mirror of
https://github.com/Richard-Sti/csiborgtools.git
synced 2024-12-22 07:18:03 +00:00
New plots (#85)
* Update verbosity messages * Update verbosity messags * Update more verbosity flags * Update the iterator settings * Add basic plots * Update verbosity flags * Update arg parsre * Update plots * Remove some older code * Fix some definitions * Update plots * Update plotting * Update plots * Add support functions * Update nb * Improve plots, move back to scripts * Update plots * pep8 * Add max overlap plot * Add blank line * Upload changes * Update changes * Add weighted stats * Remove * Add import * Add Max's matching * Edit submission * Add paths to Max's matching * Fix matching * Edit submission * Edit plot * Add max overlap separation plot * Add periodic distance * Update overlap summaries * Add nsim0 for Max matvhing * Add Max's agreement plot * Add Quijote for Max method * Update ploitting * Update name
This commit is contained in:
parent
ca3772ac6f
commit
8e3127f4d9
10 changed files with 1343 additions and 2100 deletions
|
@ -14,7 +14,7 @@
|
||||||
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||||
from csiborgtools import clustering, field, match, read # noqa
|
from csiborgtools import clustering, field, match, read # noqa
|
||||||
|
|
||||||
from .utils import (center_of_mass, delta2ncells, number_counts,
|
from .utils import (center_of_mass, delta2ncells, number_counts, # noqa
|
||||||
periodic_distance, periodic_distance_two_points) # noqa
|
periodic_distance, periodic_distance_two_points) # noqa
|
||||||
|
|
||||||
# Arguments to csiborgtools.read.Paths.
|
# Arguments to csiborgtools.read.Paths.
|
||||||
|
|
|
@ -14,4 +14,5 @@
|
||||||
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||||
from .match import (ParticleOverlap, RealisationsMatcher, # noqa
|
from .match import (ParticleOverlap, RealisationsMatcher, # noqa
|
||||||
calculate_overlap, calculate_overlap_indxs, pos2cell, # noqa
|
calculate_overlap, calculate_overlap_indxs, pos2cell, # noqa
|
||||||
cosine_similarity, find_neighbour, get_halo_cell_limits) # noqa
|
cosine_similarity, find_neighbour, get_halo_cell_limits, # noqa
|
||||||
|
matching_max) # noqa
|
||||||
|
|
|
@ -236,8 +236,6 @@ class RealisationsMatcher(BaseMatcher):
|
||||||
# We begin by querying the kNN for the nearest neighbours of each halo
|
# We begin by querying the kNN for the nearest neighbours of each halo
|
||||||
# in the reference simulation from the cross simulation in the initial
|
# in the reference simulation from the cross simulation in the initial
|
||||||
# snapshot.
|
# snapshot.
|
||||||
if verbose:
|
|
||||||
print(f"{datetime.now()}: querying the KNN.", flush=True)
|
|
||||||
match_indxs = radius_neighbours(
|
match_indxs = radius_neighbours(
|
||||||
catx.knn(in_initial=True, subtract_observer=False, periodic=True),
|
catx.knn(in_initial=True, subtract_observer=False, periodic=True),
|
||||||
cat0.position(in_initial=True),
|
cat0.position(in_initial=True),
|
||||||
|
@ -261,11 +259,13 @@ class RealisationsMatcher(BaseMatcher):
|
||||||
return load_processed_halo(hid, particlesx, halo_mapx, hid2mapx,
|
return load_processed_halo(hid, particlesx, halo_mapx, hid2mapx,
|
||||||
nshift=0, ncells=self.box_size)
|
nshift=0, ncells=self.box_size)
|
||||||
|
|
||||||
if verbose:
|
iterator = tqdm(
|
||||||
print(f"{datetime.now()}: calculating overlaps.", flush=True)
|
cat0["index"],
|
||||||
|
desc=f"{datetime.now()}: calculating NGP overlaps",
|
||||||
|
disable=not verbose
|
||||||
|
)
|
||||||
cross = [numpy.asanyarray([], dtype=numpy.float32)] * match_indxs.size
|
cross = [numpy.asanyarray([], dtype=numpy.float32)] * match_indxs.size
|
||||||
indxs = cat0["index"]
|
for i, k0 in enumerate(iterator):
|
||||||
for i, k0 in enumerate(tqdm(indxs) if verbose else indxs):
