mirror of
https://github.com/Richard-Sti/csiborgtools.git
synced 2025-01-05 10:24:15 +00:00
Add p(z_cosmo | z_obs) (#122)
* Add import * Add draft of the p(zcosmo) * Add option for additional uncertainty * Variable renaming * Add zcosmo predict for flow calibration * Add flow map notebook * Update notebook * Add posterior mean & std * Edit docstring
This commit is contained in:
parent
e3a645c935
commit
8e9645e202
3 changed files with 584 additions and 8 deletions
|
@ -17,4 +17,5 @@ from .flow_model import (DataLoader, radial_velocity_los, dist2redshift,
|
||||||
SD_PV_validation_model, SN_PV_validation_model, # noqa
|
SD_PV_validation_model, SN_PV_validation_model, # noqa
|
||||||
TF_PV_validation_model, radec_to_galactic, # noqa
|
TF_PV_validation_model, radec_to_galactic, # noqa
|
||||||
sample_prior, make_loss, get_model, # noqa
|
sample_prior, make_loss, get_model, # noqa
|
||||||
optimize_model_with_jackknife, distmodulus2dist) # noqa
|
optimize_model_with_jackknife, distmodulus2dist, # noqa
|
||||||
|
Observed2CosmologicalRedshift) # noqa
|
||||||
|
|
|
@ -45,6 +45,7 @@ from tqdm import trange
|
||||||
from ..params import simname2Omega_m
|
from ..params import simname2Omega_m
|
||||||
|
|
||||||
SPEED_OF_LIGHT = 299792.458 # km / s
|
SPEED_OF_LIGHT = 299792.458 # km / s
|
||||||
|
H0 = 100 # km / s / Mpc
|
||||||
|
|
||||||
|
|
||||||
def t():
|
def t():
|
||||||
|
@ -143,7 +144,7 @@ class DataLoader:
|
||||||
|
|
||||||
# Normalize the CSiBORG density by the mean matter density
|
# Normalize the CSiBORG density by the mean matter density
|
||||||
if "csiborg" in simname:
|
if "csiborg" in simname:
|
||||||
cosmo = FlatLambdaCDM(H0=100, Om0=self._Omega_m)
|
cosmo = FlatLambdaCDM(H0=H0, Om0=self._Omega_m)
|
||||||
mean_rho_matter = cosmo.critical_density0.to("Msun/kpc^3").value
|
mean_rho_matter = cosmo.critical_density0.to("Msun/kpc^3").value
|
||||||
mean_rho_matter *= self._Omega_m
|
mean_rho_matter *= self._Omega_m
|
||||||
self._los_density /= mean_rho_matter
|
self._los_density /= mean_rho_matter
|
||||||
|
@ -402,11 +403,50 @@ def dist2redshift(dist, Omega_m):
|
||||||
-------
|
-------
|
||||||
float or 1-dimensional array
|
float or 1-dimensional array
|
||||||
"""
|
"""
|
||||||
H0 = 100
|
|
||||||
eta = 3 * Omega_m / 2
|
eta = 3 * Omega_m / 2
|
||||||
return 1 / eta * (1 - (1 - 2 * H0 * dist / SPEED_OF_LIGHT * eta)**0.5)
|
return 1 / eta * (1 - (1 - 2 * H0 * dist / SPEED_OF_LIGHT * eta)**0.5)
|
||||||
|
|
||||||
|
|
||||||
|
def redshift2dist(z, Omega_m):
|
||||||
|
"""
|
||||||
|
Convert cosmological redshift to comoving distance if the Universe is
|
||||||
|
flat and z << 1.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
z : float or 1-dimensional array
|
||||||
|
Cosmological redshift.
