mirror of
https://github.com/Richard-Sti/csiborgtools.git
synced 2025-01-04 23:34:15 +00:00
Attempt at absolute calibration and more (#146)
* Update nb * Update defaults * Add absolute calibration to fpath * Add basic absolute calibration * Switch to log density * Feed in r directly * Add more complex spacing option * Update script * Comment out abs calibration for now * Update script * Add MB profile * Add script * Update submit for all profiles * Update * Add option * Add iterator over sims * Update defaults on alpha * Update script * Parallelise script * Switch to feasible init * Switch to median init * Add vext option * Remove file if exists * Add optional sample_Vext * Add param * rm print * Add more iterator * Update script * Update nb * Update nb
This commit is contained in:
parent
32e36afdc3
commit
9c1aa26428
11 changed files with 568 additions and 160 deletions
|
@ -198,7 +198,7 @@ def observer_peculiar_velocity(velocity_field, smooth_scales=None,
|
||||||
###############################################################################
|
###############################################################################
|
||||||
|
|
||||||
|
|
||||||
def evaluate_los(*fields, sky_pos, boxsize, rmax, dr, smooth_scales=None,
|
def evaluate_los(*fields, sky_pos, boxsize, rdist, smooth_scales=None,
|
||||||
interpolation_method="cic", verbose=False):
|
interpolation_method="cic", verbose=False):
|
||||||
"""
|
"""
|
||||||
Interpolate the fields for a set of lines of sights from the observer
|
Interpolate the fields for a set of lines of sights from the observer
|
||||||
|
@ -212,10 +212,8 @@ def evaluate_los(*fields, sky_pos, boxsize, rmax, dr, smooth_scales=None,
|
||||||
Query positions in spherical coordinates (RA, dec) in degrees.
|
Query positions in spherical coordinates (RA, dec) in degrees.
|
||||||
boxsize : float
|
boxsize : float
|
||||||
Box size in `Mpc / h`.
|
Box size in `Mpc / h`.
|
||||||
rmax : float
|
rdist : 1-dimensional array
|
||||||
Maximum radial distance in `Mpc / h`.
|
Radial positions in `Mpc / h` where the fields are evaluated.
|
||||||
dr : float
|
|
||||||
Radial distance step in `Mpc / h`.
|
|
||||||
smooth_scales : (list of) float, optional
|
smooth_scales : (list of) float, optional
|
||||||
Smoothing scales in `Mpc / h`.
|
Smoothing scales in `Mpc / h`.
|
||||||
interpolation_method : str, optional
|
interpolation_method : str, optional
|
||||||
|
@ -238,12 +236,10 @@ def evaluate_los(*fields, sky_pos, boxsize, rmax, dr, smooth_scales=None,
|
||||||
raise ValueError("`sky_pos` must be a 2D array.")
|
raise ValueError("`sky_pos` must be a 2D array.")
|
||||||
nsamples = len(sky_pos)
|
nsamples = len(sky_pos)
|
||||||
|
|
||||||
|
rmax = np.max(rdist)
|
||||||
if interpolation_method == "cic" and rmax > 0.5 * boxsize:
|
if interpolation_method == "cic" and rmax > 0.5 * boxsize:
|
||||||
raise ValueError("The maximum radius must be within the box.")
|
raise ValueError("The maximum radius must be within the box.")
|
||||||
|
|
||||||
# Radial positions to evaluate for each line of sight.
|
|
||||||
rdist = np.arange(0, rmax, dr, dtype=fields[0].dtype)
|
|
||||||
|
|
||||||
# Create an array of radial positions and sky coordinates of each line of
|
# Create an array of radial positions and sky coordinates of each line of
|
||||||
# sight.
|
# sight.
|
||||||
pos = np.empty((nsamples * len(rdist), 3), dtype=fields[0].dtype)
|
pos = np.empty((nsamples * len(rdist), 3), dtype=fields[0].dtype)
|
||||||
|
|
|
@ -363,12 +363,11 @@ def predict_zobs(dist, beta, Vext_radial, vpec_radial, Omega_m):
|
||||||
###############################################################################
|
###############################################################################
|
||||||
|
|
||||||
|
|
||||||
def ptilde_wo_bias(xrange, mu, err_squared, r_squared_xrange):
|
def log_ptilde_wo_bias(xrange, mu, err_squared, log_r_squared_xrange):
|
||||||
"""Calculate `ptilde(r)` without imhomogeneous Malmquist bias."""
|
"""Calculate `ptilde(r)` without imhomogeneous Malmquist bias."""
|
||||||
ptilde = jnp.exp(-0.5 * (xrange - mu)**2 / err_squared)
|
return (-0.5 * (xrange - mu)**2 / err_squared
|
||||||
ptilde /= jnp.sqrt(2 * np.pi * err_squared)
|
- 0.5 * jnp.log(2 * np.pi * err_squared)
|
||||||
ptilde *= r_squared_xrange
|
+ log_r_squared_xrange)
|
||||||
return ptilde
|
|
||||||
|
|
||||||
|
|
||||||
def likelihood_zobs(zobs, zobs_pred, e2_cz):
|
def likelihood_zobs(zobs, zobs_pred, e2_cz):
|
||||||
|
@ -406,8 +405,7 @@ class BaseFlowValidationModel(ABC):
|
||||||
setattr(self, f"{name}", jnp.asarray(value))
|
setattr(self, f"{name}", jnp.asarray(value))
|
||||||
|
|
||||||
def _set_calibration_params(self, calibration_params):
|
def _set_calibration_params(self, calibration_params):
|
||||||
names = []
|
names, values = [], []
|
||||||
values = []
|
|
||||||
for key, value in calibration_params.items():
|
for key, value in calibration_params.items():
|
||||||
names.append(key)
|
names.append(key)
|
||||||
values.append(value)
|
values.append(value)
|
||||||
|
@ -421,6 +419,28 @@ class BaseFlowValidationModel(ABC):
|
||||||
|
|
||||||
self._setattr_as_jax(names, values)
|
self._setattr_as_jax(names, values)
|
||||||
|
|
||||||
|
def _set_abs_calibration_params(self, abs_calibration_params):
|
||||||
|
self.with_absolute_calibration = abs_calibration_params is not None
|
||||||
|
|
||||||
|
if abs_calibration_params is None:
|
||||||
|
self.with_absolute_calibration = False
|
||||||
|
return
|
||||||
|
|
||||||
|
self.calibration_distmod = jnp.asarray(
|
||||||
|
abs_calibration_params["calibration_distmod"][..., 0])
|
||||||
|
self.calibration_edistmod = jnp.asarray(
|
||||||
|
abs_calibration_params["calibration_distmod"][..., 1])
|
||||||
|
self.data_with_calibration = jnp.asarray(
|
||||||
|
abs_calibration_params["data_with_calibration"])
|
||||||
|
self.data_wo_calibration = ~self.data_with_calibration
|
||||||
|
|
||||||
|
# Calculate the log of the number of calibrators. Where there is no
|
||||||
|
# calibrator set the number of calibrators to 1 to avoid log(0) and
|
||||||
|
# this way only zeros are being added.
|
||||||
|
length_calibration = abs_calibration_params["length_calibration"]
|
||||||
|
length_calibration[length_calibration == 0] = 1
|
||||||
|
self.log_length_calibration = jnp.log(length_calibration)
|
||||||
|
|
||||||
def _set_radial_spacing(self, r_xrange, Omega_m):
|
def _set_radial_spacing(self, r_xrange, Omega_m):
|
||||||
cosmo = FlatLambdaCDM(H0=H0, Om0=Omega_m)
|
cosmo = FlatLambdaCDM(H0=H0, Om0=Omega_m)
|
||||||
|
|
||||||
|
@ -428,21 +448,19 @@ class BaseFlowValidationModel(ABC):
|
||||||
r2_xrange = r_xrange**2
|
r2_xrange = r_xrange**2
|
||||||
r2_xrange /= r2_xrange.mean()
|
r2_xrange /= r2_xrange.mean()
|
||||||
self.r_xrange = r_xrange
|
self.r_xrange = r_xrange
|
||||||
self.r2_xrange = r2_xrange
|
self.log_r2_xrange = jnp.log(r2_xrange)
|
||||||
|
|
||||||
# Require `zmin` < 0 because the first radial step is likely at 0.
|
# Require `zmin` < 0 because the first radial step is likely at 0.
|
||||||
z_xrange = z_at_value(
|
z_xrange = z_at_value(
|
||||||
cosmo.comoving_distance, r_xrange * u.Mpc, zmin=-0.01)
|
cosmo.comoving_distance, r_xrange * u.Mpc, zmin=-0.01)
|
||||||
mu_xrange = cosmo.distmod(z_xrange).value
|
mu_xrange = cosmo.distmod(z_xrange).value
|
||||||
|
# In case the first distance is 0 and its distance modulus is infinite.
|
||||||
|
if not np.isfinite(mu_xrange[0]):
|
||||||
|
mu_xrange[0] = mu_xrange[1] - 1
|
||||||
|
|
||||||
self.z_xrange = jnp.asarray(z_xrange)
|
self.z_xrange = jnp.asarray(z_xrange)
|
||||||
self.mu_xrange = jnp.asarray(mu_xrange)
|
self.mu_xrange = jnp.asarray(mu_xrange)
|
||||||
|
|
||||||
# Get the stepsize, we need it to be constant for Simpson's rule.
|
|
||||||
dr = np.diff(r_xrange)
|
|
||||||
if not np.all(np.isclose(dr, dr[0], atol=1e-5)):
|
|
||||||
raise ValueError("The radial step size must be constant.")