|
|
||||||
# If we have no matches continue to the next halo.
|
# If we have no matches continue to the next halo.
|
||||||
matches = match_indxs[i]
|
matches = match_indxs[i]
|
||||||
if matches.size == 0:
|
if matches.size == 0:
|
||||||
|
@ -347,12 +347,13 @@ class RealisationsMatcher(BaseMatcher):
|
||||||
return load_processed_halo(hid, particlesx, halo_mapx, hid2mapx,
|
return load_processed_halo(hid, particlesx, halo_mapx, hid2mapx,
|
||||||
nshift=nshift, ncells=self.box_size)
|
nshift=nshift, ncells=self.box_size)
|
||||||
|
|
||||||
if verbose:
|
iterator = tqdm(
|
||||||
print(f"{datetime.now()}: calculating smoothed overlaps.",
|
cat0["index"],
|
||||||
flush=True)
|
desc=f"{datetime.now()}: calculating smoothed overlaps",
|
||||||
|
disable=not verbose
|
||||||
|
)
|
||||||
cross = [numpy.asanyarray([], dtype=numpy.float32)] * match_indxs.size
|
cross = [numpy.asanyarray([], dtype=numpy.float32)] * match_indxs.size
|
||||||
indxs = cat0["index"]
|
for i, k0 in enumerate(iterator):
|
||||||
for i, k0 in enumerate(tqdm(indxs) if verbose else indxs):
|
|
||||||
pos0, mass0, __, mins0, maxs0 = load_processed_halo(
|
pos0, mass0, __, mins0, maxs0 = load_processed_halo(
|
||||||
k0, particles0, halo_map0, hid2map0, nshift=nshift,
|
k0, particles0, halo_map0, hid2map0, nshift=nshift,
|
||||||
ncells=self.box_size)
|
ncells=self.box_size)
|
||||||
|
@ -434,7 +435,12 @@ class ParticleOverlap(BaseMatcher):
|
||||||
assert ((delta.shape == (ncells,) * 3)
|
assert ((delta.shape == (ncells,) * 3)
|
||||||
& (delta.dtype == numpy.float32))
|
& (delta.dtype == numpy.float32))
|
||||||
|
|
||||||
for hid in tqdm(halo_cat["index"]) if verbose else halo_cat["index"]:
|
iterator = tqdm(
|
||||||
|
halo_cat["index"],
|
||||||
|
desc=f"{datetime.now()} Calculating the background field",
|
||||||
|
disable=not verbose
|
||||||
|
)
|
||||||
|
for hid in iterator:
|
||||||
pos = load_halo_particles(hid, particles, halo_map, hid2map)
|
pos = load_halo_particles(hid, particles, halo_map, hid2map)
|
||||||
if pos is None:
|
if pos is None:
|
||||||
continue
|
continue
|
||||||
|
@ -993,11 +999,13 @@ def radius_neighbours(knn, X, radiusX, radiusKNN, nmult=1.0,
|
||||||
if radiusKNN.size != knn.n_samples_fit_:
|
if radiusKNN.size != knn.n_samples_fit_:
|
||||||
raise ValueError("Mismatch in shape of `radiusKNN` or `knn`")
|
raise ValueError("Mismatch in shape of `radiusKNN` or `knn`")
|
||||||
|
|
||||||
nsamples = len(X)
|
|
||||||
indxs = [None] * nsamples
|
|
||||||
patchknn_max = numpy.max(radiusKNN)
|
patchknn_max = numpy.max(radiusKNN)
|
||||||
|
|
||||||
for i in trange(nsamples) if verbose else range(nsamples):
|
iterator = trange(len(X),
|
||||||
|
desc=f"{datetime.now()}: querying the kNN",
|
||||||
|
disable=not verbose)
|
||||||
|
indxs = [None] * len(X)
|
||||||
|
for i in iterator:
|
||||||
dist, indx = knn.radius_neighbors(
|
dist, indx = knn.radius_neighbors(
|
||||||
X[i].reshape(1, -1), radiusX[i] + patchknn_max,
|
X[i].reshape(1, -1), radiusX[i] + patchknn_max,
|
||||||
sort_results=True)
|
sort_results=True)
|
||||||
|
@ -1082,3 +1090,107 @@ def cosine_similarity(x, y):
|
||||||
out /= numpy.linalg.norm(x) * numpy.linalg.norm(y, axis=1)
|
out /= numpy.linalg.norm(x) * numpy.linalg.norm(y, axis=1)
|
||||||
|
|
||||||
return out[0] if out.size == 1 else out
|
return out[0] if out.size == 1 else out
|
||||||
|
|
||||||
|
|
||||||
|
def matching_max(cat0, catx, mass_kind, mult, periodic, overlap=None,
|
||||||
|
match_indxs=None, verbose=True):
|
||||||
|
"""
|
||||||
|
Halo matching algorithm based on [1].
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
cat0 : instance of :py:class:`csiborgtools.read.BaseCatalogue`
|
||||||
|
Halo catalogue of the reference simulation.
|
||||||
|
catx : instance of :py:class:`csiborgtools.read.BaseCatalogue`
|
||||||
|
Halo catalogue of the cross simulation.
|
||||||
|
mass_kind : str
|
||||||
|
Name of the mass column.
|
||||||
|
mult : float
|
||||||
|
Multiple of R200c below which to consider a match.
|
||||||
|
periodic : bool
|
||||||
|
Whether to account for periodic boundary conditions.
|
||||||
|
overlap : array of 1-dimensional arrays, optional
|
||||||
|
Overlap of halos from `cat0` with halos from `catx`. If `overlap` or
|
||||||
|
`match_indxs` is not provided, then the overlap of the identified halos
|
||||||
|
is not calculated.
|
||||||
|
match_indxs : array of 1-dimensional arrays, optional
|
||||||
|
Indicies of halos from `catx` having a non-zero overlap with halos
|
||||||
|
from `cat0`.
|
||||||
|
verbose : bool, optional
|
||||||
|
Verbosity flag.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
out : structured array
|
||||||
|
Array of matches. Columns are `hid0`, `hidx`, `dist`, `success`.
