mirror of
https://github.com/Richard-Sti/csiborgtools.git
synced 2024-12-22 11:08:01 +00:00
Add a shared reader (#32)
* add import * Rename object * Simplify how catalogs are handled * Move functions around * Add NPair reader * Add counterpart Gaussian average * Change what is returned in exp mass * small bug * Simplify stat calcu * Add mptebppl
This commit is contained in:
parent
153f1c0002
commit
9b524db617
3 changed files with 3428 additions and 132 deletions
|
@ -18,4 +18,4 @@ from .make_cat import (HaloCatalogue, concatenate_clumps, clumps_pos2cell) # no
|
|||
from .readobs import (PlanckClusters, MCXCClusters, TwoMPPGalaxies, # noqa
|
||||
TwoMPPGroups, SDSS) # noqa
|
||||
from .outsim import (dump_split, combine_splits, make_ascii_powmes) # noqa
|
||||
from .summaries import (PKReader, OverlapReader, binned_resample_mean) # noqa
|
||||
from .summaries import (PKReader, PairOverlap, NPairsOverlap, binned_resample_mean) # noqa
|
||||
|
|
|
@ -169,7 +169,7 @@ class PKReader:
|
|||
return ks, xpks
|
||||
|
||||
|
||||
class OverlapReader:
|
||||
class PairOverlap:
|
||||
r"""
|
||||
A shortcut object for reading in the results of matching two simulations.
|
||||
|
||||
|
@ -182,14 +182,15 @@ class OverlapReader:
|
|||
Path to the overlap. By default `None`, i.e.
|
||||
`/mnt/extraspace/rstiskalek/csiborg/overlap/cross_{}_{}.npz`.
|
||||
min_mass : float, optional
|
||||
The minimum :math:`M_{\rm tot} / M_\odot` mass. By default no
|
||||
threshold.
|
||||
Minimum :math:`M_{\rm tot} / M_\odot` mass in the reference catalogue.
|
||||
By default no threshold.
|
||||
max_dist : float, optional
|
||||
The maximum comoving distance of a halo. By default no upper limit.
|
||||
Maximum comoving distance in the reference catalogue. By default upper
|
||||
limit.
|
||||
"""
|
||||
_cat0 = None
|
||||
_catx = None
|
||||
_refmask = None
|
||||
_data = None
|
||||
|
||||
def __init__(self, cat0, catx, fskel=None, min_mass=None, max_dist=None):
|
||||
self._cat0 = cat0
|
||||
|
@ -229,28 +230,6 @@ class OverlapReader:
|
|||
|
||||
self._make_refmask(min_mass, max_dist)
|
||||
|
||||
@property
|
||||
def cat0(self):
|
||||
"""
|
||||
The reference halo catalogue.
|
||||
|
||||
Returns
|
||||
-------
|
||||
cat0 : :py:class:`csiborgtools.read.HaloCatalogue`
|
||||
"""
|
||||
return self._cat0
|
||||
|
||||
@property
|
||||
def catx(self):
|
||||
"""
|
||||
The cross halo catalogue.
|
||||
|
||||
Returns
|
||||
-------
|
||||
catx : :py:class:`csiborgtools.read.HaloCatalogue`
|
||||
"""
|
||||
return self._catx
|
||||
|
||||
@staticmethod
|
||||
def _invert_match(match_indxs, overlap, cross_size):
|
||||
"""
|
||||
|
@ -322,58 +301,37 @@ class OverlapReader:
|
|||
# Enforce a cut on the reference catalogue
|
||||
min_mass = 0 if min_mass is None else min_mass
|
||||
max_dist = numpy.infty if max_dist is None else max_dist
|
||||
m = ((self.cat0["totpartmass"] > min_mass)
|
||||
& (self.cat0["dist"] < max_dist))
|
||||
m = ((self.cat0()["totpartmass"] > min_mass)
|
||||
& (self.cat0()["dist"] < max_dist))
|
||||
# Now remove indices that are below this cut
|
||||
self._data["index"] = self._data["index"][m]
|
||||
self._data["match_indxs"] = self._data["match_indxs"][m]
|
||||
self._data["overlap"] = self._data["overlap"][m]
|
||||
self._data["refmask"] = m
|
||||
|
||||
self._refmask = m
|
||||
|
||||
@property
|
||||
def indxs(self):
|
||||
def summed_overlap(self):
|
||||
"""
|
||||
Indices of halos from the reference catalogue.