|
|
||||||
self.dr = dr[0]
|
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def ndata(self):
|
def ndata(self):
|
||||||
"""Number of PV objects in the catalogue."""
|
"""Number of PV objects in the catalogue."""
|
||||||
|
@ -451,7 +469,7 @@ class BaseFlowValidationModel(ABC):
|
||||||
@property
|
@property
|
||||||
def num_sims(self):
|
def num_sims(self):
|
||||||
"""Number of simulations."""
|
"""Number of simulations."""
|
||||||
return len(self.los_density)
|
return len(self.log_los_density)
|
||||||
|
|
||||||
@abstractmethod
|
@abstractmethod
|
||||||
def __call__(self, **kwargs):
|
def __call__(self, **kwargs):
|
||||||
|
@ -580,26 +598,38 @@ def sample_simple(e_mu_min, e_mu_max, dmu_min, dmu_max, alpha_min, alpha_max,
|
||||||
|
|
||||||
|
|
||||||
def sample_calibration(Vext_min, Vext_max, Vmono_min, Vmono_max, beta_min,
|
def sample_calibration(Vext_min, Vext_max, Vmono_min, Vmono_max, beta_min,
|
||||||
beta_max, sigma_v_min, sigma_v_max, sample_Vmono,
|
beta_max, sigma_v_min, sigma_v_max, h_min, h_max,
|
||||||
sample_beta):
|
sample_Vext, sample_Vmono, sample_beta, sample_h):
|
||||||
"""Sample the flow calibration."""
|
"""Sample the flow calibration."""
|
||||||
sigma_v = sample("sigma_v", Uniform(sigma_v_min, sigma_v_max))
|
sigma_v = sample("sigma_v", Uniform(sigma_v_min, sigma_v_max))
|
||||||
Vext = sample("Vext", Uniform(Vext_min, Vext_max).expand([3]))
|
|
||||||
|
|
||||||
if sample_beta:
|
if sample_beta:
|
||||||
beta = sample("beta", Uniform(beta_min, beta_max))
|
beta = sample("beta", Uniform(beta_min, beta_max))
|
||||||
else:
|
else:
|
||||||
beta = 1.0
|
beta = 1.0
|
||||||
|
|
||||||
|
if sample_Vext:
|
||||||
|
Vext = sample("Vext", Uniform(Vext_min, Vext_max).expand([3]))
|
||||||
|
else:
|
||||||
|
Vext = jnp.zeros(3)
|
||||||
|
|
||||||
if sample_Vmono:
|
if sample_Vmono:
|
||||||
Vmono = sample("Vmono", Uniform(Vmono_min, Vmono_max))
|
Vmono = sample("Vmono", Uniform(Vmono_min, Vmono_max))
|
||||||
else:
|
else:
|
||||||
Vmono = 0.0
|
Vmono = 0.0
|
||||||
|
|
||||||
|
if sample_h:
|
||||||
|
h = sample("h", Uniform(h_min, h_max))
|
||||||
|
else:
|
||||||
|
h = 1.0
|
||||||
|
|
||||||
return {"Vext": Vext,
|
return {"Vext": Vext,
|
||||||
"Vmono": Vmono,
|
"Vmono": Vmono,
|
||||||
"sigma_v": sigma_v,
|
"sigma_v": sigma_v,
|
||||||
"beta": beta}
|
"beta": beta,
|
||||||
|
"h": h,
|
||||||
|
"sample_h": sample_h,
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
###############################################################################
|
###############################################################################
|
||||||
|
@ -630,10 +660,12 @@ class PV_LogLikelihood(BaseFlowValidationModel):
|
||||||
Observed redshifts.
|
Observed redshifts.
|
||||||
e_zobs : 1-dimensional array of shape (n_objects)
|
e_zobs : 1-dimensional array of shape (n_objects)
|
||||||
Errors on the observed redshifts.
|
Errors on the observed redshifts.
|
||||||
calibration_params: dict
|
calibration_params : dict
|
||||||
Calibration parameters of each object.
|
Calibration parameters of each object.
|
||||||
|
abs_calibration_params : dict
|
||||||
|
Absolute calibration parameters.
|
||||||
mag_selection : dict
|
mag_selection : dict
|
||||||
Magnitude selection parameters.
|
Magnitude selection parameters, optional.
|
||||||
r_xrange : 1-dimensional array
|
r_xrange : 1-dimensional array
|
||||||
Radial distances where the field was interpolated for each object.
|
Radial distances where the field was interpolated for each object.
|
||||||
Omega_m : float
|
Omega_m : float
|
||||||
|
@ -645,22 +677,23 @@ class PV_LogLikelihood(BaseFlowValidationModel):
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self, los_density, los_velocity, RA, dec, z_obs, e_zobs,
|
def __init__(self, los_density, los_velocity, RA, dec, z_obs, e_zobs,
|
||||||
calibration_params, mag_selection, r_xrange, Omega_m,
|
calibration_params, abs_calibration_params, mag_selection,
|
||||||
kind, name):
|
r_xrange, Omega_m, kind, name):
|
||||||
if e_zobs is not None:
|
if e_zobs is not None:
|
||||||
e2_cz_obs = jnp.asarray((SPEED_OF_LIGHT * e_zobs)**2)
|
e2_cz_obs = jnp.asarray((SPEED_OF_LIGHT * e_zobs)**2)
|
||||||
else:
|
else:
|
||||||
e2_cz_obs = jnp.zeros_like(z_obs)
|
e2_cz_obs = jnp.zeros_like(z_obs)
|
||||||
|
|
||||||
# Convert RA/dec to radians.
|
# Convert RA/dec to radians.
|
||||||
RA = np.deg2rad(RA)
|
RA, dec = np.deg2rad(RA), np.deg2rad(dec)
|
||||||
dec = np.deg2rad(dec)
|
|
||||||
|
|
||||||
names = ["los_density", "los_velocity", "RA", "dec", "z_obs",
|
names = ["log_los_density", "los_velocity", "RA", "dec", "z_obs",
|
||||||
"e2_cz_obs"]
|
"e2_cz_obs"]
|
||||||
values = [los_density, los_velocity, RA, dec, z_obs, e2_cz_obs]
|
values = [jnp.log(los_density), los_velocity, RA, dec, z_obs,
|
||||||
|
e2_cz_obs]
|
||||||
self._setattr_as_jax(names, values)
|
self._setattr_as_jax(names, values)
|
||||||
self._set_calibration_params(calibration_params)
|
self._set_calibration_params(calibration_params)
|
||||||
|
self._set_abs_calibration_params(abs_calibration_params)
|
||||||
self._set_radial_spacing(r_xrange, Omega_m)
|
self._set_radial_spacing(r_xrange, Omega_m)
|
||||||
|
|
||||||
self.kind = kind
|
self.kind = kind
|
||||||
|
@ -765,6 +798,10 @@ class PV_LogLikelihood(BaseFlowValidationModel):
|
||||||
|
|
||||||
mu = distmod_SN(
|
mu = distmod_SN(
|
||||||
mag_true, x1_true, c_true, mag_cal, alpha_cal, beta_cal)
|
mag_true, x1_true, c_true, mag_cal, alpha_cal, beta_cal)
|
||||||
|
|
||||||
|
if field_calibration_params["sample_h"]:
|
||||||
|
raise NotImplementedError("H0 for SN not implemented.")
|
||||||
|
|
||||||
elif self.kind == "TFR":
|
elif self.kind == "TFR":
|
||||||
a = distmod_params["a"]
|
a = distmod_params["a"]
|
||||||
b = distmod_params["b"]
|
b = distmod_params["b"]
|
||||||
|
@ -834,6 +871,11 @@ class PV_LogLikelihood(BaseFlowValidationModel):
|
||||||
e2_mu = jnp.ones_like(mag_true) * e_mu**2
|
e2_mu = jnp.ones_like(mag_true) * e_mu**2
|
||||||
|
|
||||||
mu = distmod_TFR(mag_true, eta_true, a, b, c)
|
mu = distmod_TFR(mag_true, eta_true, a, b, c)
|
||||||
|
|
||||||
|
if field_calibration_params["sample_h"]:
|
||||||
|
raise NotImplementedError("H0 for TFR not implemented.")