|
||||||
|
Omega_m : float
|
||||||
|
Matter density parameter.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
float or 1-dimensional array
|
||||||
|
"""
|
||||||
|
q0 = 3 * Omega_m / 2 - 1
|
||||||
|
return SPEED_OF_LIGHT * z / (2 * H0) * (2 - z * (1 + q0))
|
||||||
|
|
||||||
|
|
||||||
|
def gradient_redshift2dist(z, Omega_m):
|
||||||
|
"""
|
||||||
|
Gradient of the redshift to comoving distance conversion if the Universe is
|
||||||
|
flat and z << 1.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
z : float or 1-dimensional array
|
||||||
|
Cosmological redshift.
|
||||||
|
Omega_m : float
|
||||||
|
Matter density parameter.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
float or 1-dimensional array
|
||||||
|
"""
|
||||||
|
q0 = 3 * Omega_m / 2 - 1
|
||||||
|
return SPEED_OF_LIGHT / H0 * (1 - z * (1 + q0))
|
||||||
|
|
||||||
|
|
||||||
def dist2distmodulus(dist, Omega_m):
|
def dist2distmodulus(dist, Omega_m):
|
||||||
"""
|
"""
|
||||||
Convert comoving distance to distance modulus, assuming z << 1.
|
Convert comoving distance to distance modulus, assuming z << 1.
|
||||||
|
@ -457,7 +497,7 @@ def distmodulus2dist(mu, Omega_m, ninterp=10000, zmax=0.1, mu2comoving=None,
|
||||||
"""
|
"""
|
||||||
if mu2comoving is None:
|
if mu2comoving is None:
|
||||||
zrange = np.linspace(1e-15, zmax, ninterp)
|
zrange = np.linspace(1e-15, zmax, ninterp)
|
||||||
cosmo = FlatLambdaCDM(H0=100, Om0=Omega_m)
|
cosmo = FlatLambdaCDM(H0=H0, Om0=Omega_m)
|
||||||
mu2comoving = interp1d(
|
mu2comoving = interp1d(
|
||||||
cosmo.distmod(zrange).value, cosmo.comoving_distance(zrange).value,
|
cosmo.distmod(zrange).value, cosmo.comoving_distance(zrange).value,
|
||||||
kind="cubic")
|
kind="cubic")
|
||||||
|
@ -468,6 +508,45 @@ def distmodulus2dist(mu, Omega_m, ninterp=10000, zmax=0.1, mu2comoving=None,
|
||||||
return mu2comoving(mu)
|
return mu2comoving(mu)
|
||||||
|
|
||||||
|
|
||||||
|
def distmodulus2redsfhit(mu, Omega_m, ninterp=10000, zmax=0.1, mu2z=None,
|
||||||
|
return_interpolator=False):
|
||||||
|
"""
|
||||||
|
Convert distance modulus to cosmological redshift. Note that this is a
|
||||||
|
costly implementation, as it builts up the interpolator every time it is
|
||||||
|
called unless it is provided.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
mu : float or 1-dimensional array
|
||||||
|
Distance modulus.
|
||||||
|
Omega_m : float
|
||||||
|
Matter density parameter.
|
||||||
|
ninterp : int, optional
|
||||||
|
Number of points to interpolate the mapping from distance modulus to
|
||||||
|
comoving distance.
|
||||||
|
zmax : float, optional
|
||||||
|
Maximum redshift for the interpolation.
|
||||||
|
mu2z : callable, optional
|
||||||
|
Interpolator from distance modulus to cosmological redsfhit. If not
|
||||||
|
provided, it is built up every time the function is called.