|
||||
Summed overlap of each halo in the reference simulation with the cross
|
||||
simulation.
|
||||
|
||||
Returns
|
||||
-------
|
||||
indxs : 1-dimensional array
|
||||
summed_overlap : 1-dimensional array of shape `(nhalos, )`
|
||||
"""
|
||||
return self._data["index"]
|
||||
return numpy.array([numpy.sum(cross) for cross in self["overlap"]])
|
||||
|
||||
@property
|
||||
def match_indxs(self):
|
||||
def prob_nomatch(self):
|
||||
"""
|
||||
Indices of halos from the cross catalogue.
|
||||
Probability of no match for each halo in the reference simulation with
|
||||
the cross simulation. Defined as a product of 1 - overlap with other
|
||||
halos.
|
||||
|
||||
Returns
|
||||
-------
|
||||
match_indxs : array of 1-dimensional arrays of shape `(nhalos, )`
|
||||
prob_nomatch : 1-dimensional array of shape `(nhalos, )`
|
||||
"""
|
||||
return self._data["match_indxs"]
|
||||
|
||||
@property
|
||||
def overlap(self):
|
||||
"""
|
||||
Pair overlap of halos between the reference and cross simulations.
|
||||
|
||||
Returns
|
||||
-------
|
||||
overlap : array of 1-dimensional arrays of shape `(nhalos, )`
|
||||
"""
|
||||
return self._data["overlap"]
|
||||
|
||||
@property
|
||||
def refmask(self):
|
||||
"""
|
||||
Mask of the reference catalogue to match the calculated overlaps.
|
||||
|
||||
Returns
|
||||
-------
|
||||
refmask : 1-dimensional boolean array
|
||||
"""
|
||||
return self._refmask
|
||||
return numpy.array(
|
||||
[numpy.product(1 - overlap) for overlap in self["overlap"]])
|
||||
|
||||
def dist(self, in_initial, norm_kind=None):
|
||||
"""
|
||||
|
@ -396,27 +354,27 @@ class OverlapReader:
|
|||
or norm_kind in ("r200", "ref_patch", "sum_patch"))
|
||||
# Get positions either in the initial or final snapshot
|
||||
if in_initial:
|
||||
pos0, posx = self.cat0.positions0, self.catx.positions0
|
||||
pos0, posx = self.cat0().positions0, self.catx().positions0
|
||||
else:
|
||||
pos0, posx = self.cat0.positions, self.catx.positions
|
||||
pos0 = pos0[self.refmask, :] # Apply the reference catalogue mask
|
||||
pos0, posx = self.cat0().positions, self.catx().positions
|
||||
pos0 = pos0[self["refmask"], :] # Apply the reference catalogue mask
|
||||
|
||||
# Get the normalisation array if applicable
|
||||
if norm_kind == "r200":
|
||||
norm = self.cat0["r200"][self.refmask]
|
||||
norm = self.cat0("r200")
|
||||
if norm_kind == "ref_patch":
|
||||
norm = self.cat0["lagpatch"][self.refmask]
|
||||
norm = self.cat0("lagpatch")
|
||||
if norm_kind == "sum_patch":
|
||||
patch0 = self.cat0["lagpatch"][self.refmask]
|
||||
patchx = self.catx["lagpatch"]
|
||||
norm = [None] * self.indxs.size
|
||||
for i, ind in enumerate(self.match_indxs):
|
||||
patch0 = self.cat0("lagpatch")
|
||||
patchx = self.catx("lagpatch")
|
||||
norm = [None] * len(self)
|
||||
for i, ind in enumerate(self["match_indxs"]):
|
||||
norm[i] = patch0[i] + patchx[ind]
|
||||
norm = numpy.array(norm, dtype=object)
|
||||
|
||||
# Now calculate distances
|
||||
dist = [None] * self.indxs.size
|
||||
for i, ind in enumerate(self.match_indxs):
|
||||
dist = [None] * len(self)
|
||||
for i, ind in enumerate(self["match_indxs"]):
|
||||
# n refers to the reference halo catalogue position
|
||||
dist[i] = numpy.linalg.norm(pos0[i, :] - posx[ind, :], axis=1)
|
||||
|
||||
|
@ -445,11 +403,10 @@ class OverlapReader:
|
|||
-------
|
||||
ratio : array of 1-dimensional arrays of shape `(nhalos, )`
|
||||
"""
|
||||
mass0 = self.cat0[mass_kind][self.refmask]
|
||||
massx = self.catx[mass_kind]
|
||||
mass0, massx = self.cat0(mass_kind), self.catx(mass_kind)
|
||||
|
||||
ratio = [None] * self.indxs.size
|
||||
for i, ind in enumerate(self.match_indxs):
|
||||
ratio = [None] * len(self)
|
||||
for i, ind in enumerate(self["match_indxs"]):
|
||||
ratio[i] = mass0[i] / massx[ind]
|
||||
if in_log:
|
||||
ratio[i] = numpy.log10(ratio[i])
|
||||
|
@ -457,53 +414,8 @@ class OverlapReader:
|
|||
ratio[i] = numpy.abs(ratio[i])
|
||||
return numpy.array(ratio, dtype=object)
|
||||
|
||||
def summed_overlap(self):
|
||||
"""
|
||||
Summed overlap of each halo in the reference simulation with the cross
|
||||
simulation.