|
||||||
|
# mu -= 5 * jnp.log10(field_calibration_params["h"])
|
||||||
|
|
||||||
elif self.kind == "simple":
|
elif self.kind == "simple":
|
||||||
dmu = distmod_params["dmu"]
|
dmu = distmod_params["dmu"]
|
||||||
|
|
||||||
|
@ -852,19 +894,25 @@ class PV_LogLikelihood(BaseFlowValidationModel):
|
||||||
e2_mu = jnp.ones_like(mag_true) * e_mu**2
|
e2_mu = jnp.ones_like(mag_true) * e_mu**2
|
||||||
|
|
||||||
mu = mu_true + dmu
|
mu = mu_true + dmu
|
||||||
|
|
||||||
|
if field_calibration_params["sample_h"]:
|
||||||
|
raise NotImplementedError("H0 for simple not implemented.")
|
||||||
else:
|
else:
|
||||||
raise ValueError(f"Unknown kind: `{self.kind}`.")
|
raise ValueError(f"Unknown kind: `{self.kind}`.")
|
||||||
|
|
||||||
# Calculate p(r) (Malmquist bias). Shape is (ndata, nxrange)
|
# Calculate p(r) (Malmquist bias). Shape is (ndata, nxrange)
|
||||||
ptilde = ptilde_wo_bias(
|
log_ptilde = log_ptilde_wo_bias(
|
||||||
self.mu_xrange[None, :], mu[:, None], e2_mu[:, None],
|
self.mu_xrange[None, :], mu[:, None], e2_mu[:, None],
|
||||||
self.r2_xrange[None, :])
|
self.log_r2_xrange[None, :])
|
||||||
|
|
||||||
# Inhomogeneous Malmquist bias. Shape is (n_sims, ndata, nxrange)
|
# Inhomogeneous Malmquist bias. Shape is (n_sims, ndata, nxrange)
|
||||||
alpha = distmod_params["alpha"]
|
alpha = distmod_params["alpha"]
|
||||||
ptilde = ptilde[None, ...] * self.los_density**alpha
|
log_ptilde = log_ptilde[None, ...] + alpha * self.log_los_density
|
||||||
|
|
||||||
|
ptilde = jnp.exp(log_ptilde)
|
||||||
|
|
||||||
# Normalization of p(r). Shape is (n_sims, ndata)
|
# Normalization of p(r). Shape is (n_sims, ndata)
|
||||||
pnorm = simpson(ptilde, dx=self.dr, axis=-1)
|
pnorm = simpson(ptilde, x=self.r_xrange, axis=-1)
|
||||||
|
|
||||||
# Calculate z_obs at each distance. Shape is (n_sims, ndata, nxrange)
|
# Calculate z_obs at each distance. Shape is (n_sims, ndata, nxrange)
|
||||||
vrad = field_calibration_params["beta"] * self.los_velocity
|
vrad = field_calibration_params["beta"] * self.los_velocity
|
||||||
|
@ -872,10 +920,34 @@ class PV_LogLikelihood(BaseFlowValidationModel):
|
||||||
zobs = (1 + self.z_xrange[None, None, :]) * (1 + vrad / SPEED_OF_LIGHT)
|
zobs = (1 + self.z_xrange[None, None, :]) * (1 + vrad / SPEED_OF_LIGHT)
|
||||||
zobs -= 1.
|
zobs -= 1.
|
||||||
|
|
||||||
|
# Shape remains (n_sims, ndata, nxrange)
|
||||||
ptilde *= likelihood_zobs(
|
ptilde *= likelihood_zobs(
|
||||||
self.z_obs[None, :, None], zobs, e2_cz[None, :, None])
|
self.z_obs[None, :, None], zobs, e2_cz[None, :, None])
|
||||||
|
|
||||||
ll = jnp.log(simpson(ptilde, dx=self.dr, axis=-1)) - jnp.log(pnorm)
|
if self.with_absolute_calibration:
|
||||||
|
raise NotImplementedError("Absolute calibration not implemented.")
|
||||||
|
# Absolute calibration likelihood, the shape is now
|
||||||
|
# (ndata_with_calibration, ncalib, nxrange)
|
||||||
|
# ll_calibration = normal_logpdf(
|
||||||
|
# self.mu_xrange[None, None, :],
|
||||||
|
# self.calibration_distmod[..., None],
|
||||||
|
# self.calibration_edistmod[..., None])
|
||||||
|
|
||||||
|
# # Average the likelihood over the calibration points. The shape
|
||||||
|
# is
|
||||||
|
# # now (ndata, nxrange)
|
||||||
|
# ll_calibration = logsumexp(
|
||||||
|
# jnp.nan_to_num(ll_calibration, nan=-jnp.inf), axis=1)
|
||||||
|
# # This is the normalisation because we want the *average*.
|
||||||
|
# ll_calibration -= self.log_length_calibration[:, None]
|
||||||
|
|
||||||
|
# ptilde = ptilde.at[:, self.data_with_calibration, :].
|
||||||
|
# multiply(jnp.exp(ll_calibration))
|
||||||
|
|
||||||
|
# Integrate over the radial distance. Shape is (n_sims, ndata)
|
||||||
|
ll = jnp.log(simpson(ptilde, x=self.r_xrange, axis=-1))
|
||||||
|
ll -= jnp.log(pnorm)
|
||||||
|
|
||||||
return ll0 + jnp.sum(logsumexp(ll, axis=0)) + self.norm
|
return ll0 + jnp.sum(logsumexp(ll, axis=0)) + self.norm
|
||||||
|
|
||||||
|
|
||||||
|
@ -923,7 +995,54 @@ def PV_validation_model(models, distmod_hyperparams_per_model,
|
||||||
###############################################################################
|
###############################################################################
|
||||||
|
|
||||||
|
|
||||||
def get_model(loader, zcmb_min=None, zcmb_max=None, mag_selection=None):
|
def read_absolute_calibration(kind, data_length, calibration_fpath):
|
||||||
|
"""
|
||||||
|
Read the absolute calibration for the CF4 TFR sample from LEDA but
|
||||||
|
preprocessed by me.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
kind : str
|
||||||
|
Calibration kind: `Cepheids`, `TRGB`, `SBF`, ...
|
||||||
|
data_length : int
|
||||||
|
Number of samples in CF4 TFR (should be 9,788).
|
||||||
|
calibration_fpath : str
|
||||||
|
Path to the preprocessed calibration file.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
data : 3-dimensional array of shape (data_length, max_calib, 2)
|
||||||
|
Absolute calibration data.
|
||||||
|
with_calibration : 1-dimensional array of shape (data_length)
|
||||||
|
Whether the sample has a calibration.
|
||||||
|
length_calibration : 1-dimensional array of shape (data_length)
|
||||||
|
Number of calibration points per sample.
|
||||||
|
"""
|
||||||
|
data = {}
|
||||||
|
with File(calibration_fpath, 'r') as f:
|
||||||
|
for key in f[kind].keys():
|
||||||
|
x = f[kind][key][:]
|
||||||
|
|
||||||
|
# Get rid of points without uncertainties
|
||||||
|
x = x[~np.isnan(x[:, 1])]
|
||||||
|
|
||||||
|
data[key] = x
|
||||||
|
|
||||||
|
max_calib = max(len(val) for val in data.values())
|
||||||
|
|
||||||
|
out = np.full((data_length, max_calib, 2), np.nan)
|
||||||
|
with_calibration = np.full(data_length, False)
|
||||||
|
length_calibration = np.full(data_length, 0)
|
||||||
|
for i in data.keys():
|
||||||
|
out[int(i), :len(data[i]), :] = data[i]
|
||||||
|
with_calibration[int(i)] = True
|
||||||
|
length_calibration[int(i)] = len(data[i])
|
||||||
|
|
||||||
|
return out, with_calibration, length_calibration
|
||||||
|
|
||||||
|
|
||||||
|
def get_model(loader, zcmb_min=None, zcmb_max=None, mag_selection=None,
|
||||||
|
absolute_calibration=None, calibration_fpath=None):
|
||||||
"""
|
"""
|
||||||
Get a model and extract the relevant data from the loader.
|
Get a model and extract the relevant data from the loader.
|
||||||
|
|
||||||
|
@ -937,6 +1056,9 @@ def get_model(loader, zcmb_min=None, zcmb_max=None, mag_selection=None):
|
||||||
Maximum observed redshift in the CMB frame to include.
|
Maximum observed redshift in the CMB frame to include.
|
||||||
mag_selection : dict, optional
|
mag_selection : dict, optional
|
||||||
Magnitude selection parameters.
|
Magnitude selection parameters.
|
||||||
|
add_absolute_calibration : bool, optional
|
||||||
|
Whether to add an absolute calibration for CF4 TFRs.