|
||||||
|
return_interpolator : bool, optional
|
||||||
|
Whether to return the interpolator as well.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
float (or 1-dimensional array) and callable (optional)
|
||||||
|
"""
|
||||||
|
if mu2z is None:
|
||||||
|
zrange = np.linspace(1e-15, zmax, ninterp)
|
||||||
|
cosmo = FlatLambdaCDM(H0=H0, Om0=Omega_m)
|
||||||
|
mu2z = interp1d(cosmo.distmod(zrange).value, zrange, kind="cubic")
|
||||||
|
|
||||||
|
if return_interpolator:
|
||||||
|
return mu2z(mu), mu2z
|
||||||
|
|
||||||
|
return mu2z(mu)
|
||||||
|
|
||||||
|
|
||||||
def project_Vext(Vext_x, Vext_y, Vext_z, RA, dec):
|
def project_Vext(Vext_x, Vext_y, Vext_z, RA, dec):
|
||||||
"""
|
"""
|
||||||
Project the external velocity onto the line of sight along direction
|
Project the external velocity onto the line of sight along direction
|
||||||
|
@ -556,7 +635,7 @@ def calculate_ptilde_wo_bias(xrange, mu, err, r_squared_xrange=None,
|
||||||
return ptilde
|
return ptilde
|
||||||
|
|
||||||
|
|
||||||
def calculate_ll_zobs(zobs, zobs_pred, sigma_v):
|
def calculate_likelihood_zobs(zobs, zobs_pred, sigma_v):
|
||||||
"""
|
"""
|
||||||
Calculate the likelihood of the observed redshift given the predicted
|
Calculate the likelihood of the observed redshift given the predicted
|
||||||
redshift.
|
redshift.
|
||||||
|
@ -688,6 +767,10 @@ class BaseFlowValidationModel(ABC):
|
||||||
|
|
||||||
return mu, std
|
return mu, std
|
||||||
|
|
||||||
|
@abstractmethod
|
||||||
|
def predict_zcosmo_from_calibration(self, **kwargs):
|
||||||
|
pass
|
||||||
|
|
||||||
@abstractmethod
|
@abstractmethod
|
||||||
def __call__(self, **kwargs):
|
def __call__(self, **kwargs):
|
||||||
pass
|
pass
|
||||||
|
@ -768,6 +851,9 @@ class SD_PV_validation_model(BaseFlowValidationModel):
|
||||||
def predict_zobs_single(self, **kwargs):
|
def predict_zobs_single(self, **kwargs):
|
||||||
raise NotImplementedError("This method is not implemented yet.")
|
raise NotImplementedError("This method is not implemented yet.")
|
||||||
|
|
||||||
|
def predict_zcosmo_from_calibration(self, **kwargs):
|
||||||
|
raise NotImplementedError("This method is not implemented yet.")
|
||||||
|
|
||||||
def __call__(self, sample_alpha=True, sample_beta=True):
|
def __call__(self, sample_alpha=True, sample_beta=True):
|
||||||
"""
|
"""
|
||||||
The simple distance NumPyro PV validation model.
|
The simple distance NumPyro PV validation model.
|
||||||
|
@ -804,7 +890,8 @@ class SD_PV_validation_model(BaseFlowValidationModel):
|
||||||
|
|
||||||
# Calculate p(z_obs) and multiply it by p(r)
|
# Calculate p(z_obs) and multiply it by p(r)
|
||||||
zobs_pred = self._f_zobs(beta, Vext_rad[i], self._los_velocity[i])
|
zobs_pred = self._f_zobs(beta, Vext_rad[i], self._los_velocity[i])
|
||||||
ptilde *= calculate_ll_zobs(self._z_obs[i], zobs_pred, sigma_v)
|
ptilde *= calculate_likelihood_zobs(
|
||||||
|
self._z_obs[i], zobs_pred, sigma_v)
|
||||||
|
|
||||||
return ll + jnp.log(self._f_simps(ptilde) / pnorm), None
|
return ll + jnp.log(self._f_simps(ptilde) / pnorm), None
|
||||||
|
|
||||||
|
@ -924,6 +1011,43 @@ class SN_PV_validation_model(BaseFlowValidationModel):
|
||||||
return (self._e2_mB + alpha_cal**2 * self._e2_x1
|
return (self._e2_mB + alpha_cal**2 * self._e2_x1
|
||||||
+ beta_cal**2 * self._e2_c + e_mu_intrinsic**2)
|
+ beta_cal**2 * self._e2_c + e_mu_intrinsic**2)
|
||||||
|
|
||||||
|
def predict_zcosmo_from_calibration(self, mag_cal, alpha_cal, beta_cal,
|
||||||
|
to_jit=True):
|
||||||
|
"""
|
||||||
|
Predict the cosmological redshift given the SALT2 calibration
|
||||||
|
parameters.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
mag_cal, alpha_cal, beta_cal : floats
|
||||||
|
SALT2 calibration parameters.
