mirror of
https://github.com/Richard-Sti/csiborgtools.git
synced 2024-12-22 08:48:02 +00:00
Add snapshots optionally directly to catalogue (#101)
* Add isinstance check * Add snapshot to cat * Rename mass_kind to mass_key * Remove import * Fix compatiblility * Remove old export * Rename import * Fix calling * Remove paths dependence * Update match script * Add check if halo has no particles
This commit is contained in:
parent
7d5141cf7f
commit
a08109b997
7 changed files with 158 additions and 105 deletions
|
@ -13,4 +13,4 @@
|
|||
# with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||
from .match import (ParticleOverlap, RealisationsMatcher, calculate_overlap, # noqa
|
||||
pos2cell, find_neighbour, matching_max) # noqa
|
||||
find_neighbour, matching_max) # noqa
|
||||
|
|
|
@ -92,22 +92,18 @@ class RealisationsMatcher(BaseMatcher):
|
|||
dlogmass : float, optional
|
||||
Tolerance on the absolute logarithmic mass difference of potential
|
||||
matches.
|
||||
mass_kind : str, optional
|
||||
Mass kind whose similarity is to be checked. Must be a valid key in the
|
||||
halo catalogue.
|
||||
"""
|
||||
_nmult = None
|
||||
_dlogmass = None
|
||||
_mass_kind = None
|
||||
_mass_key = None
|
||||
_overlapper = None
|
||||
|
||||
def __init__(self, box_size, bckg_halfsize, nmult=1.0, dlogmass=2.0,
|
||||
mass_kind="totpartmass"):
|
||||
def __init__(self, box_size, bckg_halfsize, nmult=1.0, dlogmass=2.0):
|
||||
self.box_size = box_size
|
||||
self.bckg_halfsize = bckg_halfsize
|
||||
self.nmult = nmult
|
||||
self.dlogmass = dlogmass
|
||||
self.mass_kind = mass_kind
|
||||
self.mass_key = "totmass"
|
||||
|
||||
self._overlapper = ParticleOverlap(box_size, bckg_halfsize)
|
||||
|
||||
|
@ -116,6 +112,10 @@ class RealisationsMatcher(BaseMatcher):
|
|||
"""
|
||||
Multiplier of the sum of the initial Lagrangian patch sizes of a halo
|
||||
pair. Determines the range within which neighbors are returned.
|
||||
|
||||
Returns
|
||||
-------
|
||||
float
|
||||
"""
|
||||
return self._nmult
|
||||
|
||||
|
@ -130,6 +130,10 @@ class RealisationsMatcher(BaseMatcher):
|
|||
"""
|
||||
Tolerance on the absolute logarithmic mass difference of potential
|
||||
matches.
|
||||
|
||||
Returns
|
||||
-------
|
||||
float
|
||||
"""
|
||||
return self._dlogmass
|
||||
|
||||
|
@ -140,18 +144,22 @@ class RealisationsMatcher(BaseMatcher):
|
|||
self._dlogmass = float(value)
|
||||
|
||||
@property
|
||||
def mass_kind(self):
|
||||
def mass_key(self):
|
||||
"""
|
||||
Mass kind whose similarity is to be checked. Must be a valid key in the
|
||||
Mass key whose similarity is to be checked. Must be a valid key in the
|
||||
halo catalogue.
|
||||
"""
|
||||
return self._mass_kind
|
||||
|
||||
@mass_kind.setter
|
||||
def mass_kind(self, value):
|
||||
Returns
|
||||
-------
|
||||
str
|
||||
"""
|
||||
return self._mass_key
|
||||
|
||||
@mass_key.setter
|
||||
def mass_key(self, value):
|
||||
if not isinstance(value, str):
|
||||
raise ValueError("`mass_kind` must be a string.")
|
||||
self._mass_kind = value
|
||||
raise ValueError("`mass_key` must be a string.")