|
||||||
|
|
||||||
|
References
|
||||||
|
----------
|
||||||
|
[1] Maxwell L Hutt, Harry Desmond, Julien Devriendt, Adrianne Slyz; The
|
||||||
|
effect of local Universe constraints on halo abundance and clustering;
|
||||||
|
Monthly Notices of the Royal Astronomical Society, Volume 516, Issue 3,
|
||||||
|
November 2022, Pages 3592–3601, https://doi.org/10.1093/mnras/stac2407
|
||||||
|
"""
|
||||||
|
pos0 = cat0.position(in_initial=False)
|
||||||
|
knnx = catx.knn(in_initial=False, subtract_observer=False,
|
||||||
|
periodic=periodic)
|
||||||
|
rad0 = cat0["r200c"]
|
||||||
|
|
||||||
|
mass0 = numpy.log10(cat0[mass_kind])
|
||||||
|
massx = numpy.log10(catx[mass_kind])
|
||||||
|
|
||||||
|
assert numpy.all(numpy.isfinite(mass0)) & numpy.all(numpy.isfinite(massx))
|
||||||
|
|
||||||
|
maskx = numpy.ones(len(catx), dtype=numpy.bool_)
|
||||||
|
|
||||||
|
dtypes = [("hid0", numpy.int32),
|
||||||
|
("hidx", numpy.int32),
|
||||||
|
("mass0", numpy.float32),
|
||||||
|
("massx", numpy.float32),
|
||||||
|
("dist", numpy.float32),
|
||||||
|
("success", numpy.bool_),
|
||||||
|
("match_overlap", numpy.float32),
|
||||||
|
("max_overlap", numpy.float32),
|
||||||
|
]
|
||||||
|
out = numpy.full(len(cat0), numpy.nan, dtype=dtypes)
|
||||||
|
out["success"] = False
|
||||||
|
|
||||||
|
for i in tqdm(numpy.argsort(mass0)[::-1], desc="Matching haloes",
|
||||||
|
disable=not verbose):
|
||||||
|
hid0 = cat0["index"][i]
|
||||||
|
out[i]["hid0"] = hid0
|
||||||
|
out[i]["mass0"] = 10**mass0[i]
|
||||||
|
|
||||||
|
neigh_dists, neigh_inds = knnx.radius_neighbors(pos0[i].reshape(1, -1),
|
||||||
|
mult * rad0[i])
|
||||||
|
neigh_dists, neigh_inds = neigh_dists[0], neigh_inds[0]
|
||||||
|
|
||||||
|
if neigh_dists.size == 0:
|
||||||
|
continue
|
||||||
|
|
||||||
|
# Sort the neighbours by mass difference
|
||||||
|
sort_order = numpy.argsort(numpy.abs(mass0[i] - massx[neigh_inds]))
|
||||||
|
neigh_dists = neigh_dists[sort_order]
|
||||||
|
neigh_inds = neigh_inds[sort_order]
|
||||||
|
|
||||||
|
for j, neigh_ind in enumerate(neigh_inds):
|
||||||
|
|
||||||
|
if maskx[neigh_ind]:
|
||||||
|
out[i]["hidx"] = catx["index"][neigh_ind]
|
||||||
|
out[i]["dist"] = neigh_dists[j]
|
||||||
|
out[i]["massx"] = 10**massx[neigh_ind]
|
||||||
|
|
||||||
|
out[i]["success"] = True
|
||||||
|
|
||||||
|
maskx[neigh_ind] = False
|
||||||
|
|
||||||
|
if overlap is not None and match_indxs is not None:
|
||||||
|
if neigh_ind in match_indxs[i]:
|
||||||
|
k = numpy.where(neigh_ind == match_indxs[i])[0][0]
|
||||||
|
out[i]["match_overlap"] = overlap[i][k]
|
||||||
|
if len(overlap[i]) > 0:
|
||||||
|
out[i]["max_overlap"] = numpy.max(overlap[i])
|
||||||
|
|
||||||
|
break
|
||||||
|
|
||||||
|
return out
|
||||||
|
|
|
@ -21,6 +21,8 @@ from os.path import isfile
|
||||||
import numpy
|
import numpy
|
||||||
from tqdm import tqdm, trange
|
from tqdm import tqdm, trange
|
||||||
|
|
||||||
|
from ..utils import periodic_distance
|
||||||
|
|
||||||
###############################################################################
|
###############################################################################
|
||||||
# Overlap of two simulations #
|
# Overlap of two simulations #
|
||||||
###############################################################################
|
###############################################################################
|
||||||
|
@ -47,6 +49,7 @@ class PairOverlap:
|
||||||
_cat0 = None
|
_cat0 = None
|
||||||
_catx = None
|
_catx = None
|
||||||
_data = None
|
_data = None
|
||||||
|
_paths = None
|
||||||
|
|
||||||
def __init__(self, cat0, catx, paths, min_logmass, maxdist=None):
|
def __init__(self, cat0, catx, paths, min_logmass, maxdist=None):
|
||||||
if cat0.simname != catx.simname:
|
if cat0.simname != catx.simname:
|
||||||
|
@ -55,6 +58,7 @@ class PairOverlap:
|
||||||
|
|
||||||
self._cat0 = cat0
|
self._cat0 = cat0
|
||||||
self._catx = catx
|
self._catx = catx
|
||||||
|
self._paths = paths
|
||||||
self.load(cat0, catx, paths, min_logmass, maxdist)
|
self.load(cat0, catx, paths, min_logmass, maxdist)
|
||||||
|
|
||||||
def load(self, cat0, catx, paths, min_logmass, maxdist=None):
|
def load(self, cat0, catx, paths, min_logmass, maxdist=None):
|
||||||
|
@ -257,6 +261,8 @@ class PairOverlap:
|
||||||
for i in range(len(overlap)):
|
for i in range(len(overlap)):
|
||||||
if len(overlap[i]) > 0:
|
if len(overlap[i]) > 0:
|
||||||
out[i] = numpy.sum(overlap[i])
|
out[i] = numpy.sum(overlap[i])
|
||||||
|
else:
|
||||||
|
out[i] = 0
|
||||||
return out
|
return out
|
||||||
|
|
||||||
def prob_nomatch(self, from_smoothed):
|
def prob_nomatch(self, from_smoothed):
|
||||||
|
@ -279,9 +285,11 @@ class PairOverlap:
|
||||||
for i in range(len(overlap)):
|
for i in range(len(overlap)):
|
||||||
if len(overlap[i]) > 0:
|
if len(overlap[i]) > 0:
|
||||||
out[i] = numpy.product(numpy.subtract(1, overlap[i]))
|
out[i] = numpy.product(numpy.subtract(1, overlap[i]))
|
||||||
|
else:
|
||||||
|
out[i] = 1
|
||||||
return out
|
return out
|
||||||
|
|
||||||
def dist(self, in_initial, norm_kind=None):
|
def dist(self, in_initial, boxsize, norm_kind=None):
|
||||||
"""
|
"""
|
||||||
Pair distances of matched halos between the reference and cross
|
Pair distances of matched halos between the reference and cross
|
||||||
simulations.
|
simulations.
|
||||||
|
@ -290,6 +298,8 @@ class PairOverlap:
|
||||||
----------
|
----------
|
||||||
in_initial : bool
|
in_initial : bool
|
||||||
Whether to calculate separation in the initial or final snapshot.
|
Whether to calculate separation in the initial or final snapshot.
|
||||||
|
boxsize : float
|
||||||
|
The size of the simulation box.
|
||||||
norm_kind : str, optional
|
norm_kind : str, optional
|
||||||
The kind of normalisation to apply to the distances.
|
The kind of normalisation to apply to the distances.
|
||||||
Can be `r200c`, `ref_patch` or `sum_patch`.
|
Can be `r200c`, `ref_patch` or `sum_patch`.
|
||||||
|
@ -320,8 +330,7 @@ class PairOverlap:
|
||||||
# Now calculate distances
|
# Now calculate distances
|
||||||
dist = [None] * len(self)
|
dist = [None] * len(self)
|
||||||
for i, ind in enumerate(self["match_indxs"]):
|
for i, ind in enumerate(self["match_indxs"]):
|
||||||
# n refers to the reference halo catalogue position
|
dist[i] = periodic_distance(posx[ind, :], pos0[i, :], boxsize)
|
||||||
dist[i] = numpy.linalg.norm(pos0[i, :] - posx[ind, :], axis=1)
|
|
||||||
|
|
||||||
if norm_kind is not None:
|
if norm_kind is not None:
|
||||||
dist[i] /= norm[i]
|
dist[i] /= norm[i]
|
||||||
|
@ -358,7 +367,7 @@ class PairOverlap:
|
||||||
ratio[i] = numpy.abs(ratio[i])
|
ratio[i] = numpy.abs(ratio[i])
|
||||||
return numpy.array(ratio, dtype=object)
|
return numpy.array(ratio, dtype=object)
|
||||||
|
|
||||||
def max_overlap_key(self, key, from_smoothed):
|
def max_overlap_key(self, key, min_overlap, from_smoothed):
|
||||||
"""
|
"""
|
||||||
Calculate the maximum overlap mass of each halo in the reference
|
Calculate the maximum overlap mass of each halo in the reference
|
||||||
simulation from the cross simulation.
|
simulation from the cross simulation.
|
||||||
|
@ -367,10 +376,10 @@ class PairOverlap:
|
||||||
----------
|
----------
|
||||||
key : str
|
key : str
|
||||||
Key to the maximum overlap statistic to calculate.
|
Key to the maximum overlap statistic to calculate.
|
||||||
|
min_overlap : float
|
||||||
|
Minimum pair overlap to consider.
|
||||||
from_smoothed : bool
|
from_smoothed : bool
|
||||||
Whether to use the smoothed overlap or not.
|
Whether to use the smoothed overlap or not.
|
||||||
mass_kind : str, optional
|
|
||||||
The mass kind whose ratio is to be calculated.