|
||||||
|
to_jit : bool, optional
|
||||||
|
Whether to JIT compile the distance modulus function.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
zcosmo_mean : 1-dimensional array
|
||||||
|
Mean of the predicted redshifts.
|
||||||
|
zcosmo_std : 1-dimensional array
|
||||||
|
Standard deviation of the predicted redshifts.
|
||||||
|
"""
|
||||||
|
if not ((mag_cal.shape == alpha_cal.shape == beta_cal.shape) and mag_cal.ndim == 1): # noqa
|
||||||
|
raise ValueError("The shape of calibration parameters must be 1D and equal.") # noqa
|
||||||
|
|
||||||
|
fmu = jit(self.mu) if to_jit else self.mu
|
||||||
|
zcosmo = np.empty((len(mag_cal), self.ndata), dtype=np.float32)
|
||||||
|
mu2z = None
|
||||||
|
|
||||||
|
for i in trange(len(mag_cal)):
|
||||||
|
x = fmu(mag_cal[i], alpha_cal[i], beta_cal[i])
|
||||||
|
zcosmo[i], mu2z = distmodulus2redsfhit(x, self._Omega_m, mu2z=mu2z,
|
||||||
|
return_interpolator=True)
|
||||||
|
|
||||||
|
zcosmo_mean = zcosmo.mean(axis=0)
|
||||||
|
zcosmo_std = zcosmo.std(axis=0)
|
||||||
|
|
||||||
|
return zcosmo_mean, zcosmo_std
|
||||||
|
|
||||||
def predict_zobs_single(self, Vext_x, Vext_y, Vext_z, alpha, beta,
|
def predict_zobs_single(self, Vext_x, Vext_y, Vext_z, alpha, beta,
|
||||||
e_mu_intrinsic, mag_cal, alpha_cal, beta_cal,
|
e_mu_intrinsic, mag_cal, alpha_cal, beta_cal,
|
||||||
**kwargs):
|
**kwargs):
|
||||||
|
@ -1011,7 +1135,8 @@ class SN_PV_validation_model(BaseFlowValidationModel):
|
||||||
|
|
||||||
# Calculate p(z_obs) and multiply it by p(r)
|
# Calculate p(z_obs) and multiply it by p(r)
|
||||||
zobs_pred = self._f_zobs(beta, Vext_rad[i], self._los_velocity[i])
|
zobs_pred = self._f_zobs(beta, Vext_rad[i], self._los_velocity[i])
|
||||||
ptilde *= calculate_ll_zobs(self._z_obs[i], zobs_pred, sigma_v)
|
ptilde *= calculate_likelihood_zobs(
|
||||||
|
self._z_obs[i], zobs_pred, sigma_v)
|
||||||
|
|
||||||
return ll + jnp.log(self._f_simps(ptilde) / pnorm), None
|
return ll + jnp.log(self._f_simps(ptilde) / pnorm), None
|
||||||
|
|
||||||
|
@ -1128,6 +1253,9 @@ class TF_PV_validation_model(BaseFlowValidationModel):
|
||||||
"""
|
"""
|
||||||
return (self._e2_mag + b**2 * self._e2_eta + e_mu_intrinsic**2)
|
return (self._e2_mag + b**2 * self._e2_eta + e_mu_intrinsic**2)
|
||||||
|
|
||||||
|
def predict_zcosmo_from_calibration(self, **kwargs):
|
||||||
|
raise NotImplementedError("This method is not implemented yet.")