|
||||
self._mass_key = value
|
||||
|
||||
@property
|
||||
def overlapper(self):
|
||||
|
@ -195,15 +203,15 @@ class RealisationsMatcher(BaseMatcher):
|
|||
# snapshot.
|
||||
match_indxs = radius_neighbours(
|
||||
catx.knn(in_initial=True, subtract_observer=False, periodic=True),
|
||||
cat0.position(in_initial=True),
|
||||
radiusX=cat0["lagpatch_size"], radiusKNN=catx["lagpatch_size"],
|
||||
nmult=self.nmult, enforce_int32=True, verbose=verbose)
|
||||
cat0["lagpatch_coordinates"], radiusX=cat0["lagpatch_radius"],
|
||||
radiusKNN=catx["lagpatch_radius"], nmult=self.nmult,
|
||||
enforce_int32=True, verbose=verbose)
|
||||
|
||||
# We next remove neighbours whose mass is too large/small.
|
||||
if self.dlogmass is not None:
|
||||
for i, indx in enumerate(match_indxs):
|
||||
# |log(M1 / M2)|
|
||||
p = self.mass_kind
|
||||
p = self.mass_key
|
||||
aratio = numpy.abs(numpy.log10(catx[p][indx] / cat0[p][i]))
|
||||
match_indxs[i] = match_indxs[i][aratio < self.dlogmass]
|
||||
|
||||
|
@ -372,11 +380,17 @@ class ParticleOverlap(BaseMatcher):
|
|||
disable=not verbose
|
||||
)
|
||||
for hid in iterator:
|
||||
pos = cat.halo_particles(hid, "pos", in_initial=True)
|
||||
if pos is None:
|
||||
continue
|
||||
try:
|
||||
pos = cat.snapshot.halo_coordinates(hid, is_group=True)
|
||||
except ValueError as e:
|
||||
# If not particles found for this halo, just skip it.
|
||||
if str(e).startswith("Halo "):
|
||||
continue
|
||||
else:
|
||||
# If the error does not start with "Halo ", re-raise it
|
||||
raise
|
||||
|
||||
mass = cat.halo_particles(hid, "mass", in_initial=True)
|
||||
mass = cat.snapshot.halo_masses(hid, is_group=True)
|
||||
|
||||
pos = pos2cell(pos, self.box_size)
|
||||
|
||||
|
@ -835,8 +849,8 @@ def load_processed_halo(hid, cat, ncells, nshift):
|
|||
maxs : len-3 tuple
|
||||
Maximum cell indices of the halo.
|
||||
"""
|
||||
pos = cat.halo_particles(hid, "pos", in_initial=True)
|
||||
mass = cat.halo_particles(hid, "mass", in_initial=True)
|
||||
pos = cat.snapshot.halo_coordinates(hid, is_group=True)
|
||||
mass = cat.snapshot.halo_masses(hid, is_group=True)
|
||||
|
||||
pos = pos2cell(pos, ncells)
|
||||
mins, maxs = get_halo_cell_limits(pos, ncells=ncells, nshift=nshift)
|
||||
|
@ -921,7 +935,7 @@ def find_neighbour(nsim0, cats):
|
|||
assert all(isinstance(cat, type(cats[nsim0])) for cat in cats.values())
|
||||
|
||||
cat0 = cats[nsim0]
|
||||
X = cat0.position(in_initial=False)
|
||||
X = cat0["lagpatch_coordinates"]
|
||||
|
||||
nhalos = X.shape[0]
|
||||
num_cats = len(cats) - 1
|
||||
|
@ -946,7 +960,7 @@ def find_neighbour(nsim0, cats):
|
|||
###############################################################################
|
||||
|
||||
|
||||
def matching_max(cat0, catx, mass_kind, mult, periodic, overlap=None,
|
||||
def matching_max(cat0, catx, mass_key, mult, periodic, overlap=None,
|
||||
match_indxs=None, verbose=True):
|
||||
"""
|
||||
Halo matching algorithm based on [1].
|
||||
|
@ -957,7 +971,7 @@ def matching_max(cat0, catx, mass_kind, mult, periodic, overlap=None,
|
|||
Halo catalogue of the reference simulation.
|
||||
catx : instance of :py:class:`csiborgtools.read.BaseCatalogue`
|
||||
Halo catalogue of the cross simulation.
|
||||
mass_kind : str
|
||||
mass_key : str
|
||||
Name of the mass column.