|
||||||
|
calibration_fpath : str, optional
|
||||||
|
|
||||||
Returns
|
Returns
|
||||||
-------
|
-------
|
||||||
|
@ -949,6 +1071,9 @@ def get_model(loader, zcmb_min=None, zcmb_max=None, mag_selection=None):
|
||||||
los_velocity = loader.los_radial_velocity
|
los_velocity = loader.los_radial_velocity
|
||||||
kind = loader._catname
|
kind = loader._catname
|
||||||
|
|
||||||
|
if absolute_calibration is not None and "CF4_TFR_" not in kind:
|
||||||
|
raise ValueError("Absolute calibration supported only for the CF4 TFR sample.") # noqa
|
||||||
|
|
||||||
if kind in ["LOSS", "Foundation"]:
|
if kind in ["LOSS", "Foundation"]:
|
||||||
keys = ["RA", "DEC", "z_CMB", "mB", "x1", "c", "e_mB", "e_x1", "e_c"]
|
keys = ["RA", "DEC", "z_CMB", "mB", "x1", "c", "e_mB", "e_x1", "e_c"]
|
||||||
RA, dec, zCMB, mag, x1, c, e_mag, e_x1, e_c = (
|
RA, dec, zCMB, mag, x1, c, e_mag, e_x1, e_c = (
|
||||||
|
@ -963,7 +1088,8 @@ def get_model(loader, zcmb_min=None, zcmb_max=None, mag_selection=None):
|
||||||
model = PV_LogLikelihood(
|
model = PV_LogLikelihood(
|
||||||
los_overdensity[:, mask], los_velocity[:, mask],
|
los_overdensity[:, mask], los_velocity[:, mask],
|
||||||
RA[mask], dec[mask], zCMB[mask], e_zCMB, calibration_params,
|
RA[mask], dec[mask], zCMB[mask], e_zCMB, calibration_params,
|
||||||
mag_selection, loader.rdist, loader._Omega_m, "SN", name=kind)
|
None, mag_selection, loader.rdist, loader._Omega_m, "SN",
|
||||||
|
name=kind)
|
||||||
elif "Pantheon+" in kind:
|
elif "Pantheon+" in kind:
|
||||||
keys = ["RA", "DEC", "zCMB", "mB", "x1", "c", "biasCor_m_b", "mBERR",
|
keys = ["RA", "DEC", "zCMB", "mB", "x1", "c", "biasCor_m_b", "mBERR",
|
||||||
"x1ERR", "cERR", "biasCorErr_m_b", "zCMB_SN", "zCMB_Group",
|
"x1ERR", "cERR", "biasCorErr_m_b", "zCMB_SN", "zCMB_Group",
|
||||||
|
@ -991,7 +1117,8 @@ def get_model(loader, zcmb_min=None, zcmb_max=None, mag_selection=None):
|
||||||
model = PV_LogLikelihood(
|
model = PV_LogLikelihood(
|
||||||
los_overdensity[:, mask], los_velocity[:, mask],
|
los_overdensity[:, mask], los_velocity[:, mask],
|
||||||
RA[mask], dec[mask], zCMB[mask], e_zCMB[mask], calibration_params,
|
RA[mask], dec[mask], zCMB[mask], e_zCMB[mask], calibration_params,
|
||||||
mag_selection, loader.rdist, loader._Omega_m, "SN", name=kind)
|
None, mag_selection, loader.rdist, loader._Omega_m, "SN",
|
||||||
|
name=kind)
|
||||||
elif kind in ["SFI_gals", "2MTF", "SFI_gals_masked"]:
|
elif kind in ["SFI_gals", "2MTF", "SFI_gals_masked"]:
|
||||||
keys = ["RA", "DEC", "z_CMB", "mag", "eta", "e_mag", "e_eta"]
|
keys = ["RA", "DEC", "z_CMB", "mag", "eta", "e_mag", "e_eta"]
|
||||||
RA, dec, zCMB, mag, eta, e_mag, e_eta = (loader.cat[k] for k in keys)
|
RA, dec, zCMB, mag, eta, e_mag, e_eta = (loader.cat[k] for k in keys)
|
||||||
|
@ -1001,7 +1128,7 @@ def get_model(loader, zcmb_min=None, zcmb_max=None, mag_selection=None):
|
||||||
"e_mag": e_mag[mask], "e_eta": e_eta[mask]}
|
"e_mag": e_mag[mask], "e_eta": e_eta[mask]}
|
||||||
model = PV_LogLikelihood(
|
model = PV_LogLikelihood(
|
||||||
los_overdensity[:, mask], los_velocity[:, mask],
|
los_overdensity[:, mask], los_velocity[:, mask],
|
||||||
RA[mask], dec[mask], zCMB[mask], None, calibration_params,
|
RA[mask], dec[mask], zCMB[mask], None, calibration_params, None,
|
||||||
mag_selection, loader.rdist, loader._Omega_m, "TFR", name=kind)
|
mag_selection, loader.rdist, loader._Omega_m, "TFR", name=kind)
|
||||||
elif "CF4_TFR_" in kind:
|
elif "CF4_TFR_" in kind:
|
||||||
# The full name can be e.g. "CF4_TFR_not2MTForSFI_i" or "CF4_TFR_i".
|
# The full name can be e.g. "CF4_TFR_not2MTForSFI_i" or "CF4_TFR_i".
|
||||||
|
@ -1039,12 +1166,34 @@ def get_model(loader, zcmb_min=None, zcmb_max=None, mag_selection=None):
|
||||||
else:
|
else:
|
||||||
mask &= Qs == 5
|
mask &= Qs == 5
|
||||||
|
|
||||||
|
# Read the absolute calibration
|
||||||
|
if absolute_calibration is not None:
|
||||||
|
CF4_length = len(RA)
|
||||||
|
distmod, with_calibration, length_calibration = read_absolute_calibration( # noqa
|
||||||
|
"Cepheids", CF4_length, calibration_fpath)
|
||||||
|
|
||||||
|
distmod = distmod[mask]
|
||||||
|
with_calibration = with_calibration[mask]
|
||||||
|
length_calibration = length_calibration[mask]
|
||||||
|
fprint(f"found {np.sum(with_calibration)} galaxies with absolute calibration.") # noqa
|
||||||
|
|
||||||
|
distmod = distmod[with_calibration]
|
||||||
|
length_calibration = length_calibration[with_calibration]
|
||||||
|
|
||||||
|
abs_calibration_params = {
|
||||||
|
"calibration_distmod": distmod,
|
||||||
|
"data_with_calibration": with_calibration,
|
||||||
|
"length_calibration": length_calibration}
|
||||||
|
else:
|
||||||
|
abs_calibration_params = None
|
||||||
|
|
||||||
calibration_params = {"mag": mag[mask], "eta": eta[mask],
|
calibration_params = {"mag": mag[mask], "eta": eta[mask],
|
||||||
"e_mag": e_mag[mask], "e_eta": e_eta[mask]}
|
"e_mag": e_mag[mask], "e_eta": e_eta[mask]}
|
||||||
model = PV_LogLikelihood(
|
model = PV_LogLikelihood(
|
||||||
los_overdensity[:, mask], los_velocity[:, mask],
|
los_overdensity[:, mask], los_velocity[:, mask],
|
||||||
RA[mask], dec[mask], z_obs[mask], None, calibration_params,
|
RA[mask], dec[mask], z_obs[mask], None, calibration_params,
|
||||||
mag_selection, loader.rdist, loader._Omega_m, "TFR", name=kind)
|
abs_calibration_params, mag_selection, loader.rdist,
|
||||||
|
loader._Omega_m, "TFR", name=kind)
|
||||||
elif kind in ["CF4_GroupAll"]:
|
elif kind in ["CF4_GroupAll"]:
|
||||||
# Note, this for some reason works terribly.
|
# Note, this for some reason works terribly.
|
||||||
keys = ["RA", "DE", "Vcmb", "DMzp", "eDM"]
|
keys = ["RA", "DE", "Vcmb", "DMzp", "eDM"]
|
||||||
|
@ -1059,7 +1208,7 @@ def get_model(loader, zcmb_min=None, zcmb_max=None, mag_selection=None):
|
||||||
calibration_params = {"mu": mu[mask], "e_mu": e_mu[mask]}
|
calibration_params = {"mu": mu[mask], "e_mu": e_mu[mask]}
|
||||||
model = PV_LogLikelihood(
|
model = PV_LogLikelihood(
|
||||||
los_overdensity[:, mask], los_velocity[:, mask],
|
los_overdensity[:, mask], los_velocity[:, mask],
|
||||||
RA[mask], dec[mask], zCMB[mask], None, calibration_params,
|
RA[mask], dec[mask], zCMB[mask], None, calibration_params, None,
|
||||||
mag_selection, loader.rdist, loader._Omega_m, "simple",
|
mag_selection, loader.rdist, loader._Omega_m, "simple",
|
||||||
name=kind)
|
name=kind)
|
||||||
else:
|
else:
|
||||||
|
|
|
@ -106,6 +106,7 @@ def simname2Omega_m(simname):
|
||||||
"Lilow2024": 0.3175,
|
"Lilow2024": 0.3175,
|
||||||
"IndranilVoid_exp": 0.3,
|
"IndranilVoid_exp": 0.3,
|
||||||
"IndranilVoid_gauss": 0.3,
|
"IndranilVoid_gauss": 0.3,
|
||||||
|
"IndranilVoid_mb": 0.3,
|
||||||
"no_field": 0.3,
|
"no_field": 0.3,
|
||||||
"CLONES": 0.307115,
|
"CLONES": 0.307115,
|
||||||
}
|
}
|
||||||
|
|
|
@ -129,7 +129,7 @@ class Paths:
|
||||||
files = [0]
|
files = [0]
|
||||||
elif "IndranilVoid" in simname:
|
elif "IndranilVoid" in simname:
|
||||||
kind = simname.split("_")[-1]
|
kind = simname.split("_")[-1]
|
||||||
if kind not in ["exp", "gauss"]:
|
if kind not in ["exp", "gauss", "mb"]:
|
||||||
raise ValueError(f"Unknown void kind `{simname}`.")