|
|
||||||
|
|
||||||
Returns
|
Returns
|
||||||
-------
|
-------
|
||||||
|
@ -384,11 +393,15 @@ class PairOverlap:
|
||||||
# Skip if no match
|
# Skip if no match
|
||||||
if len(match_ind) == 0:
|
if len(match_ind) == 0:
|
||||||
continue
|
continue
|
||||||
out[i] = y[match_ind][numpy.argmax(overlap[i])]
|
|
||||||
|
k = numpy.argmax(overlap[i])
|
||||||
|
if overlap[i][k] > min_overlap:
|
||||||
|
out[i] = y[match_ind][k]
|
||||||
|
|
||||||
return out
|
return out
|
||||||
|
|
||||||
def counterpart_mass(self, from_smoothed, overlap_threshold=0.,
|
def counterpart_mass(self, from_smoothed, overlap_threshold=0.,
|
||||||
in_log=False, mass_kind="totpartmass"):
|
mass_kind="totpartmass"):
|
||||||
"""
|
"""
|
||||||
Calculate the expected counterpart mass of each halo in the reference
|
Calculate the expected counterpart mass of each halo in the reference
|
||||||
simulation from the crossed simulation.
|
simulation from the crossed simulation.
|
||||||
|
@ -400,9 +413,6 @@ class PairOverlap:
|
||||||
overlap_threshold : float, optional
|
overlap_threshold : float, optional
|
||||||
Minimum overlap required for a halo to be considered a match. By
|
Minimum overlap required for a halo to be considered a match. By
|
||||||
default 0.0, i.e. no threshold.
|
default 0.0, i.e. no threshold.
|
||||||
in_log : bool, optional
|
|
||||||
Whether to calculate the expectation value in log space. By default
|
|
||||||
`False`.
|
|
||||||
mass_kind : str, optional
|
mass_kind : str, optional
|
||||||
The mass kind whose ratio is to be calculated. Must be a valid
|
The mass kind whose ratio is to be calculated. Must be a valid
|
||||||
catalogue key. By default `totpartmass`, i.e. the total particle
|
catalogue key. By default `totpartmass`, i.e. the total particle
|
||||||
|
@ -434,15 +444,11 @@ class PairOverlap:
|
||||||
massx_ = massx_[mask]
|
massx_ = massx_[mask]
|
||||||
overlap_ = overlap_[mask]
|
overlap_ = overlap_[mask]
|
||||||
|
|
||||||
massx_ = numpy.log10(massx_) if in_log else massx_
|
massx_ = numpy.log10(massx_)
|
||||||
# Weighted average and *biased* standard deviation
|
# Weighted average and *biased* standard deviation
|
||||||
mean_ = numpy.average(massx_, weights=overlap_)
|
mean_ = numpy.average(massx_, weights=overlap_)
|
||||||
std_ = numpy.average((massx_ - mean_)**2, weights=overlap_)**0.5
|
std_ = numpy.average((massx_ - mean_)**2, weights=overlap_)**0.5
|
||||||
|
|
||||||
# If in log, convert back to linear
|
|
||||||
mean_ = 10**mean_ if in_log else mean_
|
|
||||||
std_ = mean_ * std_ * numpy.log(10) if in_log else std_
|
|
||||||
|
|
||||||
mean[i] = mean_
|
mean[i] = mean_
|
||||||
std[i] = std_
|
std[i] = std_
|
||||||
|
|
||||||
|
@ -544,7 +550,7 @@ def weighted_stats(x, weights, min_weight=0, verbose=False):
|
||||||
"""
|
"""
|
||||||
out = numpy.full((x.size, 2), numpy.nan, dtype=numpy.float32)
|
out = numpy.full((x.size, 2), numpy.nan, dtype=numpy.float32)
|
||||||
|
|
||||||
for i in trange(len(x)) if verbose else range(len(x)):
|
for i in trange(len(x), disable=not verbose):
|
||||||
x_, w_ = numpy.asarray(x[i]), numpy.asarray(weights[i])
|
x_, w_ = numpy.asarray(x[i]), numpy.asarray(weights[i])
|
||||||
mask = w_ > min_weight
|
mask = w_ > min_weight
|
||||||
x_ = x_[mask]
|
x_ = x_[mask]
|
||||||
|
@ -574,27 +580,30 @@ class NPairsOverlap:
|
||||||
List of cross simulation halo catalogues.
|
List of cross simulation halo catalogues.
|
||||||
paths : py:class`csiborgtools.read.Paths`
|
paths : py:class`csiborgtools.read.Paths`
|
||||||
CSiBORG paths object.
|
CSiBORG paths object.
|
||||||
|
min_logmass : float
|
||||||
|
Minimum log mass of halos to consider.
|
||||||
verbose : bool, optional
|
verbose : bool, optional
|
||||||
Verbosity flag for loading the overlap objects.
|
Verbosity flag for loading the overlap objects.
|
||||||
"""
|
"""
|
||||||
_pairs = None
|
_pairs = None
|
||||||
|
|
||||||
def __init__(self, cat0, catxs, paths, verbose=True):
|
def __init__(self, cat0, catxs, paths, min_logmass, verbose=True):
|
||||||
pairs = [None] * len(catxs)
|
pairs = [None] * len(catxs)
|
||||||
if verbose:
|
for i, catx in enumerate(tqdm(catxs, desc="Loading overlap objects",
|
||||||
print("Loading individual overlap objects...", flush=True)
|
disable=not verbose)):
|
||||||
for i, catx in enumerate(tqdm(catxs) if verbose else catxs):
|
pairs[i] = PairOverlap(cat0, catx, paths, min_logmass)
|
||||||
pairs[i] = PairOverlap(cat0, catx, paths)
|
|
||||||
|
|
||||||
self._pairs = pairs
|
self._pairs = pairs
|
||||||
|
|
||||||
def max_overlap(self, from_smoothed, verbose=True):
|
def max_overlap(self, min_overlap, from_smoothed, verbose=True):
|
||||||
"""
|
"""
|
||||||
Calculate maximum overlap of each halo in the reference simulation with
|
Calculate maximum overlap of each halo in the reference simulation with
|
||||||
the cross simulations.