|
||||
mult : float
|
||||
Multiple of R200c below which to consider a match.
|
||||
|
@ -985,13 +999,13 @@ def matching_max(cat0, catx, mass_kind, mult, periodic, overlap=None,
|
|||
Monthly Notices of the Royal Astronomical Society, Volume 516, Issue 3,
|
||||
November 2022, Pages 3592–3601, https://doi.org/10.1093/mnras/stac2407
|
||||
"""
|
||||
pos0 = cat0.position(in_initial=False)
|
||||
pos0 = cat0["cartesian_pos"]
|
||||
knnx = catx.knn(in_initial=False, subtract_observer=False,
|
||||
periodic=periodic)
|
||||
rad0 = cat0["r200c"]
|
||||
|
||||
mass0 = numpy.log10(cat0[mass_kind])
|
||||
massx = numpy.log10(catx[mass_kind])
|
||||
mass0 = numpy.log10(cat0[mass_key])
|
||||
massx = numpy.log10(catx[mass_key])
|
||||
|
||||
assert numpy.all(numpy.isfinite(mass0)) & numpy.all(numpy.isfinite(massx))
|
||||
|
||||
|
|
|
@ -32,6 +32,8 @@ from ..params import paths_glamdring
|
|||
from ..utils import (cartesian_to_radec, great_circle_distance, number_counts,
|
||||
periodic_distance_two_points, real2redshift)
|
||||
from .paths import Paths
|
||||
from .snapshot import is_instance_of_base_snapshot_subclass
|
||||
|
||||
|
||||
###############################################################################
|
||||
# Base catalogue #
|
||||
|
@ -61,6 +63,7 @@ class BaseCatalogue(ABC):
|
|||
self._simname = None
|
||||
self._nsim = None
|
||||
self._nsnap = None
|
||||
self._snapshot = None
|
||||
|
||||
self._paths = None
|
||||
|
||||
|
@ -76,9 +79,9 @@ class BaseCatalogue(ABC):
|
|||
|
||||
self._custom_keys = []
|
||||
|
||||
def init_with_snapshot(self, simname, nsim, nsnap, paths, bounds, boxsize,
|
||||
observer_location, observer_velocity,
|
||||
cache_maxsize=64):
|
||||
def init_with_snapshot(self, simname, nsim, nsnap, paths, snapshot,
|
||||
bounds, boxsize, observer_location,
|
||||
observer_velocity, cache_maxsize=64):
|
||||
self.simname = simname
|
||||
self.nsim = nsim
|
||||
self.nsnap = nsnap
|
||||
|
@ -89,6 +92,8 @@ class BaseCatalogue(ABC):
|
|||
|
||||
self.cache_maxsize = cache_maxsize
|
||||
|
||||
self.snapshot = snapshot
|
||||
|
||||
if bounds is not None:
|
||||
self._make_mask(bounds)
|
||||
|
||||
|
@ -149,6 +154,31 @@ class BaseCatalogue(ABC):
|
|||
raise TypeError("`nsnap` must be an integer.")
|
||||
self._nsnap = int(nsnap)
|
||||
|
||||
@property
|
||||
def snapshot(self):
|
||||
"""
|
||||
Corresponding particle snapshot. Can be either the final or initial
|
||||
one, depending on `which_snapshot`.
|
||||
|
||||
Returns
|
||||
-------
|
||||
subclass of py:class:`csiborgtools.read.snapshot.BaseSnapshot`
|
||||
"""
|
||||
if self._snapshot is None:
|
||||
raise RuntimeError("`snapshot` is not set!")
|
||||
return self._snapshot
|
||||
|
||||
@snapshot.setter
|
||||
def snapshot(self, snapshot):
|
||||
if snapshot is None:
|
||||
self._snapshot = None
|
||||
return
|
||||
|
||||
if not is_instance_of_base_snapshot_subclass(snapshot):
|
||||
raise TypeError("`snapshot` must be a subclass of `BaseSnapshot`.")
|
||||
|
||||
self._snapshot = snapshot
|
||||
|
||||
@property
|
||||
def paths(self):
|
||||
"""
|
||||
|
@ -351,7 +381,7 @@ class BaseCatalogue(ABC):
|
|||
volume : float
|
||||
Volume in :math:`(cMpc / h)^3`.