|
raise ValueError(f"Unknown void kind `{simname}`.")
|
||||||
|
|
||||||
kind = kind.upper()
|
kind = kind.upper()
|
||||||
|
@ -649,7 +649,7 @@ class Paths:
|
||||||
"""
|
"""
|
||||||
return self.tng300_1_dir
|
return self.tng300_1_dir
|
||||||
|
|
||||||
def field_los(self, simnname, catalogue):
|
def field_los(self, simname, catalogue):
|
||||||
"""
|
"""
|
||||||
Path to the files containing the line-of-sight fields.
|
Path to the files containing the line-of-sight fields.
|
||||||
|
|
||||||
|
@ -666,13 +666,14 @@ class Paths:
|
||||||
"""
|
"""
|
||||||
fdir = join(self.postdir, "field_los")
|
fdir = join(self.postdir, "field_los")
|
||||||
try_create_directory(fdir)
|
try_create_directory(fdir)
|
||||||
return join(fdir, f"los_{catalogue}_{simnname}.hdf5")
|
return join(fdir, f"los_{catalogue}_{simname}.hdf5")
|
||||||
|
|
||||||
def flow_validation(self, fdir, simname, catalogue, inference_method,
|
def flow_validation(self, fdir, simname, catalogue, inference_method,
|
||||||
smooth=None, nsim=None, zcmb_min=None, zcmb_max=None,
|
smooth=None, nsim=None, zcmb_min=None, zcmb_max=None,
|
||||||
mag_selection=None, sample_alpha=False,
|
mag_selection=None, sample_alpha=False,
|
||||||
sample_beta=False, sample_Vmono=False,
|
sample_beta=False, sample_Vext=None,
|
||||||
sample_mag_dipole=False, sample_curvature=False):
|
sample_Vmono=False, sample_mag_dipole=False,
|
||||||
|
sample_curvature=False, absolute_calibration=None):
|
||||||
"""Flow validation file path."""
|
"""Flow validation file path."""
|
||||||
if isinstance(catalogue, list) and len(catalogue) == 1:
|
if isinstance(catalogue, list) and len(catalogue) == 1:
|
||||||
catalogue = catalogue[0]
|
catalogue = catalogue[0]
|
||||||
|
@ -686,11 +687,12 @@ class Paths:
|
||||||
fname = f"samples_{simname}_{catalogue}_{inference_method}_"
|
fname = f"samples_{simname}_{catalogue}_{inference_method}_"
|
||||||
|
|
||||||
keys = ["smooth", "nsim", "zcmb_min", "zcmb_max", "mag_selection",
|
keys = ["smooth", "nsim", "zcmb_min", "zcmb_max", "mag_selection",
|
||||||
"sample_alpha", "sample_beta", "sample_Vmono",
|
"sample_alpha", "sample_beta", "sample_Vext", "sample_Vmono",
|
||||||
"sample_mag_dipole", "sample_curvature"]
|
"sample_mag_dipole", "sample_curvature",
|
||||||
|
"absolute_calibration"]
|
||||||
values = [smooth, nsim, zcmb_min, zcmb_max, mag_selection,
|
values = [smooth, nsim, zcmb_min, zcmb_max, mag_selection,
|
||||||
sample_alpha, sample_beta, sample_Vmono, sample_mag_dipole,
|
sample_alpha, sample_beta, sample_Vext, sample_Vmono,
|
||||||
sample_curvature]
|
sample_mag_dipole, sample_curvature, absolute_calibration]
|
||||||
|
|
||||||
for key, value in zip(keys, values):
|
for key, value in zip(keys, values):
|
||||||
|
|
||||||
|
|
File diff suppressed because one or more lines are too long
|
@ -23,16 +23,19 @@ from os import makedirs, remove, rmdir
|
||||||
from os.path import exists, join
|
from os.path import exists, join
|
||||||
from warnings import warn
|
from warnings import warn
|
||||||
|
|
||||||
import csiborgtools
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from astropy import units as u
|
from astropy import units as u
|
||||||
from astropy.coordinates import SkyCoord
|
from astropy.coordinates import SkyCoord
|
||||||
|
from astropy.cosmology import FlatLambdaCDM
|
||||||
from astropy.io import fits
|
from astropy.io import fits
|
||||||
from h5py import File
|
from h5py import File
|
||||||
from mpi4py import MPI
|
from mpi4py import MPI
|
||||||
from numba import jit
|
from numba import jit
|
||||||
|
from scipy.interpolate import interp1d
|
||||||
from taskmaster import work_delegation # noqa
|
from taskmaster import work_delegation # noqa
|
||||||
|
|
||||||
|
import csiborgtools
|
||||||
|
|
||||||
sys.path.append("../")
|
sys.path.append("../")
|
||||||
from utils import get_nsims # noqa
|
from utils import get_nsims # noqa
|
||||||
|
|
||||||
|
@ -41,6 +44,35 @@ from utils import get_nsims # noqa
|
||||||
###############################################################################
|
###############################################################################
|
||||||
|
|
||||||
|
|
||||||
|
def make_spacing(rmax, dr, dense_mu_min, dense_mu_max, dmu, Om0):
|
||||||
|
"""
|
||||||
|
Make radial spacing that at low distance is with constant spacing in
|
||||||
|
distance modulus and at higher distances is with constant spacing in
|
||||||
|
comoving distance.
|
||||||
|
"""
|
||||||
|
# Create interpolant to go from distance modulus to comoving distance.
|
||||||
|
cosmo = FlatLambdaCDM(H0=100, Om0=Om0)
|
||||||
|
|
||||||
|
z_range = np.linspace(0, 0.1, 1000000)[1:]
|
||||||
|
r_range = cosmo.comoving_distance(z_range).value
|
||||||
|
mu_range = cosmo.distmod(z_range).value
|
||||||
|
|
||||||
|
mu2r = interp1d(mu_range, r_range, kind='cubic')
|
||||||
|
|
||||||
|
# Create the spacing in distance modulus.
|
||||||
|
mu = np.arange(dense_mu_min, dense_mu_max, dmu)
|
||||||
|
rmin_dense = mu2r(np.min(mu))
|
||||||
|
rmax_dense = mu2r(np.max(mu))
|
||||||
|
|
||||||
|
# Create the spacing in comoving distance below and above.
|
||||||
|
rlow = np.arange(0, rmin_dense, dr)
|
||||||
|
rmed = mu2r(mu)
|
||||||
|
rhigh = np.arange(rmax_dense, rmax, dr)[1:]
|
||||||
|
|
||||||
|
# Combine the spacings.
|
||||||
|
return np.hstack([rlow, rmed, rhigh])
|
||||||
|
|
||||||
|
|
||||||
def get_los(catalogue_name, simname, comm):
|
def get_los(catalogue_name, simname, comm):
|
||||||
"""
|
"""
|
||||||
Get the line of sight RA/dec coordinates for the given catalogue.
|
Get the line of sight RA/dec coordinates for the given catalogue.
|
||||||
|
@ -296,8 +328,8 @@ def replace_nan_with_last_finite(x, y, apply_decay):
|
||||||
return y, rmax
|
return y, rmax
|
||||||
|
|
||||||
|
|
||||||
def interpolate_field(pos, simname, nsim, MAS, grid, dump_folder, rmax,
|
def interpolate_field(pos, simname, nsim, MAS, grid, dump_folder, r,
|
||||||
dr, smooth_scales, verbose=False):
|
smooth_scales, verbose=False):
|
||||||
"""
|
"""
|
||||||
Interpolate the density and velocity fields along the line of sight.
|
Interpolate the density and velocity fields along the line of sight.
|
||||||
|
|
||||||
|
@ -315,10 +347,8 @@ def interpolate_field(pos, simname, nsim, MAS, grid, dump_folder, rmax,
|
||||||
Grid resolution.
|
Grid resolution.
|
||||||
dump_folder : str
|
dump_folder : str
|
||||||
Folder where the temporary files are stored.
|
Folder where the temporary files are stored.
|
||||||
rmax : float
|
r : 1-dimensional array
|
||||||
Maximum distance along the line of sight.
|
Radial spacing.
|
||||||
dr : float
|
|
||||||
Distance spacing along the line of sight.
|
|
||||||
smooth_scales : list
|
smooth_scales : list
|
||||||
Smoothing scales.
|
Smoothing scales.