|
||||||
|
|
||||||
def predict_zobs_single(self, Vext_x, Vext_y, Vext_z, alpha, beta,
|
def predict_zobs_single(self, Vext_x, Vext_y, Vext_z, alpha, beta,
|
||||||
e_mu_intrinsic, a, b, **kwargs):
|
e_mu_intrinsic, a, b, **kwargs):
|
||||||
"""
|
"""
|
||||||
|
@ -1214,7 +1342,8 @@ class TF_PV_validation_model(BaseFlowValidationModel):
|
||||||
|
|
||||||
# Calculate p(z_obs) and multiply it by p(r)
|
# Calculate p(z_obs) and multiply it by p(r)
|
||||||
zobs_pred = self._f_zobs(beta, Vext_rad[i], self._los_velocity[i])
|
zobs_pred = self._f_zobs(beta, Vext_rad[i], self._los_velocity[i])
|
||||||
ptilde *= calculate_ll_zobs(self._z_obs[i], zobs_pred, sigma_v)
|
ptilde *= calculate_likelihood_zobs(
|
||||||
|
self._z_obs[i], zobs_pred, sigma_v)
|
||||||
|
|
||||||
return ll + jnp.log(self._f_simps(ptilde) / pnorm), None
|
return ll + jnp.log(self._f_simps(ptilde) / pnorm), None
|
||||||
|
|
||||||
|
@ -1475,3 +1604,213 @@ def optimize_model_with_jackknife(loader, k, n_splits=5, sample_alpha=True,
|
||||||
|
|
||||||
loader.reset_mask()
|
loader.reset_mask()
|
||||||
return samples, stats, fmin, logz, bic
|
return samples, stats, fmin, logz, bic
|
||||||
|
|
||||||
|
|
||||||
|
###############################################################################
|
||||||
|
# Predicting z_cosmo from z_obs #
|
||||||
|
###############################################################################
|
||||||
|
|
||||||
|
|
||||||
|
def _posterior_element(r, beta, Vext_radial, los_velocity, Omega_m, zobs,
|
||||||
|
sigma_v, alpha, dVdOmega, los_density):
|
||||||
|
"""
|
||||||
|
Helper function function to compute the unnormalized posterior in
|
||||||
|
`Observed2CosmologicalRedshift`.
|
||||||
|
"""
|
||||||
|
zobs_pred = predict_zobs(r, beta, Vext_radial, los_velocity, Omega_m)
|
||||||
|
likelihood = calculate_likelihood_zobs(zobs, zobs_pred, sigma_v)
|
||||||
|
prior = dVdOmega * los_density**alpha
|
||||||
|
return likelihood * prior
|
||||||
|
|
||||||
|
|
||||||
|
class BaseObserved2CosmologicalRedshift(ABC):
|
||||||
|
"""Base class for `Observed2CosmologicalRedshift`."""
|
||||||
|
def __init__(self, calibration_samples, r_xrange):
|
||||||
|
dt = jnp.float32
|
||||||
|
# Check calibration samples input.
|
||||||
|
for i, key in enumerate(calibration_samples.keys()):
|
||||||
|
x = calibration_samples[key]
|
||||||
|
if not isinstance(x, (np.ndarray, jnp.ndarray)):
|
||||||
|
raise ValueError(f"Calibration sample {x} must be an array.")
|
||||||
|
|
||||||
|
if x.ndim != 1:
|
||||||
|
raise ValueError(f"Calibration samples {x} must be 1D.")