|
||||
|
||||
Returns
|
||||
-------
|
||||
summed_overlap : 1-dimensional array of shape `(nhalos, )`
|
||||
"""
|
||||
return numpy.array([numpy.sum(cross) for cross in self.overlap])
|
||||
|
||||
def copy_per_match(self, par):
|
||||
"""
|
||||
Make an array like `self.match_indxs` where each of its element is an
|
||||
equal value array of the pair clump property from the reference
|
||||
catalogue.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
par : str
|
||||
Property to be copied over.
|
||||
|
||||
Returns
|
||||
-------
|
||||
out : 1-dimensional array of shape `(nhalos, )`
|
||||
"""
|
||||
vals = self.cat0[par][self.refmask]
|
||||
out = [None] * self.indxs.size
|
||||
for i, ind in enumerate(self.match_indxs):
|
||||
out[i] = numpy.ones(ind.size) * vals[i]
|
||||
return numpy.array(out, dtype=object)
|
||||
|
||||
def prob_nomatch(self):
|
||||
"""
|
||||
Probability of no match for each halo in the reference simulation with
|
||||
the cross simulation. Defined as a product of 1 - overlap with other
|
||||
halos.
|
||||
|
||||
Returns
|
||||
-------
|
||||
out : 1-dimensional array of shape `(nhalos, )`
|
||||
"""
|
||||
return numpy.array(
|
||||
[numpy.product(1 - overlap) for overlap in self.overlap])
|
||||
|
||||
def expected_counterpart_mass(self, overlap_threshold=0., in_log=False,
|
||||
mass_kind="totpartmass"):
|
||||
def counterpart_mass(self, overlap_threshold=0., in_log=False,
|
||||
mass_kind="totpartmass"):
|
||||
"""
|
||||
Calculate the expected counterpart mass of each halo in the reference
|
||||
simulation from the crossed simulation.
|
||||
|
@ -525,14 +437,13 @@ class OverlapReader:
|
|||
-------
|
||||
mean, std : 1-dimensional arrays of shape `(nhalos, )`
|
||||
"""
|
||||
nhalos = self.indxs.size
|
||||
mean = numpy.full(nhalos, numpy.nan) # Preallocate output arrays
|
||||
std = numpy.full(nhalos, numpy.nan)
|
||||
mean = numpy.full(len(self), numpy.nan, dtype=numpy.float32)
|
||||
std = numpy.full(len(self), numpy.nan, dtype=numpy.float32)
|
||||
|
||||
massx = self.catx[mass_kind] # Create references to the arrays here
|
||||
overlap = self.overlap # to speed up the loop below.
|
||||
massx = self.catx(mass_kind) # Create references to the arrays here
|
||||
overlap = self["overlap"] # to speed up the loop below.
|
||||
|
||||
for i, match_ind in enumerate(self.match_indxs):
|
||||
for i, match_ind in enumerate(self["match_indxs"]):
|
||||
# Skip if no match
|
||||
if match_ind.size == 0:
|
||||
continue
|
||||
|
@ -562,6 +473,215 @@ class OverlapReader:
|
|||
|
||||
return mean, std
|
||||
|
||||
def copy_per_match(self, par):
|
||||
"""
|
||||
Make an array like `self.match_indxs` where each of its element is an
|
||||
equal value array of the pair clump property from the reference
|
||||
catalogue.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
par : str
|
||||
Property to be copied over.