|
||||||
|
|
||||||
|
@ -335,7 +365,7 @@ def interpolate_field(pos, simname, nsim, MAS, grid, dump_folder, rmax,
|
||||||
flush=True)
|
flush=True)
|
||||||
density = get_field(simname, nsim, "density", MAS, grid)
|
density = get_field(simname, nsim, "density", MAS, grid)
|
||||||
rdist, finterp = csiborgtools.field.evaluate_los(
|
rdist, finterp = csiborgtools.field.evaluate_los(
|
||||||
density, sky_pos=pos, boxsize=boxsize, rmax=rmax, dr=dr,
|
density, sky_pos=pos, boxsize=boxsize, rdist=r,
|
||||||
smooth_scales=smooth_scales, verbose=verbose,
|
smooth_scales=smooth_scales, verbose=verbose,
|
||||||
interpolation_method="linear")
|
interpolation_method="linear")
|
||||||
|
|
||||||
|
@ -361,9 +391,8 @@ def interpolate_field(pos, simname, nsim, MAS, grid, dump_folder, rmax,
|
||||||
velocity = get_field(simname, nsim, "velocity", MAS, grid)
|
velocity = get_field(simname, nsim, "velocity", MAS, grid)
|
||||||
rdist, finterp = csiborgtools.field.evaluate_los(
|
rdist, finterp = csiborgtools.field.evaluate_los(
|
||||||
velocity[0], velocity[1], velocity[2],
|
velocity[0], velocity[1], velocity[2],
|
||||||
sky_pos=pos, boxsize=boxsize, rmax=rmax, dr=dr,
|
sky_pos=pos, boxsize=boxsize, rdist=r, smooth_scales=smooth_scales,
|
||||||
smooth_scales=smooth_scales, verbose=verbose,
|
verbose=verbose, interpolation_method="linear")
|
||||||
interpolation_method="linear")
|
|
||||||
|
|
||||||
rmax_velocity = np.full((3, len(pos), len(smooth_scales)), np.nan)
|
rmax_velocity = np.full((3, len(pos), len(smooth_scales)), np.nan)
|
||||||
for k in range(3):
|
for k in range(3):
|
||||||
|
@ -398,16 +427,15 @@ if __name__ == "__main__":
|
||||||
parser.add_argument("--grid", type=int, help="Grid resolution.")
|
parser.add_argument("--grid", type=int, help="Grid resolution.")
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
|
|
||||||
rmax = 200
|
Om0 = csiborgtools.simname2Omega_m(args.simname)
|
||||||
if args.catalogue == "CF4_GroupAll":
|
# r = make_spacing(200, 0.75, 23.25, 34, 0.01, Om0)
|
||||||
dr = 1
|
r = np.arange(0, 200, 0.75)
|
||||||
else:
|
|
||||||
dr = 0.75
|
|
||||||
|
|
||||||
# smooth_scales = [0, 2, 4, 6, 8]
|
# smooth_scales = [0, 2, 4, 6, 8]
|
||||||
smooth_scales = [0]
|
smooth_scales = [0]
|
||||||
|
|
||||||
print(f"Running catalogue {args.catalogue} for simulation {args.simname}.")
|
print(f"Running catalogue {args.catalogue} for simulation {args.simname} "
|
||||||
|
f"with {len(r)} radial points.")
|
||||||
|
|
||||||
comm = MPI.COMM_WORLD
|
comm = MPI.COMM_WORLD
|
||||||
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
|
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
|
||||||
|
@ -429,7 +457,7 @@ if __name__ == "__main__":
|
||||||
|
|
||||||
def main(nsim):
|
def main(nsim):
|
||||||
interpolate_field(pos, args.simname, nsim, args.MAS, args.grid,
|
interpolate_field(pos, args.simname, nsim, args.MAS, args.grid,
|
||||||
dump_folder, rmax, dr, smooth_scales,
|
dump_folder, r, smooth_scales,
|
||||||
verbose=comm.Get_size() == 1)
|
verbose=comm.Get_size() == 1)
|
||||||
|
|
||||||
work_delegation(main, nsims, comm, master_verbose=True)
|
work_delegation(main, nsims, comm, master_verbose=True)
|
||||||
|
|
|
@ -19,9 +19,10 @@ fi
|
||||||
|
|
||||||
|
|
||||||
# for simname in "csiborg1" "csiborg2_main" "csiborg2X" "Lilow2024" "Carrick2015" "CF4"; do
|
# for simname in "csiborg1" "csiborg2_main" "csiborg2X" "Lilow2024" "Carrick2015" "CF4"; do
|
||||||
for simname in "CLONES"; do
|
for simname in "Carrick2015"; do
|
||||||
# for catalogue in "2MTF" "SFI_gals" "CF4_TFR"; do
|
# for catalogue in "2MTF" "SFI_gals" "CF4_TFR"; do
|
||||||
for catalogue in "Foundation" "2MTF" "SFI_gals" "CF4_TFR"; do
|
# for catalogue in "Foundation" "2MTF" "SFI_gals" "CF4_TFR"; do
|
||||||
|
for catalogue in "CF4_TFR"; do
|
||||||
pythoncm="$env $file --catalogue $catalogue --nsims $nsims --simname $simname --MAS $MAS --grid $grid"
|
pythoncm="$env $file --catalogue $catalogue --nsims $nsims --simname $simname --MAS $MAS --grid $grid"
|
||||||
if [ $on_login -eq 1 ]; then
|
if [ $on_login -eq 1 ]; then
|
||||||
echo $pythoncm
|
echo $pythoncm
|
||||||
|
|
|
@ -12,29 +12,35 @@
|
||||||
# with this program; if not, write to the Free Software Foundation, Inc.,
|
# with this program; if not, write to the Free Software Foundation, Inc.,
|
||||||
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||||
"""Script to interpolate the Indranil void profiles for lines of sight."""
|
"""Script to interpolate the Indranil void profiles for lines of sight."""
|
||||||
from os.path import join
|
from argparse import ArgumentParser
|
||||||
|
from os.path import join, exists
|
||||||
|
from os import remove
|
||||||
|
|
||||||
import csiborgtools
|
import csiborgtools
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from astropy.coordinates import SkyCoord, angular_separation
|
from astropy.coordinates import SkyCoord, angular_separation
|
||||||
|
from field_los import get_los
|
||||||
from h5py import File
|
from h5py import File
|
||||||
from mpi4py import MPI
|
from mpi4py import MPI
|
||||||
from scipy.interpolate import RegularGridInterpolator
|
from scipy.interpolate import RegularGridInterpolator
|
||||||
from tqdm import trange
|
from tqdm import trange
|
||||||
|
|
||||||
from field_los import get_los
|
|
||||||
|
|
||||||
|
|
||||||
def interpolate_indranil_void(kind, nsims, RA, dec, rmax, dr, dump_folder,
|
def interpolate_indranil_void(kind, nsims, RA, dec, rmax, dr, dump_folder,
|
||||||
catalogue):
|
catalogue):
|
||||||
if kind not in ["exp", "gauss"]:
|
if kind not in ["exp", "gauss", "mb"]:
|
||||||
raise ValueError(f"Unknown void kind: `{kind}`.")
|
raise ValueError(f"Unknown void kind: `{kind}`.")
|
||||||
|
|
||||||
kind = kind.upper()
|
kind = kind.upper()
|
||||||
fdir = join("/mnt/extraspace/rstiskalek/catalogs", "IndranilVoid",
|
fdir = join("/mnt/extraspace/rstiskalek/catalogs", "IndranilVoid",
|
||||||
f"{kind}profile")
|
f"{kind}profile")
|
||||||
|
|
||||||
fname_out = join(dump_folder, f"los_{catalogue}_IndranilVoid_{kind}.hdf5")
|
fname_out = join(
|
||||||
|
dump_folder, f"los_{catalogue}_IndranilVoid_{kind.lower()}.hdf5")
|
||||||
|
if exists(fname_out):
|
||||||
|
print(f"Fname `{fname_out}` already exists. Removing.")
|
||||||
|
remove(fname_out)
|
||||||
|
|
||||||
print(f"Writing to `{fname_out}`.")
|
print(f"Writing to `{fname_out}`.")
|
||||||
for k in trange(len(nsims), desc="LG observers"):
|
for k in trange(len(nsims), desc="LG observers"):
|
||||||
nsim = nsims[k]
|
nsim = nsims[k]
|
||||||
|
@ -69,7 +75,7 @@ def interpolate_indranil_void(kind, nsims, RA, dec, rmax, dr, dump_folder,
|
||||||
|
|
||||||
# Write the output, homogenous density.
|
# Write the output, homogenous density.
|
||||||
density = np.ones_like(result)
|
density = np.ones_like(result)
|
||||||
with File(fname_out, 'w') as f_out:
|
with File(fname_out, 'a') as f_out:
|
||||||
f_out.create_dataset(f"rdist_{k}", data=r_eval * 0.674)
|
f_out.create_dataset(f"rdist_{k}", data=r_eval * 0.674)
|
||||||
f_out.create_dataset(f"density_{k}", data=density)
|
f_out.create_dataset(f"density_{k}", data=density)
|
||||||
f_out.create_dataset(f"velocity_{k}", data=result)
|
f_out.create_dataset(f"velocity_{k}", data=result)
|
||||||
|
@ -81,19 +87,21 @@ def interpolate_indranil_void(kind, nsims, RA, dec, rmax, dr, dump_folder,
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
kind = "gauss"
|
parser = ArgumentParser()
|
||||||
|
parser.add_argument("--kind", type=str, choices=["exp", "gauss", "mb"],
|
||||||
|
help="Kind of void profile.")
|
||||||
|
parser.add_argument("--catalogue", type=str, help="Catalogue name.")
