.io.FortranFile`
|
||||
The opened unbinding FortranFile.
|
||||
"""
|
||||
nout = str(n).zfill(5)
|
||||
cpu = str(cpu + 1).zfill(5)
|
||||
fpath = join(simpath, "output_{}".format(nout),
|
||||
"unbinding_{}.out{}".format(nout, cpu))
|
||||
|
||||
return FortranFile(fpath)
|
||||
|
||||
|
||||
def read_clumpid(n, simpath, verbose=True):
|
||||
"""
|
||||
Read clump IDs from unbinding files.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
n : int
|
||||
The index of a redshift snapshot.
|
||||
simpath : str
|
||||
The complete path to the CSiBORG simulation.
|
||||
verbose : bool, optional
|
||||
Verbosity flag while for reading the CPU outputs.
|
||||
|
||||
Returns
|
||||
-------
|
||||
clumpid : 1-dimensional array
|
||||
The array of clump IDs.
|
||||
"""
|
||||
nparts, __ = open_particle(n, simpath, verbose)
|
||||
start_ind = nparts_to_start_ind(nparts)
|
||||
ncpu = nparts.size
|
||||
|
||||
clumpid = numpy.full(numpy.sum(nparts), numpy.nan)
|
||||
iters = tqdm(range(ncpu)) if verbose else range(ncpu)
|
||||
for cpu in iters:
|
||||
i = start_ind[cpu]
|
||||
j = nparts[cpu]
|
||||
ff = open_unbinding(cpu, n, simpath)
|
||||
clumpid[i:i + j] = ff.read_ints()
|
||||
|
||||
return clumpid
|
||||
|
||||
|
||||
def read_clumps(n, simpath):
|
||||
"""
|
||||
Read in a precomputed clump file `clump_N.dat`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
n : int
|
||||
The index of a redshift snapshot.
|
||||
simpath : str
|
||||
The complete path to the CSiBORG simulation.
|
||||
|
||||
Returns
|
||||
-------
|
||||
out : structured array
|
||||
Structured array of the clumps.
|
||||
"""
|
||||
n = str(n).zfill(5)
|
||||
fname = join(simpath, "output_{}".format(n), "clump_{}.dat".format(n))
|
||||
# Check the file exists.
|
||||
if not isfile(fname):
|
||||
raise FileExistsError("Clump file `{}` does not exist.".format(fname))
|
||||
|
||||
# Read in the clump array. This is how the columns must be written!
|
||||
arr = numpy.genfromtxt(fname)
|
||||
cols = [("index", I64), ("level", I64), ("parent", I64), ("ncell", F64),
|
||||
("peak_x", F64), ("peak_y", F64), ("peak_z", F64),
|
||||
("rho-", F64), ("rho+", F64), ("rho_av", F64),
|
||||
("mass_cl", F64), ("relevance", F64)]
|
||||
out = cols_to_structured(arr.shape[0], cols)
|
||||
for i, name in enumerate(out.dtype.names):
|
||||
out[name] = arr[:, i]
|
||||
return out
|
||||
|
||||
|
||||
def read_mmain(n, srcdir, fname="Mmain_{}.npy"):
|
||||
"""
|
||||
Read `mmain` numpy arrays of central halos whose mass contains their
|
||||
substracture contribution.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
n : int
|
||||
The index of the initial conditions (IC) realisation.
|
||||
srcdir : str
|
||||
The path to the folder containing the files.
|
||||
fname : str, optional
|
||||
The file name convention. By default `Mmain_{}.npy`, where the
|
||||
substituted value is `n`.
|
||||
|
||||
Returns
|
||||
-------
|
||||
out : structured array
|
||||
Array with the central halo information.
|
||||
"""
|
||||
fpath = join(srcdir, fname.format(n))
|
||||
arr = numpy.load(fpath)
|
||||
|
||||
cols = [("index", I64), ("peak_x", F64), ("peak_y", F64),
|
||||
("peak_z", F64), ("mass_cl", F64), ("sub_frac", F64)]
|
||||
out = cols_to_structured(arr.shape[0], cols)
|
||||
for i, name in enumerate(out.dtype.names):
|
||||
out[name] = arr[:, i]
|
||||
|
||||
return out
|
Loading…
Add table
Add a link
Reference in a new issue