|
||||
mass_key : str, optional
|
||||
Mass key of the catalogue.
|
||||
Mass key to get the halo masses.
|
||||
|
||||
Returns
|
||||
-------
|
||||
|
@ -613,6 +643,8 @@ class CSiBORG1Catalogue(BaseCatalogue):
|
|||
IC realisation index.
|
||||
paths : py:class`csiborgtools.read.Paths`, optional
|
||||
Paths object.
|
||||
snapshot : subclass of py:class:`BaseSnapshot`, optional
|
||||
Snapshot object corresponding to the catalogue.
|
||||
bounds : dict, optional
|
||||
Parameter bounds; keys as parameter names, values as (min, max) or
|
||||
a boolean.
|
||||
|
@ -621,13 +653,13 @@ class CSiBORG1Catalogue(BaseCatalogue):
|
|||
cache_maxsize : int, optional
|
||||
Maximum number of cached arrays.
|
||||
"""
|
||||
def __init__(self, nsim, paths=None, bounds=None, observer_velocity=None,
|
||||
cache_maxsize=64):
|
||||
def __init__(self, nsim, paths=None, snapshot=None, bounds=None,
|
||||
observer_velocity=None, cache_maxsize=64):
|
||||
super().__init__()
|
||||
super().init_with_snapshot(
|
||||
"csiborg1", nsim, max(paths.get_snapshots(nsim, "csiborg1")),
|
||||
paths, bounds, 677.7, [338.85, 338.85, 338.85], observer_velocity,
|
||||
cache_maxsize)
|
||||
paths, snapshot, bounds, 677.7, [338.85, 338.85, 338.85],
|
||||
observer_velocity, cache_maxsize)
|
||||
|
||||
self._custom_keys = []
|
||||
|
||||
|
@ -691,6 +723,8 @@ class CSiBORG2Catalogue(BaseCatalogue):
|
|||
Simulation kind. Must be one of 'main', 'varysmall', or 'random'.
|
||||
paths : py:class`csiborgtools.read.Paths`, optional
|
||||
Paths object.
|
||||
snapshot : subclass of py:class:`BaseSnapshot`, optional
|
||||
Snapshot object corresponding to the catalogue.
|
||||
bounds : dict, optional
|
||||
Parameter bounds; keys as parameter names, values as (min, max) or
|
||||
a boolean.
|
||||
|
@ -699,12 +733,12 @@ class CSiBORG2Catalogue(BaseCatalogue):
|
|||
cache_maxsize : int, optional
|
||||
Maximum number of cached arrays.
|
||||
"""
|
||||
def __init__(self, nsim, nsnap, kind, paths=None, bounds=None,
|
||||
observer_velocity=None, cache_maxsize=64):
|
||||
def __init__(self, nsim, nsnap, kind, paths=None, snapshot=None,
|
||||
bounds=None, observer_velocity=None, cache_maxsize=64):
|
||||
super().__init__()
|
||||
super().init_with_snapshot(
|
||||
f"csiborg2_{kind}", nsim, nsnap, paths, bounds, 676.6,
|
||||
[338.3, 338.3, 338.3], observer_velocity, cache_maxsize)
|
||||
f"csiborg2_{kind}", nsim, nsnap, paths, snapshot, bounds,
|
||||
676.6, [338.3, 338.3, 338.3], observer_velocity, cache_maxsize)
|
||||
|
||||
self._custom_keys = ["GroupFirstSub", "GroupContamination",
|
||||
"GroupNsubs"]
|
||||
|
@ -726,14 +760,14 @@ class CSiBORG2Catalogue(BaseCatalogue):
|
|||
|
||||
@property
|
||||
def coordinates(self):
|
||||
# We flip x and z to undo MUSIC bug.
|
||||
# Loading directly the Gadget4 output, flip x and z to undo MUSIC bug.
|
||||
out = self._read_fof_catalogue("GroupPos")
|
||||
out[:, [0, 2]] = out[:, [2, 0]]
|
||||
return out
|
||||
|
||||
@property
|
||||
def velocities(self):
|
||||
# We flip x and z to undo MUSIC bug.
|
||||
# Loading directly the Gadget4 output, flip x and z to undo MUSIC bug.
|
||||
out = self._read_fof_catalogue("GroupVel")
|
||||
out[:, [0, 2]] = out[:, [2, 0]]
|
||||
return out
|
||||
|
@ -789,6 +823,8 @@ class QuijoteCatalogue(BaseCatalogue):
|
|||
IC realisation index.