|
the cross simulations.
|
||||||
|
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
|
min_overlap : float
|
||||||
|
Minimum pair overlap to consider.
|
||||||
from_smoothed : bool
|
from_smoothed : bool
|
||||||
Whether to use the smoothed overlap or not.
|
Whether to use the smoothed overlap or not.
|
||||||
verbose : bool, optional
|
verbose : bool, optional
|
||||||
|
@ -604,21 +613,24 @@ class NPairsOverlap:
|
||||||
-------
|
-------
|
||||||
max_overlap : 2-dimensional array of shape `(nhalos, ncatxs)`
|
max_overlap : 2-dimensional array of shape `(nhalos, ncatxs)`
|
||||||
"""
|
"""
|
||||||
out = [None] * len(self)
|
|
||||||
if verbose:
|
|
||||||
print("Calculating maximum overlap...", flush=True)
|
|
||||||
|
|
||||||
def get_max(y_):
|
def get_max(y_):
|
||||||
if len(y_) == 0:
|
if len(y_) == 0:
|
||||||
return numpy.nan
|
return 0
|
||||||
return numpy.max(y_)
|
out = numpy.max(y_)
|
||||||
|
|
||||||
for i, pair in enumerate(tqdm(self.pairs) if verbose else self.pairs):
|
return out if out >= min_overlap else 0
|
||||||
|
|
||||||
|
iterator = tqdm(self.pairs,
|
||||||
|
desc="Calculating maximum overlap",
|
||||||
|
disable=not verbose
|
||||||
|
)
|
||||||
|
out = [None] * len(self)
|
||||||
|
for i, pair in enumerate(iterator):
|
||||||
out[i] = numpy.asanyarray([get_max(y_)
|
out[i] = numpy.asanyarray([get_max(y_)
|
||||||
for y_ in pair.overlap(from_smoothed)])
|
for y_ in pair.overlap(from_smoothed)])
|
||||||
return numpy.vstack(out).T
|
return numpy.vstack(out).T
|
||||||
|
|
||||||
def max_overlap_key(self, key, from_smoothed, verbose=True):
|
def max_overlap_key(self, key, min_overlap, from_smoothed, verbose=True):
|
||||||
"""
|
"""
|
||||||
Calculate maximum overlap mass of each halo in the reference
|
Calculate maximum overlap mass of each halo in the reference
|
||||||
simulation with the cross simulations.
|
simulation with the cross simulations.
|
||||||
|
@ -627,6 +639,8 @@ class NPairsOverlap:
|
||||||
----------
|
----------
|
||||||
key : str
|
key : str
|
||||||
Key to the maximum overlap statistic to calculate.
|
Key to the maximum overlap statistic to calculate.
|
||||||
|
min_overlap : float
|
||||||
|
Minimum pair overlap to consider.
|
||||||
from_smoothed : bool
|
from_smoothed : bool
|
||||||
Whether to use the smoothed overlap or not.
|
Whether to use the smoothed overlap or not.
|
||||||
verbose : bool, optional
|
verbose : bool, optional
|
||||||
|
@ -636,12 +650,13 @@ class NPairsOverlap:
|
||||||
-------
|
-------
|
||||||
out : 2-dimensional array of shape `(nhalos, ncatxs)`
|
out : 2-dimensional array of shape `(nhalos, ncatxs)`
|
||||||
"""
|
"""
|
||||||
|
iterator = tqdm(self.pairs,
|
||||||
|
desc=f"Calculating maximum overlap {key}",
|
||||||
|
disable=not verbose
|
||||||
|
)
|
||||||
out = [None] * len(self)
|
out = [None] * len(self)
|
||||||
if verbose:
|
for i, pair in enumerate(iterator):
|
||||||
print(f"Calculating maximum overlap {key}...", flush=True)
|
out[i] = pair.max_overlap_key(key, min_overlap, from_smoothed)
|
||||||
|
|
||||||
for i, pair in enumerate(tqdm(self.pairs) if verbose else self.pairs):
|
|
||||||
out[i] = pair.max_overlap_key(key, from_smoothed)
|
|
||||||
|
|
||||||
return numpy.vstack(out).T
|
return numpy.vstack(out).T
|
||||||
|
|
||||||
|
@ -661,10 +676,11 @@ class NPairsOverlap:
|
||||||
-------
|
-------
|
||||||
summed_overlap : 2-dimensional array of shape `(nhalos, ncatxs)`
|
summed_overlap : 2-dimensional array of shape `(nhalos, ncatxs)`
|
||||||
"""
|
"""
|
||||||
|
iterator = tqdm(self.pairs,
|
||||||
|
desc="Calculating summed overlap",
|
||||||
|
disable=not verbose)
|
||||||
out = [None] * len(self)
|
out = [None] * len(self)
|
||||||
if verbose:
|
for i, pair in enumerate(iterator):
|
||||||
print("Calculating summed overlap...", flush=True)
