kNN-CDF reader ()

* Add nb

* add the KNN reader

* Move reading functions

* Update boolean masking

* Update the nb
This commit is contained in:
Richard Stiskalek 2023-04-02 20:26:15 +01:00 committed by GitHub
parent b1b08b8e53
commit 9cbdef4350
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
4 changed files with 2298 additions and 53 deletions

View file

@ -103,58 +103,6 @@ class kNN_CDF:
return r, cdf return r, cdf
@staticmethod
def peaked_cdf(cdf, make_copy=True):
"""
Transform the CDF to a peaked CDF.
Parameters
----------
cdf : 1- or 2- or 3-dimensional array
CDF to be transformed along the last axis.
make_copy : bool, optional
Whether to make a copy of the CDF before transforming it to avoid
overwriting it.
Returns
-------
peaked_cdf : 1- or 2- or 3-dimensional array
"""
cdf = numpy.copy(cdf) if make_copy else cdf
cdf[cdf > 0.5] = 1 - cdf[cdf > 0.5]
return cdf
@staticmethod
def clipped_cdf(cdf):
"""
Clip the CDF, setting values where the CDF is either 0 or after the
first occurence of 1 to `numpy.nan`.
Parameters
----------
cdf : 2- or 3-dimensional array
CDF to be clipped.
Returns
-------
clipped_cdf : 2- or 3-dimensional array
The clipped CDF.
"""
cdf = numpy.copy(cdf)
if cdf.ndim == 2:
cdf = cdf.reshape(1, *cdf.shape)
nknns, nneighbours, __ = cdf.shape
for i in range(nknns):
for k in range(nneighbours):
ns = numpy.where(cdf[i, k, :] == 1.)[0]
if ns.size > 1:
cdf[i, k, ns[1]:] = numpy.nan
cdf[cdf == 0] = numpy.nan
cdf = cdf[0, ...] if nknns == 1 else cdf # Reshape if necessary
return cdf
@staticmethod @staticmethod
def joint_to_corr(cdf0, cdf1, joint_cdf): def joint_to_corr(cdf0, cdf1, joint_cdf):
""" """

View file

@ -18,4 +18,5 @@ from .make_cat import (HaloCatalogue, concatenate_clumps) # noqa
from .readobs import (PlanckClusters, MCXCClusters, TwoMPPGalaxies, # noqa from .readobs import (PlanckClusters, MCXCClusters, TwoMPPGalaxies, # noqa
TwoMPPGroups, SDSS) # noqa TwoMPPGroups, SDSS) # noqa
from .outsim import (dump_split, combine_splits, make_ascii_powmes) # noqa from .outsim import (dump_split, combine_splits, make_ascii_powmes) # noqa
from .summaries import (PKReader, PairOverlap, NPairsOverlap, binned_resample_mean) # noqa from .summaries import (PKReader, kNNCDFReader, PairOverlap, NPairsOverlap,
binned_resample_mean) # noqa

View file

@ -169,6 +169,121 @@ class PKReader:
return ks, xpks return ks, xpks
class kNNCDFReader:
"""
Shortcut object to read in the kNN CDF data.
"""
def read(self, files, ks, rmin=None, rmax=None, to_clip=True):
"""
Read the kNN CDF data can be either the auto- or cross-correlation.
Parameters
----------
files : list of str
List of file paths to read in.
ks : list of int
kNN values to read in.
rmin : float, optional
Minimum separation. By default ignored.
rmax : float, optional
Maximum separation. By default ignored.
to_clip : bool, optional
Whether to clip the auto-correlation CDF. Ignored if reading in the
cross-correlation.
Returns
-------
rs : 1-dimensional array
Array of separations.
out : 4-dimensional array
Auto-correlation or cross-correlation kNN CDFs. The shape is
`(len(files), len(mass_thresholds), len(ks), neval)`.
mass_thresholds : 1-dimensional array
Array of mass thresholds.
"""
data = joblib.load(files[0])
if "cdf_0" in data.keys():
isauto = True
kind = "cdf"
elif "corr_0" in data.keys():
isauto = False
kind = "corr"
else:
raise ValueError("Unknown data format.")
rs = data["rs"]
mass_thresholds = data["mass_threshold"]
neval = data["{}_0".format(kind)].shape[1]
out = numpy.full((len(files), len(mass_thresholds), len(ks), neval),
numpy.nan, dtype=numpy.float32)
for i, file in enumerate(tqdm(files)):
data = joblib.load(file)
for j in range(len(mass_thresholds)):
out[i, j, ...] = data["{}_{}".format(kind, j)][ks, :]
if isauto and to_clip:
out[i, j, ...] = self.clipped_cdf(out[i, j, ...])
# Apply separation cuts
mask = (rs >= rmin if rmin is not None else rs > 0)
mask &= (rs <= rmax if rmax is not None else rs < numpy.infty)
rs = rs[mask]
out = out[..., mask]
return rs, out, mass_thresholds
@staticmethod
def peaked_cdf(cdf, make_copy=True):
"""
Transform the CDF to a peaked CDF.
Parameters
----------
cdf : 1- or 2- or 3-dimensional array
CDF to be transformed along the last axis.
make_copy : bool, optional
Whether to make a copy of the CDF before transforming it to avoid
overwriting it.
Returns
-------
peaked_cdf : 1- or 2- or 3-dimensional array
"""
cdf = numpy.copy(cdf) if make_copy else cdf
cdf[cdf > 0.5] = 1 - cdf[cdf > 0.5]
return cdf
@staticmethod
def clipped_cdf(cdf):
"""
Clip the CDF, setting values where the CDF is either 0 or after the
first occurence of 1 to `numpy.nan`.
Parameters
----------
cdf : 2- or 3-dimensional array
CDF to be clipped.
Returns
-------
clipped_cdf : 2- or 3-dimensional array
The clipped CDF.
"""
cdf = numpy.copy(cdf)
if cdf.ndim == 2:
cdf = cdf.reshape(1, *cdf.shape)
nknns, nneighbours, __ = cdf.shape
for i in range(nknns):
for k in range(nneighbours):
ns = numpy.where(cdf[i, k, :] == 1.)[0]
if ns.size > 1:
cdf[i, k, ns[1]:] = numpy.nan
cdf[cdf == 0] = numpy.nan
cdf = cdf[0, ...] if nknns == 1 else cdf # Reshape if necessary
return cdf
class PairOverlap: class PairOverlap:
r""" r"""
A shortcut object for reading in the results of matching two simulations. A shortcut object for reading in the results of matching two simulations.

2181
meetings/220403_knn.ipynb Normal file

File diff suppressed because one or more lines are too long