|
||||
paths : py:class`csiborgtools.read.Paths`, optional
|
||||
Paths object.
|
||||
snapshot : subclass of py:class:`BaseSnapshot`, optional
|
||||
Snapshot object corresponding to the catalogue.
|
||||
bounds : dict
|
||||
Parameter bounds; keys as parameter names, values as (min, max)
|
||||
tuples. Use `dist` for radial distance, `None` for no bound.
|
||||
|
@ -797,12 +833,13 @@ class QuijoteCatalogue(BaseCatalogue):
|
|||
cache_maxsize : int, optional
|
||||
Maximum number of cached arrays.
|
||||
"""
|
||||
def __init__(self, nsim, paths=None, bounds=None, observer_velocity=None,
|
||||
def __init__(self, nsim, paths=None, snapshot=None, bounds=None,
|
||||
observer_velocity=None,
|
||||
cache_maxsize=64):
|
||||
super().__init__()
|
||||
super().init_with_snapshot(
|
||||
"quijote", nsim, 4, paths, bounds, 1000, [500., 500., 500.,],
|
||||
observer_velocity, cache_maxsize)
|
||||
"quijote", nsim, 4, paths, snapshot, bounds, 1000,
|
||||
[500., 500., 500.,], observer_velocity, cache_maxsize)
|
||||
|
||||
self._custom_keys = []
|
||||
self._bounds = bounds
|
||||
|
|
|
@ -718,3 +718,17 @@ class QuijoteField(CSiBORG1Field):
|
|||
"""
|
||||
def __init__(self, nsim, paths):
|
||||
super().__init__(nsim, paths)
|
||||
|
||||
|
||||
###############################################################################
|
||||
# Supplementary functions #
|
||||
###############################################################################
|
||||
|
||||
|
||||
def is_instance_of_base_snapshot_subclass(obj):
|
||||
"""
|
||||
Check if `obj` is an instance of a subclass of `BaseSnapshot`.
|
||||
"""
|
||||
return isinstance(obj, BaseSnapshot) and any(
|
||||
issubclass(cls, BaseSnapshot) for cls in obj.__class__.__bases__
|
||||
)
|
||||
|
|
|
@ -62,8 +62,6 @@ class PairOverlap:
|
|||
Halo catalogue corresponding to the reference simulation.
|
||||
catx : :py:class:`csiborgtools.read.CSiBORGHaloCatalogue`
|
||||
Halo catalogue corresponding to the cross simulation.
|
||||
paths : py:class`csiborgtools.read.Paths`
|
||||
CSiBORG paths object.
|
||||
min_logmass : float
|
||||
Minimum halo mass in :math:`\log_{10} M_\odot / h` to consider.
|
||||
maxdist : float, optional
|
||||
|
@ -75,15 +73,15 @@ class PairOverlap:
|
|||
_data = None
|
||||
_paths = None
|
||||
|
||||
def __init__(self, cat0, catx, paths, min_logmass, maxdist=None):
|
||||
def __init__(self, cat0, catx, min_logmass, maxdist=None):
|
||||
if cat0.simname != catx.simname:
|
||||
raise ValueError("The two catalogues must be from the same "
|
||||
"simulation.")
|
||||
|
||||
self._cat0 = cat0
|
||||
self._catx = catx
|
||||
self._paths = paths
|
||||
self.load(cat0, catx, paths, min_logmass, maxdist)
|
||||
self._paths = cat0.paths
|
||||
self.load(cat0, catx, min_logmass, maxdist)
|
||||
|
||||
def load(self, cat0, catx, paths, min_logmass, maxdist=None):
|
||||
r"""
|
||||
|
@ -96,8 +94,6 @@ class PairOverlap:
|
|||
Halo catalogue corresponding to the reference simulation.