|
|
||||||
for i, pair in enumerate(tqdm(self.pairs) if verbose else self.pairs):
|
|
||||||
out[i] = pair.summed_overlap(from_smoothed)
|
out[i] = pair.summed_overlap(from_smoothed)
|
||||||
return numpy.vstack(out).T
|
return numpy.vstack(out).T
|
||||||
|
|
||||||
|
@ -684,16 +700,18 @@ class NPairsOverlap:
|
||||||
-------
|
-------
|
||||||
prob_nomatch : 2-dimensional array of shape `(nhalos, ncatxs)`
|
prob_nomatch : 2-dimensional array of shape `(nhalos, ncatxs)`
|
||||||
"""
|
"""
|
||||||
|
iterator = tqdm(self.pairs,
|
||||||
|
desc="Calculating probability of no match",
|
||||||
|
disable=not verbose
|
||||||
|
)
|
||||||
out = [None] * len(self)
|
out = [None] * len(self)
|
||||||
if verbose:
|
for i, pair in enumerate(iterator):
|
||||||
print("Calculating probability of no match...", flush=True)
|
|
||||||
for i, pair in enumerate(tqdm(self.pairs) if verbose else self.pairs):
|
|
||||||
out[i] = pair.prob_nomatch(from_smoothed)
|
out[i] = pair.prob_nomatch(from_smoothed)
|
||||||
return numpy.vstack(out).T
|
return numpy.vstack(out).T
|
||||||
|
|
||||||
def counterpart_mass(self, from_smoothed, overlap_threshold=0.,
|
def counterpart_mass(self, from_smoothed, overlap_threshold=0.,
|
||||||
in_log=False, mass_kind="totpartmass",
|
mass_kind="totpartmass", return_full=False,
|
||||||
return_full=False, verbose=True):
|
verbose=True):
|
||||||
"""
|
"""
|
||||||
Calculate the expected counterpart mass of each halo in the reference
|
Calculate the expected counterpart mass of each halo in the reference
|
||||||
simulation from the crossed simulation.
|
simulation from the crossed simulation.
|
||||||
|
@ -705,9 +723,6 @@ class NPairsOverlap:
|
||||||
overlap_threshold : float, optional
|
overlap_threshold : float, optional
|
||||||
Minimum overlap required for a halo to be considered a match. By
|
Minimum overlap required for a halo to be considered a match. By
|
||||||
default 0.0, i.e. no threshold.
|
default 0.0, i.e. no threshold.
|
||||||
in_log : bool, optional
|
|
||||||
Whether to calculate the expectation value in log space. By default
|
|
||||||
`False`.
|
|
||||||
mass_kind : str, optional
|
mass_kind : str, optional
|
||||||
The mass kind whose ratio is to be calculated. Must be a valid
|
The mass kind whose ratio is to be calculated. Must be a valid
|
||||||
catalogue key. By default `totpartmass`, i.e. the total particle
|
catalogue key. By default `totpartmass`, i.e. the total particle
|
||||||
|
@ -727,26 +742,31 @@ class NPairsOverlap:
|
||||||
Expected mass and standard deviation from each cross simulation.
|
Expected mass and standard deviation from each cross simulation.
|
||||||
Returned only if `return_full` is `True`.
|
Returned only if `return_full` is `True`.
|
||||||
"""
|
"""
|
||||||
|
iterator = tqdm(self.pairs,
|
||||||
|
desc="Calculating counterpart masses",
|
||||||
|
disable=not verbose)
|
||||||
mus, stds = [None] * len(self), [None] * len(self)
|
mus, stds = [None] * len(self), [None] * len(self)
|
||||||
if verbose:
|
for i, pair in enumerate(iterator):
|
||||||
print("Calculating counterpart masses...", flush=True)
|
|
||||||
for i, pair in enumerate(tqdm(self.pairs) if verbose else self.pairs):
|
|
||||||
mus[i], stds[i] = pair.counterpart_mass(
|
mus[i], stds[i] = pair.counterpart_mass(
|
||||||
from_smoothed=from_smoothed,
|
from_smoothed=from_smoothed,
|
||||||
overlap_threshold=overlap_threshold, in_log=in_log,
|
overlap_threshold=overlap_threshold, mass_kind=mass_kind)
|
||||||
mass_kind=mass_kind)
|
|
||||||
mus, stds = numpy.vstack(mus).T, numpy.vstack(stds).T
|
mus, stds = numpy.vstack(mus).T, numpy.vstack(stds).T
|
||||||
|
|
||||||
probmatch = 1 - self.prob_nomatch(from_smoothed) # Prob of > 0 matches
|
# Prob of > 0 matches
|
||||||
|
probmatch = 1 - self.prob_nomatch(from_smoothed)