|
||||
|
||||
Returns
|
||||
-------
|
||||
out : 1-dimensional array of shape `(nhalos, )`
|
||||
"""
|
||||
vals = self.cat0(par)
|
||||
out = [None] * len(self)
|
||||
for i, ind in enumerate(self["match_indxs"]):
|
||||
out[i] = numpy.ones(ind.size) * vals[i]
|
||||
return numpy.array(out, dtype=object)
|
||||
|
||||
def cat0(self, key=None, index=None):
|
||||
"""
|
||||
Return the reference halo catalogue if `key` is `None`, otherwise
|
||||
return values from the reference catalogue and apply `refmask`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
key : str, optional
|
||||
Key to get. If `None` return the whole catalogue.
|
||||
index : int or array, optional
|
||||
Indices to get, if `None` return all.
|
||||
|
||||
Returns
|
||||
-------
|
||||
out : :py:class:`csiborgtools.read.HaloCatalogue` or array
|
||||
"""
|
||||
if key is None:
|
||||
return self._cat0
|
||||
out = self._cat0[key][self["refmask"]]
|
||||
return out if index is None else out[index]
|
||||
|
||||
def catx(self, key=None, index=None):
|
||||
"""
|
||||
Return the cross halo catalogue if `key` is `None`, otherwise
|
||||
return values from the reference catalogue.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
key : str, optional
|
||||
Key to get. If `None` return the whole catalogue.
|
||||
index : int or array, optional
|
||||
Indices to get, if `None` return all.
|
||||
|
||||
Returns
|
||||
-------
|
||||
out : :py:class:`csiborgtools.read.HaloCatalogue` or array
|
||||
"""
|
||||
if key is None:
|
||||
return self._catx
|
||||
out = self._catx[key]
|
||||
return out if index is None else out[index]
|
||||
|
||||
def __getitem__(self, key):
|
||||
"""
|
||||
Must be one of `index`, `match_indxs`, `overlap` or `refmask`.
|
||||
"""
|
||||
assert key in ("index", "match_indxs", "overlap", "refmask")
|
||||
return self._data[key]
|
||||
|
||||
def __len__(self):
|
||||
return self["index"].size
|
||||
|
||||
|
||||
class NPairsOverlap:
|
||||
r"""
|
||||
A shortcut object for reading in the results of matching a reference
|
||||
simulation with many cross simulations.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
cat0 : :py:class:`csiborgtools.read.HaloCatalogue`
|
||||
Reference simulation halo catalogue.
|
||||
catxs : list of :py:class:`csiborgtools.read.HaloCatalogue`
|
||||
List of cross simulation halo catalogues.
|
||||
fskel : str, optional
|
||||
Path to the overlap. By default `None`, i.e.
|
||||
`/mnt/extraspace/rstiskalek/csiborg/overlap/cross_{}_{}.npz`.
|
||||
min_mass : float, optional
|
||||
Minimum :math:`M_{\rm tot} / M_\odot` mass in the reference catalogue.
|
||||
By default no threshold.
|
||||
max_dist : float, optional
|
||||
Maximum comoving distance in the reference catalogue. By default upper
|
||||
limit.