|
||||
catx : instance of :py:class:`csiborgtools.read.BaseCatalogue`
|
||||
Halo catalogue corresponding to the cross simulation.
|
||||
paths : py:class`csiborgtools.read.Paths`
|
||||
CSiBORG paths object.
|
||||
min_logmass : float
|
||||
Minimum halo mass in :math:`\log_{10} M_\odot / h` to consider.
|
||||
maxdist : float, optional
|
||||
|
@ -110,6 +106,7 @@ class PairOverlap:
|
|||
"""
|
||||
nsim0 = cat0.nsim
|
||||
nsimx = catx.nsim
|
||||
paths = cat0.paths
|
||||
|
||||
# We first load in the output files. We need to find the right
|
||||
# combination of the reference and cross simulation.
|
||||
|
@ -473,7 +470,7 @@ class PairOverlap:
|
|||
###############################################################################
|
||||
|
||||
|
||||
def max_overlap_agreement(cat0, catx, min_logmass, maxdist, paths):
|
||||
def max_overlap_agreement(cat0, catx, min_logmass, maxdist):
|
||||
r"""
|
||||
Calculate whether for a halo `A` from catalogue `cat0` that has a maximum
|
||||
overlap with halo `B` from catalogue `catx` it is also `B` that has a
|
||||
|
@ -490,14 +487,12 @@ def max_overlap_agreement(cat0, catx, min_logmass, maxdist, paths):
|
|||
maxdist : float, optional
|
||||
Maximum halo distance in :math:`\mathrm{Mpc} / h` from the centre
|
||||
of the high-resolution region.
|
||||
paths : py:class`csiborgtools.read.Paths`
|
||||
CSiBORG paths object.
|
||||
|
||||
Returns
|
||||
-------
|
||||
agreement : 1-dimensional array of shape `(nhalos, )`
|
||||
"""
|
||||
kwargs = {"paths": paths, "min_logmass": min_logmass, "maxdist": maxdist}
|
||||
kwargs = {"min_logmass": min_logmass, "maxdist": maxdist}
|
||||
pair_forward = PairOverlap(cat0, catx, **kwargs)
|
||||
pair_backward = PairOverlap(catx, cat0, **kwargs)
|
||||
|
||||
|
@ -522,8 +517,7 @@ def max_overlap_agreement(cat0, catx, min_logmass, maxdist, paths):
|
|||
return agreement
|
||||
|
||||
|
||||
def max_overlap_agreements(cat0, catxs, min_logmass, maxdist, paths,
|
||||
verbose=True):
|
||||
def max_overlap_agreements(cat0, catxs, min_logmass, maxdist, verbose=True):
|
||||
"""
|
||||
Repeat `max_overlap_agreement` for many cross simulations.
|
||||
|
||||
|
@ -538,8 +532,7 @@ def max_overlap_agreements(cat0, catxs, min_logmass, maxdist, paths,
|
|||
agreements = [None] * len(catxs)
|
||||
desc = "Calculating maximum overlap agreement"
|
||||
for i, catx in enumerate(tqdm(catxs, desc=desc, disable=not verbose)):
|
||||
agreements[i] = max_overlap_agreement(cat0, catx, min_logmass,
|
||||
maxdist, paths)
|
||||
agreements[i] = max_overlap_agreement(cat0, catx, min_logmass, maxdist)
|
||||
|
||||
return numpy.asanyarray(agreements)
|
||||
|
||||
|
@ -596,8 +589,6 @@ class NPairsOverlap:
|
|||
Single reference simulation halo catalogue.
|
||||
catxs : list of :py:class:`csiborgtools.read.CSiBORGHaloCatalogue`
|
||||
List of cross simulation halo catalogues.
|
||||
paths : py:class`csiborgtools.read.Paths`
|
||||
CSiBORG paths object.
|
||||
min_logmass : float
|
||||
Minimum log mass of halos to consider.