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
rmax = 165
|
rmax = 165
|
||||||
dr = 1
|
dr = 0.75
|
||||||
|
|
||||||
comm = MPI.COMM_WORLD
|
comm = MPI.COMM_WORLD
|
||||||
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
|
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
|
||||||
nsims = paths.get_ics(f"IndranilVoid_{kind}")
|
nsims = paths.get_ics(f"IndranilVoid_{args.kind}")
|
||||||
|
|
||||||
out_folder = "/mnt/extraspace/rstiskalek/csiborg_postprocessing/field_los"
|
out_folder = "/mnt/extraspace/rstiskalek/csiborg_postprocessing/field_los"
|
||||||
|
|
||||||
for catalogue in ["LOSS", "Foundation", "2MTF", "SFI_gals", "CF4_TFR"]:
|
print(f"Running kind `{args.kind}` for catalogue `{args.catalogue}`.")
|
||||||
print(f"Running kind `{kind}` for catalogue `{catalogue}`.")
|
RA, dec = get_los(args.catalogue, "", comm).T
|
||||||
|
interpolate_indranil_void(
|
||||||
RA, dec = get_los(catalogue, "", comm).T
|
args.kind, nsims, RA, dec, rmax, dr, out_folder, args.catalogue)
|
||||||
interpolate_indranil_void(
|
|
||||||
kind, nsims, RA, dec, rmax, dr, out_folder, catalogue)
|
|
||||||
|
|
32
scripts/field_prop/field_los_indranil_void.sh
Executable file
32
scripts/field_prop/field_los_indranil_void.sh
Executable file
|
@ -0,0 +1,32 @@
|
||||||
|
nthreads=1
|
||||||
|
memory=7
|
||||||
|
on_login=${1}
|
||||||
|
queue="berg"
|
||||||
|
env="/mnt/users/rstiskalek/csiborgtools/venv_csiborg/bin/python"
|
||||||
|
file="field_los_indranil_void.py"
|
||||||
|
|
||||||
|
|
||||||
|
if [ "$on_login" != "1" ] && [ "$on_login" != "0" ]
|
||||||
|
then
|
||||||
|
echo "'on_login' (1) must be either 0 or 1."
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
|
|
||||||
|
|
||||||
|
for kind in "exp" "gauss" "mb"; do
|
||||||
|
for catalogue in "2MTF" "SFI_gals" "CF4_TFR"; do
|
||||||
|
pythoncm="$env $file --kind $kind --catalogue $catalogue"
|
||||||
|
|
||||||
|
if [ $on_login -eq 1 ]; then
|
||||||
|
echo $pythoncm
|
||||||
|
eval $pythoncm
|
||||||
|
else
|
||||||
|
cm="addqueue -q $queue -n $nthreads -m $memory $pythoncm"
|
||||||
|
echo "Submitting:"
|
||||||
|
echo $cm
|
||||||
|
echo
|
||||||
|
eval $cm
|
||||||
|
fi
|
||||||
|
done
|
||||||
|
done
|
||||||
|
|
|
@ -22,6 +22,19 @@ from argparse import ArgumentParser, ArgumentTypeError
|
||||||
def none_or_int(value):
|
def none_or_int(value):
|
||||||
if value.lower() == "none":
|
if value.lower() == "none":
|
||||||
return None
|
return None
|
||||||
|
|
||||||
|
if "_" in value:
|
||||||
|
args = value.split("_")
|
||||||
|
if len(args) == 2:
|
||||||
|
k0, kf = args
|
||||||
|
dk = 1
|
||||||
|
elif len(args) == 3:
|
||||||
|
k0, kf, dk = args
|
||||||
|
else:
|
||||||
|
raise ArgumentTypeError(f"Invalid length of arguments: `{value}`.")
|
||||||
|
|
||||||
|
return [int(k) for k in range(int(k0), int(kf), int(dk))]
|
||||||
|
|
||||||
try:
|
try:
|
||||||
return int(value)
|
return int(value)
|
||||||
except ValueError:
|
except ValueError:
|
||||||
|
@ -73,17 +86,17 @@ def print_variables(names, variables):
|
||||||
print(flush=True)
|
print(flush=True)
|
||||||
|
|
||||||
|
|
||||||
def get_models(get_model_kwargs, mag_selection, verbose=True):
|
def get_models(ksim, get_model_kwargs, mag_selection, verbose=True):
|
||||||
"""Load the data and create the NumPyro models."""
|
"""Load the data and create the NumPyro models."""
|
||||||
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
|
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
|
||||||
folder = "/mnt/extraspace/rstiskalek/catalogs/"
|
folder = "/mnt/extraspace/rstiskalek/catalogs/"
|
||||||
|
|
||||||
nsims = paths.get_ics(ARGS.simname)
|
nsims = paths.get_ics(ARGS.simname)
|
||||||
if ARGS.ksim is None:
|
if ksim is None:
|
||||||
nsim_iterator = [i for i in range(len(nsims))]
|
nsim_iterator = [i for i in range(len(nsims))]
|
||||||
else:
|
else:
|
||||||
nsim_iterator = [ARGS.ksim]
|
nsim_iterator = [ksim]
|
||||||
nsims = [nsims[ARGS.ksim]]
|
nsims = [nsims[ksim]]
|
||||||
|
|
||||||
if verbose:
|
if verbose:
|
||||||
print(f"{'Simulation:':<20} {ARGS.simname}")
|
print(f"{'Simulation:':<20} {ARGS.simname}")
|
||||||
|
@ -114,7 +127,7 @@ def get_models(get_model_kwargs, mag_selection, verbose=True):
|
||||||
models[i] = csiborgtools.flow.get_model(
|
models[i] = csiborgtools.flow.get_model(
|
||||||
loader, mag_selection=mag_selection[i], **get_model_kwargs)
|
loader, mag_selection=mag_selection[i], **get_model_kwargs)
|
||||||
|
|
||||||
print(f"\n{'Num. radial steps':<20} {len(loader.rdist)}\n", flush=True)
|
fprint(f"num. radial steps is {len(loader.rdist)}")
|
||||||
return models
|
return models
|
||||||
|
|
||||||
|
|
||||||
|
@ -143,7 +156,7 @@ def run_model(model, nsteps, nburn, model_kwargs, out_folder,
|
||||||
raise AttributeError("The models must have an attribute `ndata` "
|
raise AttributeError("The models must have an attribute `ndata` "
|
||||||
"indicating the number of data points.") from e
|
"indicating the number of data points.") from e
|
||||||
|
|
||||||
nuts_kernel = NUTS(model, init_strategy=init_to_median(num_samples=1000))
|
nuts_kernel = NUTS(model, init_strategy=init_to_median(num_samples=10000))
|
||||||
mcmc = MCMC(nuts_kernel, num_warmup=nburn, num_samples=nsteps)
|
mcmc = MCMC(nuts_kernel, num_warmup=nburn, num_samples=nsteps)
|
||||||
rng_key = jax.random.PRNGKey(42)
|
rng_key = jax.random.PRNGKey(42)
|
||||||
|
|
||||||
|
@ -283,11 +296,14 @@ if __name__ == "__main__":
|
||||||
num_epochs = 50
|
num_epochs = 50
|
||||||
inference_method = "mike"
|
inference_method = "mike"
|
||||||
mag_selection = None
|
mag_selection = None
|
||||||
sample_alpha = True
|
sample_alpha = False if "IndranilVoid_" in ARGS.simname else True
|
||||||
sample_beta = None
|
sample_beta = None
|
||||||
|
sample_Vext = None
|
||||||
sample_Vmono = False
|
sample_Vmono = False
|
||||||
sample_mag_dipole = False
|
sample_mag_dipole = False
|
||||||
|
absolute_calibration = None
|
||||||
calculate_harmonic = False if inference_method == "bayes" else True
|
calculate_harmonic = False if inference_method == "bayes" else True
|
||||||
|
sample_h = True if absolute_calibration is not None else False
|
||||||
|
|
||||||
fname_kwargs = {"inference_method": inference_method,
|
fname_kwargs = {"inference_method": inference_method,
|
||||||
"smooth": ARGS.ksmooth,
|
"smooth": ARGS.ksmooth,
|
||||||
|
@ -297,8 +313,10 @@ if __name__ == "__main__":
|
||||||
"mag_selection": mag_selection,
|
"mag_selection": mag_selection,
|
||||||
"sample_alpha": sample_alpha,
|
"sample_alpha": sample_alpha,
|
||||||
"sample_beta": sample_beta,
|
"sample_beta": sample_beta,