|
||||||
|
|
||||||
|
if i == 0:
|
||||||
|
ncalibratrion = len(x)
|
||||||
|
|
||||||
|
if len(x) != ncalibratrion:
|
||||||
|
raise ValueError("Calibration samples do not have the same length.") # noqa
|
||||||
|
|
||||||
|
# Enforce the same data type.
|
||||||
|
calibration_samples[key] = jnp.asarray(x, dtype=dt)
|
||||||
|
|
||||||
|
if "alpha" not in calibration_samples:
|
||||||
|
calibration_samples["alpha"] = jnp.ones(ncalibratrion, dtype=dt)
|
||||||
|
|
||||||
|
if "beta" not in calibration_samples:
|
||||||
|
calibration_samples["beta"] = jnp.ones(ncalibratrion, dtype=dt)
|
||||||
|
|
||||||
|
# Get the stepsize, we need it to be constant for Simpson's rule.
|
||||||
|
dr = np.diff(r_xrange)
|
||||||
|
if not np.all(np.isclose(dr, dr[0], atol=1e-5)):
|
||||||
|
raise ValueError("The radial step size must be constant.")
|
||||||
|
dr = dr[0]
|
||||||
|
|
||||||
|
self._calibration_samples = calibration_samples
|
||||||
|
self._ncalibration_samples = ncalibratrion
|
||||||
|
|
||||||
|
# It is best to JIT compile the functions right here.
|
||||||
|
self._vmap_simps = jit(vmap(lambda y: simps(y, dr)))
|
||||||
|
axs = (0, None, None, 0, None, None, None, None, 0, 0)
|
||||||
|
self._vmap_posterior_element = vmap(_posterior_element, in_axes=axs)
|
||||||
|
self._vmap_posterior_element = jit(self._vmap_posterior_element)
|
||||||
|
|
||||||
|
self._simps = jit(lambda y: simps(y, dr))
|
||||||
|
|
||||||
|
def get_calibration_samples(self, key):
|
||||||
|
"""
|
||||||
|
Get calibration samples for a given key.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
key : str
|
||||||
|
Key of the calibration samples.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
1-dimensional array
|
||||||
|
"""
|
||||||
|
if key not in self._calibration_samples:
|
||||||
|
raise ValueError(f"Key `{key}` not found in calibration samples. Available keys are: `{self.calibration_keys}`.") # noqa
|
||||||
|
|
||||||
|
return self._calibration_samples[key]
|
||||||
|
|
||||||
|
@property
|
||||||
|
def ncalibration_samples(self):
|
||||||
|
"""
|
||||||
|
Number of calibration samples.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
int
|
||||||
|
"""
|
||||||
|
return self._ncalibration_samples
|
||||||
|
|
||||||
|
@property
|
||||||
|
def calibration_keys(self):
|
||||||
|
"""
|
||||||
|
Calibration sample keys.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
list of str
|
||||||
|
"""
|
||||||
|
return list(self._calibration_samples.keys())
|
||||||
|
|
||||||
|
|
||||||
|
class Observed2CosmologicalRedshift(BaseObserved2CosmologicalRedshift):
|
||||||
|
"""
|
||||||
|
Model to predict the cosmological redshift from the observed redshift.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
calibration_samples : dict
|
||||||
|
Dictionary of flow calibration samples (`alpha`, `beta`, `Vext_x`,
|
||||||
|
`Vext_y`, `Vext_z`, `sigma_v`, ...).
|
||||||
|
r_xrange : 1-dimensional array
|
||||||
|
Radial comoving distances where the fields are interpolated for each
|
||||||
|
object.
|
||||||
|
Omega_m : float
|
||||||
|
Matter density parameter.
|
||||||
|
"""
|
||||||
|
def __init__(self, calibration_samples, r_xrange, Omega_m):
|
||||||
|
super().__init__(calibration_samples, r_xrange)
|
||||||
|
self._r_xrange = jnp.asarray(r_xrange, dtype=jnp.float32)
|
||||||
|
self._zcos_xrange = dist2redshift(self._r_xrange, Omega_m)
|
||||||
|
self._Omega_m = Omega_m
|
||||||
|
|
||||||
|
# Comoving volume element with some arbitrary normalization
|
||||||
|
dVdOmega = gradient_redshift2dist(self._zcos_xrange, Omega_m)
|
||||||
|
# TODO: Decide about the presence of this correction.
|
||||||
|
dVdOmega *= self._r_xrange**2
|
||||||
|
self._dVdOmega = dVdOmega / jnp.mean(dVdOmega)
|
||||||
|
|
||||||
|
def posterior_mean_std(self, x, px):
|
||||||
|
"""
|
||||||
|
Calculate the mean and standard deviation of a 1-dimensional PDF.