|
||||
verbose : bool, optional
|
||||
|
@ -605,11 +596,11 @@ class NPairsOverlap:
|
|||
"""
|
||||
_pairs = None
|
||||
|
||||
def __init__(self, cat0, catxs, paths, min_logmass, verbose=True):
|
||||
def __init__(self, cat0, catxs, min_logmass, verbose=True):
|
||||
pairs = [None] * len(catxs)
|
||||
for i, catx in enumerate(tqdm(catxs, desc="Loading overlap objects",
|
||||
disable=not verbose)):
|
||||
pairs[i] = PairOverlap(cat0, catx, paths, min_logmass)
|
||||
pairs[i] = PairOverlap(cat0, catx, min_logmass)
|
||||
|
||||
self._pairs = pairs
|
||||
|
||||
|
|
|
@ -22,7 +22,7 @@ from mpi4py import MPI
|
|||
from taskmaster import work_delegation
|
||||
|
||||
import csiborgtools
|
||||
from match_singlematch import pair_match, pair_match_max
|
||||
from match_overlap_single import pair_match, pair_match_max
|
||||
|
||||
|
||||
def get_combs(simname):
|
||||
|
|
|
@ -43,39 +43,30 @@ def pair_match_max(nsim0, nsimx, simname, min_logmass, mult, verbose):
|
|||
verbose : bool
|
||||
Verbosity flag.
|
||||
"""
|
||||
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
|
||||
|
||||
if simname == "csiborg":
|
||||
mass_kind = "fof_totpartmass"
|
||||
if simname == "csiborg1":
|
||||
maxdist = 155
|
||||
periodic = False
|
||||
bounds = {"dist": (0, maxdist), mass_kind: (10**min_logmass, None)}
|
||||
cat0 = csiborgtools.read.CSiBORGHaloCatalogue(
|
||||
nsim0, paths, bounds=bounds, load_fitted=True, load_initial=False)
|
||||
catx = csiborgtools.read.CSiBORGHaloCatalogue(
|
||||
nsimx, paths, bounds=bounds, load_fitted=True, load_initial=False)
|
||||
bounds = {"dist": (0, maxdist), "totmass": (10**min_logmass, None)}
|
||||
cat0 = csiborgtools.read.CSiBORG1Catalogue(nsim0, bounds=bounds)
|
||||
catx = csiborgtools.read.CSiBORG1Catalogue(nsimx, bounds=bounds)
|
||||
elif "csiborg2" in simname:
|
||||
raise RuntimeError("CSiBORG2 currently not implemented..")
|
||||
elif simname == "quijote":
|
||||
mass_kind = "group_mass"
|
||||
maxdist = None
|
||||
periodic = True
|
||||
bounds = {mass_kind: (10**min_logmass, None)}
|
||||
cat0 = csiborgtools.read.QuijoteHaloCatalogue(
|
||||
nsim0, paths, 4, bounds=bounds, load_fitted=True,
|
||||
load_initial=False)
|
||||
catx = csiborgtools.read.QuijoteHaloCatalogue(
|
||||
nsimx, paths, 4, bounds=bounds, load_fitted=True,
|
||||
load_initial=False)
|
||||
bounds = {"totmass": (10**min_logmass, None)}
|
||||
cat0 = csiborgtools.read.QuijoteCatalogue(nsim0, bounds=bounds)
|
||||
catx = csiborgtools.read.QuijoteHaloCatalogue(nsimx, bounds=bounds)
|
||||
else:
|
||||
raise ValueError(f"Unknown simulation `{simname}`.")