|
||||||
|
"sample_Vext": sample_Vext,
|
||||||
"sample_Vmono": sample_Vmono,
|
"sample_Vmono": sample_Vmono,
|
||||||
"sample_mag_dipole": sample_mag_dipole,
|
"sample_mag_dipole": sample_mag_dipole,
|
||||||
|
"absolute_calibration": absolute_calibration,
|
||||||
}
|
}
|
||||||
|
|
||||||
main_params = {"nsteps": nsteps, "nburn": nburn,
|
main_params = {"nsteps": nsteps, "nburn": nburn,
|
||||||
|
@ -310,6 +328,8 @@ if __name__ == "__main__":
|
||||||
"num_epochs": num_epochs,
|
"num_epochs": num_epochs,
|
||||||
"inference_method": inference_method,
|
"inference_method": inference_method,
|
||||||
"sample_mag_dipole": sample_mag_dipole,
|
"sample_mag_dipole": sample_mag_dipole,
|
||||||
|
"absolute_calibration": absolute_calibration,
|
||||||
|
"sample_h": sample_h,
|
||||||
}
|
}
|
||||||
print_variables(main_params.keys(), main_params.values())
|
print_variables(main_params.keys(), main_params.values())
|
||||||
|
|
||||||
|
@ -335,8 +355,11 @@ if __name__ == "__main__":
|
||||||
"Vmono_min": -1000, "Vmono_max": 1000,
|
"Vmono_min": -1000, "Vmono_max": 1000,
|
||||||
"beta_min": -10.0, "beta_max": 10.0,
|
"beta_min": -10.0, "beta_max": 10.0,
|
||||||
"sigma_v_min": 1.0, "sigma_v_max": 750.,
|
"sigma_v_min": 1.0, "sigma_v_max": 750.,
|
||||||
|
"h_min": 0.01, "h_max": 5.0,
|
||||||
|
"sample_Vext": True if sample_Vext is None else sample_Vext, # noqa
|
||||||
"sample_Vmono": sample_Vmono,
|
"sample_Vmono": sample_Vmono,
|
||||||
"sample_beta": sample_beta,
|
"sample_beta": sample_beta,
|
||||||
|
"sample_h": sample_h,
|
||||||
}
|
}
|
||||||
print_variables(
|
print_variables(
|
||||||
calibration_hyperparams.keys(), calibration_hyperparams.values())
|
calibration_hyperparams.keys(), calibration_hyperparams.values())
|
||||||
|
@ -353,17 +376,34 @@ if __name__ == "__main__":
|
||||||
|
|
||||||
###########################################################################
|
###########################################################################
|
||||||
|
|
||||||
get_model_kwargs = {"zcmb_min": zcmb_min, "zcmb_max": zcmb_max}
|
get_model_kwargs = {
|
||||||
models = get_models(get_model_kwargs, mag_selection)
|
"zcmb_min": zcmb_min,
|
||||||
model_kwargs = {
|
"zcmb_max": zcmb_max,
|
||||||
"models": models,
|
"absolute_calibration": absolute_calibration,
|
||||||
"field_calibration_hyperparams": calibration_hyperparams,
|
"calibration_fpath": "/mnt/extraspace/rstiskalek/catalogs/PV/CF4/CF4_TF_calibration.hdf5", # noqa
|
||||||
"distmod_hyperparams_per_model": distmod_hyperparams_per_catalogue,
|
|
||||||
"inference_method": inference_method,
|
|
||||||
}
|
}
|
||||||
|
|
||||||
model = csiborgtools.flow.PV_validation_model
|
# In case we want to run multiple simulations independently.
|
||||||
|
if not isinstance(ARGS.ksim, list):
|
||||||
|
ksim_iterator = [ARGS.ksim]
|
||||||
|
else:
|
||||||
|
ksim_iterator = ARGS.ksim
|
||||||
|
|
||||||
run_model(model, nsteps, nburn, model_kwargs, out_folder,
|
for i, ksim in enumerate(ksim_iterator):
|
||||||
calculate_harmonic, nchains_harmonic, num_epochs, kwargs_print,
|
if len(ksim_iterator) > 1:
|
||||||
fname_kwargs)
|
print(f"{'Current simulation:':<20} {i + 1} ({ksim}) out of {len(ksim_iterator)}.") # noqa
|
||||||
|
|
||||||
|
fname_kwargs["nsim"] = ksim
|
||||||
|
models = get_models(ksim, get_model_kwargs, mag_selection)
|
||||||
|
model_kwargs = {
|
||||||
|
"models": models,
|
||||||
|
"field_calibration_hyperparams": calibration_hyperparams,
|
||||||
|
"distmod_hyperparams_per_model": distmod_hyperparams_per_catalogue,
|
||||||
|
"inference_method": inference_method,
|
||||||
|
}
|
||||||
|
|
||||||
|
model = csiborgtools.flow.PV_validation_model
|
||||||
|
|
||||||
|
run_model(model, nsteps, nburn, model_kwargs, out_folder,
|
||||||
|
calculate_harmonic, nchains_harmonic, num_epochs,
|
||||||
|
kwargs_print, fname_kwargs)
|
||||||
|
|
|
@ -37,42 +37,36 @@ else
|
||||||
fi
|
fi
|
||||||
|
|
||||||
|
|
||||||
# for simname in "CLONES"; do
|
for simname in "IndranilVoid_exp" "IndranilVoid_gauss" "IndranilVoid_mb"; do
|
||||||
# for simname in "csiborg2_main" "csiborg2X" ; do
|
# for catalogue in "2MTF" "SFI_gals" "CF4_TFR_i" "CF4_TFR_w1"; do
|
||||||
# for simname in "carrick2015" "lilow2024" "csiborg2_main" "csiborg2x" "cf4" "clones"; do
|
|
||||||
for simname in "Carrick2015" "csiborg2_main"; do
|
|
||||||
# for simname in "Carrick2015" "csiborg2X" "csiborg2_main"; do
|
|
||||||
# for simname in "Carrick2015"; do
|
|
||||||
# for catalogue in "LOSS" "Foundation" "2MTF" "SFI_gals" "CF4_TFR_i" "CF4_TFR_w1"; do
|
|
||||||
for catalogue in "SFI_gals" "2MTF" "CF4_TFR_i"; do
|
|
||||||
# for catalogue in "CF4_TFR_i" "CF4_TFR_w1"; do
|
# for catalogue in "CF4_TFR_i" "CF4_TFR_w1"; do
|
||||||
# for catalogue in "2MTF" "SFI" "CF4_TFR_not2MTForSFI_i"; do
|
for catalogue in "2MTF" "SFI_gals" "CF4_TFR_i" "CF4_TFR_w1"; do
|
||||||
# for catalogue in "2MTF" "SFI_gals" "CF4_TFR_i"; do
|
# for ksim in "none"; do
|
||||||
# for catalogue in "CF4_TFR_w1"; do
|
# for ksim in 0; do
|
||||||
# for catalogue in "CF4_GroupAll"; do
|
# for ksim in $(seq 0 5 500); do
|
||||||
for ksmooth in 1 2 3 4; do
|
for ksim in "0_100_5" "100_200_5" "200_300_5" "300_400_5" "400_500_5"; do
|
||||||
for ksim in "none"; do
|
|
||||||
# for ksim in {0..500}; do
|
# for ksim in {0..500}; do
|
||||||
pythoncm="$env $file --catalogue $catalogue --simname $simname --ksim $ksim --ksmooth $ksmooth --ndevice $ndevice --device $device"
|
for ksmooth in 0; do
|
||||||
|
pythoncm="$env $file --catalogue $catalogue --simname $simname --ksim $ksim --ksmooth $ksmooth --ndevice $ndevice --device $device"
|
||||||
|
|
||||||
if [ "$on_login" == "1" ]; then
|
if [ "$on_login" == "1" ]; then
|
||||||
echo $pythoncm
|
echo $pythoncm
|
||||||
eval $pythoncm
|
eval $pythoncm
|
||||||
else
|
|
||||||
if [ "$device" == "gpu" ]; then
|
|
||||||
cm="addqueue -q $queue -s -m $memory --gpus 1 --gputype $gputype $pythoncm"
|
|
||||||
else
|
else
|
||||||
cm="addqueue -s -q $queue -n 1 -m $memory $pythoncm"
|
if [ "$device" == "gpu" ]; then
|
||||||
|
cm="addqueue -q $queue -s -m $memory --gpus 1 --gputype $gputype $pythoncm"
|
||||||
|
else
|
||||||
|
cm="addqueue -s -q $queue -n 1 -m $memory $pythoncm"
|
||||||
|
fi
|
||||||
|
echo "Submitting:"
|
||||||
|
echo $cm
|
||||||
|
eval $cm
|
||||||
fi
|
fi
|
||||||
echo "Submitting:"
|
|
||||||
echo $cm
|
|
||||||
eval $cm
|
|
||||||
fi
|
|
||||||
|
|
||||||
echo
|
echo
|
||||||
sleep 0.01
|
sleep 0.001
|
||||||
|
|
||||||
|
done
|
||||||
done
|
done
|
||||||
done
|
done
|
||||||
done
|
done
|
||||||
done
|
|
Loading…
Reference in a new issue