|
||||||
|
Assumes that the PDF is already normalized. Assumes that the PDF
|
||||||
|
spacing is that of `r_xrange` which is inferred when initializing this
|
||||||
|
class.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
x : 1-dimensional array
|
||||||
|
Values at which the PDF is evaluated. Note that the PDF must be
|
||||||
|
normalized.
|
||||||
|
px : 1-dimensional array
|
||||||
|
PDF values.
|
||||||
|
dx
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
mu, std : floats
|
||||||
|
"""
|
||||||
|
mu = self._simps(x * px)
|
||||||
|
std = (self._simps(x**2 * px) - mu**2)**0.5
|
||||||
|
return mu, std
|
||||||
|
|
||||||
|
def posterior_zcosmo(self, zobs, RA, dec, los_density, los_velocity,
|
||||||
|
extra_sigma_v=None, verbose=True):
|
||||||
|
"""
|
||||||
|
Calculate `p(z_cosmo | z_CMB, calibration)` for a single object.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
zobs : float
|
||||||
|
Observed redshift.
|
||||||
|
RA, dec : float
|
||||||
|
Right ascension and declination in radians.
|
||||||
|
los_density : 1-dimensional array
|
||||||
|
LOS density field.
|
||||||
|
los_velocity : 1-dimensional array
|
||||||
|
LOS radial velocity field.
|
||||||
|
extra_sigma_v : float, optional
|
||||||
|
Any additional velocity uncertainty.
|
||||||
|
verbose : bool, optional
|
||||||
|
Verbosity flag.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
zcosmo : 1-dimensional array
|
||||||
|
Cosmological redshift at which the PDF is evaluated.
|
||||||
|
posterior : 1-dimensional array
|
||||||
|
Posterior PDF.
|
||||||
|
"""
|
||||||
|
Vext_radial = project_Vext(
|
||||||
|
self.get_calibration_samples("Vext_x"),
|
||||||
|
self.get_calibration_samples("Vext_y"),
|
||||||
|
self.get_calibration_samples("Vext_z"),
|
||||||
|
RA, dec)
|
||||||
|
|
||||||
|
alpha = self.get_calibration_samples("alpha")
|
||||||
|
beta = self.get_calibration_samples("beta")
|
||||||
|
sigma_v = self.get_calibration_samples("sigma_v")
|
||||||
|
|
||||||
|
if extra_sigma_v is not None:
|
||||||
|
sigma_v = jnp.sqrt(sigma_v**2 + extra_sigma_v**2)
|
||||||
|
|
||||||
|
posterior = np.zeros((self.ncalibration_samples, len(self._r_xrange)),
|
||||||
|
dtype=np.float32)
|
||||||
|
for i in trange(self.ncalibration_samples, desc="Marginalizing",
|
||||||
|
disable=not verbose):
|
||||||
|
posterior[i] = self._vmap_posterior_element(
|
||||||
|
self._r_xrange, beta[i], Vext_radial[i], los_velocity,
|
||||||
|
self._Omega_m, zobs, sigma_v[i], alpha[i], self._dVdOmega,
|
||||||
|
los_density)
|
||||||
|
|
||||||
|
# Normalize the posterior for each flow sample and then stack them.
|
||||||
|
posterior /= self._vmap_simps(posterior).reshape(-1, 1)
|
||||||
|
posterior = jnp.nanmean(posterior, axis=0)
|
||||||
|
|
||||||
|
return self._zcos_xrange, posterior
|
||||||
|
|
236
notebooks/flow_mapping.ipynb
Normal file
236
notebooks/flow_mapping.ipynb
Normal file
File diff suppressed because one or more lines are too long
Loading…
Reference in a new issue