|
||||
"""
|
||||
_pairs = None
|
||||
|
||||
def __init__(self, cat0, catxs, fskel=None, min_mass=None, max_dist=None):
|
||||
self._pairs = [PairOverlap(cat0, catx, fskel=fskel, min_mass=min_mass,
|
||||
max_dist=max_dist) for catx in catxs]
|
||||
|
||||
def summed_overlap(self, verbose=False):
|
||||
"""
|
||||
Summed overlap of each halo in the reference simulation with the cross
|
||||
simulations.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
verbose : bool, optional
|
||||
|
||||
Returns
|
||||
-------
|
||||
summed_overlap : 2-dimensional array of shape `(nhalos, ncatxs)`
|
||||
"""
|
||||
out = [None] * len(self)
|
||||
for i, pair in enumerate(tqdm(self.pairs) if verbose else self.pairs):
|
||||
out[i] = pair.summed_overlap()
|
||||
return numpy.vstack(out).T
|
||||
|
||||
def prob_nomatch(self, verbose=False):
|
||||
"""
|
||||
Probability of no match for each halo in the reference simulation with
|
||||
the cross simulation.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
verbose : bool, optional
|
||||
|
||||
Returns
|
||||
-------
|
||||
prob_nomatch : 2-dimensional array of shape `(nhalos, ncatxs)`
|
||||
"""
|
||||
out = [None] * len(self)
|
||||
for i, pair in enumerate(tqdm(self.pairs) if verbose else self.pairs):
|
||||
out[i] = pair.prob_nomatch()
|
||||
return numpy.vstack(out).T
|
||||
|
||||
def counterpart_mass(self, overlap_threshold=0., in_log=False,
|
||||
mass_kind="totpartmass", return_full=True,
|
||||
verbose=False):
|
||||
"""
|
||||
Calculate the expected counterpart mass of each halo in the reference
|
||||
simulation from the crossed simulation.
|
||||
|
||||
Parameters
|
||||
-----------
|
||||
overlap_threshold : float, optional
|
||||
Minimum overlap required for a halo to be considered a match. By
|
||||
default 0.0, i.e. no threshold.
|
||||
in_log : bool, optional
|
||||
Whether to calculate the expectation value in log space. By default
|
||||
`False`.
|
||||
mass_kind : str, optional
|
||||
The mass kind whose ratio is to be calculated. Must be a valid
|
||||
catalogue key. By default `totpartmass`, i.e. the total particle
|
||||
mass associated with a halo.
|
||||
return_full : bool, optional
|
||||
Whether to return the full results of matching each pair or
|
||||
calculate summary statistics by Gaussian averaging.
|
||||
verbose : bool, optional
|
||||
Verbosity flag. By default `False`.
|
||||
|
||||
Returns
|
||||
-------
|
||||
mu, std : 1-dimensional arrays of shape `(nhalos,)`
|
||||
Summary expected mass and standard deviation from all cross
|
||||
simulations.
|
||||
mus, stds : 2-dimensional arrays of shape `(nhalos, ncatx)`, optional
|
||||
Expected mass and standard deviation from each cross simulation.
|
||||
Returned only if `return_full` is `True`.
|
||||
"""
|
||||
mus, stds = [None] * len(self), [None] * len(self)
|
||||
for i, pair in enumerate(tqdm(self.pairs) if verbose else self.pairs):
|
||||
mus[i], stds[i] = pair.counterpart_mass(
|
||||
overlap_threshold=overlap_threshold, in_log=in_log,
|
||||
mass_kind=mass_kind)
|
||||
mus, stds = numpy.vstack(mus).T, numpy.vstack(stds).T
|
||||
|
||||
probmatch = 1 - self.prob_nomatch() # Prob of > 0 matches
|
||||
# Normalise it for weighted sums etc.
|
||||
norm_probmatch = numpy.apply_along_axis(
|
||||
lambda x: x / numpy.sum(x), axis=1, arr=probmatch)
|
||||
|
||||
# Mean and standard deviation of weighted stacked Gaussians
|
||||
mu = numpy.sum(norm_probmatch * mus, axis=1)
|
||||
std = numpy.sum(norm_probmatch * (mus**2 + stds**2), axis=1) - mu**2
|
||||
|
||||
if return_full:
|
||||
return mu, std, mus, stds
|
||||
return mu, std
|
||||
|
||||
@property
|
||||
def pairs(self):
|
||||
"""
|
||||
List of `PairOverlap` objects in this reader.
|
||||
|
||||
Returns
|
||||
-------
|
||||
pairs : list of :py:class:`csiborgtools.read.PairOverlap`
|
||||
"""
|
||||
return self._pairs
|
||||
|
||||
@property
|
||||
def cat0(self):
|
||||
return self.pairs[0].cat0 # All pairs have the same ref catalogue
|
||||
|
||||
def __len__(self):
|
||||
return len(self.pairs)
|
||||
|
||||
|
||||
def binned_resample_mean(x, y, prob, bins, nresample=50, seed=42):
|
||||
"""
|
||||
|
|
3176
meetings/220317_comboverlap.ipynb
Normal file
3176
meetings/220317_comboverlap.ipynb
Normal file
File diff suppressed because one or more lines are too long
Loading…
Reference in a new issue