|
||||
|
||||
reader = csiborgtools.summary.PairOverlap(cat0, catx, paths, min_logmass,
|
||||
maxdist=maxdist)
|
||||
reader = csiborgtools.summary.PairOverlap(cat0, catx, min_logmass, maxdist)
|
||||
out = csiborgtools.match.matching_max(
|
||||
cat0, catx, mass_kind, mult=mult, periodic=periodic,
|
||||
cat0, catx, "totmass", mult=mult, periodic=periodic,
|
||||
overlap=reader.overlap(from_smoothed=True),
|
||||
match_indxs=reader["match_indxs"], verbose=verbose)
|
||||
|
||||
fout = paths.match_max(simname, nsim0, nsimx, min_logmass, mult)
|
||||
fout = cat0.paths.match_max(simname, nsim0, nsimx, min_logmass, mult)
|
||||
if verbose:
|
||||
print(f"{datetime.now()}: saving to ... `{fout}`.", flush=True)
|
||||
numpy.savez(fout, **{p: out[p] for p in out.dtype.names})
|
||||
|
@ -108,23 +99,30 @@ def pair_match(nsim0, nsimx, simname, min_logmass, sigma, verbose):
|
|||
smooth_kwargs = {"sigma": sigma, "mode": "constant", "cval": 0}
|
||||
bounds = {"lagpatch_size": (0, None)}
|
||||
|
||||
if simname == "csiborg":
|
||||
if simname == "csiborg1":
|
||||
overlapper_kwargs = {"box_size": 2048, "bckg_halfsize": 512}
|
||||
mass_kind = "fof_totpartmass"
|
||||
bounds |= {"dist": (0, 155), mass_kind: (10**min_logmass, None)}
|
||||
cat0 = csiborgtools.read.CSiBORGCatalogue(
|
||||
nsim0, paths, "halo_catalogue", "FOF", mass_kind, bounds)
|
||||
catx = csiborgtools.read.CSiBORGCatalogue(
|
||||
nsimx, paths, "halo_catalogue", "FOF", mass_kind, bounds)
|
||||
bounds |= {"dist": (0, 150), "totmass": (10**min_logmass, None)}
|
||||
|
||||
snap0 = csiborgtools.read.CSIBORG1Snapshot(nsim0, 0)
|
||||
cat0 = csiborgtools.read.CSiBORG1Catalogue(nsim0, snapshot=snap0,
|
||||
bounds=bounds)
|
||||
|
||||
snapx = csiborgtools.read.CSIBORG1Snapshot(nsimx, 0)
|
||||
catx = csiborgtools.read.CSiBORGCatalogue(nsimx, snapshot=snapx,
|
||||
bounds=bounds)
|
||||
elif "csiborg2" in simname:
|
||||
raise RuntimeError("CSiBORG2 currently not implemented..")
|
||||
elif simname == "quijote":
|
||||
overlapper_kwargs = {"box_size": 512, "bckg_halfsize": 256}
|
||||
mass_kind = "group_mass"
|
||||
bounds |= {mass_kind: (10**min_logmass, None)}
|
||||
bounds |= {"totmass": (10**min_logmass, None)}
|
||||
|
||||
cat0 = csiborgtools.read.QuijoteCatalogue(
|
||||
nsim0, paths, "halo_catalogue", "FOF", mass_kind, bounds=bounds)
|
||||
catx = csiborgtools.read.QuijoteCatalogue(
|
||||
nsimx, paths, "halo_catalogue", "FOF", mass_kind, bounds=bounds)
|
||||
snap0 = csiborgtools.read.QuijoteSnapshot(nsim0, "ICs")
|
||||
cat0 = csiborgtools.read.QuijoteCatalogue(nsim0, snapshot=snap0,
|
||||
bounds=bounds)
|
||||
|
||||
snapx = csiborgtools.read.QuijoteSnapshot(nsimx, "ICs")
|
||||
catx = csiborgtools.read.QuijoteCatalogue(nsimx, snapshot=snapx,
|
||||
bounds=bounds)
|
||||
else:
|
||||
raise ValueError(f"Unknown simulation name: `{simname}`.")
|
||||
|
||||
|
@ -133,8 +131,7 @@ def pair_match(nsim0, nsimx, simname, min_logmass, sigma, verbose):
|
|||
delta_bckg = overlapper.make_bckg_delta(catx, delta=delta_bckg,
|
||||
verbose=verbose)
|
||||
|
||||
matcher = csiborgtools.match.RealisationsMatcher(mass_kind=mass_kind,
|
||||
**overlapper_kwargs)
|
||||
matcher = csiborgtools.match.RealisationsMatcher(**overlapper_kwargs)
|
||||
match_indxs, ngp_overlap = matcher.cross(cat0, catx, delta_bckg,
|
||||
verbose=verbose)
|
||||
|
||||
|
|
Loading…
Reference in a new issue