|
||||||
# Normalise it for weighted sums etc.
|
# Normalise it for weighted sums etc.
|
||||||
norm_probmatch = numpy.apply_along_axis(
|
norm_probmatch = numpy.apply_along_axis(
|
||||||
lambda x: x / numpy.sum(x), axis=1, arr=probmatch)
|
lambda x: x / numpy.sum(x), axis=1, arr=probmatch)
|
||||||
|
|
||||||
# Mean and standard deviation of weighted stacked Gaussians
|
# Mean and standard deviation of weighted stacked Gaussians
|
||||||
mu = numpy.sum(norm_probmatch * mus, axis=1)
|
mu = numpy.sum((norm_probmatch * mus), axis=1)
|
||||||
std = numpy.sum(norm_probmatch * (mus**2 + stds**2), axis=1) - mu**2
|
std = numpy.sum((norm_probmatch * (mus**2 + stds**2)), axis=1) - mu**2
|
||||||
std **= 0.5
|
std **= 0.5
|
||||||
|
|
||||||
|
mask = mu <= 0
|
||||||
|
mu[mask] = numpy.nan
|
||||||
|
std[mask] = numpy.nan
|
||||||
|
|
||||||
if return_full:
|
if return_full:
|
||||||
return mu, std, mus, stds
|
return mu, std, mus, stds
|
||||||
return mu, std
|
return mu, std
|
||||||
|
@ -766,6 +786,11 @@ class NPairsOverlap:
|
||||||
def cat0(self):
|
def cat0(self):
|
||||||
return self.pairs[0].cat0 # All pairs have the same ref catalogue
|
return self.pairs[0].cat0 # All pairs have the same ref catalogue
|
||||||
|
|
||||||
|
def __getitem__(self, key):
|
||||||
|
if not isinstance(key, int):
|
||||||
|
raise TypeError("Key must be an integer.")
|
||||||
|
return self.pairs[key]
|
||||||
|
|
||||||
def __len__(self):
|
def __len__(self):
|
||||||
return len(self.pairs)
|
return len(self.pairs)
|
||||||
|
|
||||||
|
@ -794,7 +819,7 @@ def get_cross_sims(simname, nsim0, paths, min_logmass, smoothed):
|
||||||
Whether to use the smoothed overlap or not.
|
Whether to use the smoothed overlap or not.
|
||||||
"""
|
"""
|
||||||
nsimxs = []
|
nsimxs = []
|
||||||
for nsimx in paths.get_ics("csiborg"):
|
for nsimx in paths.get_ics(simname):
|
||||||
if nsimx == nsim0:
|
if nsimx == nsim0:
|
||||||
continue
|
continue
|
||||||
f1 = paths.overlap(simname, nsim0, nsimx, min_logmass, smoothed)
|
f1 = paths.overlap(simname, nsim0, nsimx, min_logmass, smoothed)
|
||||||
|
|
|
@ -501,6 +501,50 @@ class Paths:
|
||||||
fname = fname.replace("overlap", "overlap_smoothed")
|
fname = fname.replace("overlap", "overlap_smoothed")
|
||||||
return join(fdir, fname)
|
return join(fdir, fname)
|
||||||
|
|
||||||
|
def match_max(self, simname, nsim0, nsimx, min_logmass, mult):
|
||||||
|
"""
|
||||||
|
Path to the files containing matching based on [1].
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
simname : str
|
||||||
|
Simulation name.
|
||||||
|
nsim0 : int
|
||||||
|
IC realisation index of the first simulation.
|
||||||
|
nsimx : int
|
||||||
|
IC realisation index of the second simulation.
|
||||||
|
min_logmass : float
|
||||||
|
Minimum log mass of halos to consider.
|
||||||
|
mult : float
|
||||||
|
Multiplicative search radius factor.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
path : str
|
||||||
|
|
||||||
|
References
|
||||||
|
----------
|
||||||
|
[1] Maxwell L Hutt, Harry Desmond, Julien Devriendt, Adrianne Slyz; The
|
||||||
|
effect of local Universe constraints on halo abundance and clustering;
|
||||||
|
Monthly Notices of the Royal Astronomical Society, Volume 516, Issue 3,
|
||||||
|
November 2022, Pages 3592–3601, https://doi.org/10.1093/mnras/stac2407
|
||||||
|
"""
|
||||||
|
if simname == "csiborg":
|
||||||
|
fdir = join(self.postdir, "match_max")
|
||||||
|
elif simname == "quijote":
|
||||||
|
fdir = join(self.quijote_dir, "match_max")
|
||||||
|
else:
|
||||||
|
ValueError(f"Unknown simulation name `{simname}`.")
|
||||||
|
|
||||||
|
try_create_directory(fdir)
|
||||||
|
|
||||||
|
nsim0 = str(nsim0).zfill(5)
|
||||||
|
nsimx = str(nsimx).zfill(5)
|
||||||
|
min_logmass = float('%.4g' % min_logmass)
|
||||||
|
fname = f"match_max_{nsim0}_{nsimx}_{min_logmass}_{str(mult)}.npz"
|
||||||
|
|
||||||
|
return join(fdir, fname)
|
||||||
|
|
||||||
def field(self, kind, MAS, grid, nsim, in_rsp, smooth_scale=None):
|
def field(self, kind, MAS, grid, nsim, in_rsp, smooth_scale=None):
|
||||||
r"""
|
r"""
|
||||||
Path to the files containing the calculated density fields in CSiBORG.
|
Path to the files containing the calculated density fields in CSiBORG.
|
||||||
|
|
|
@ -12,6 +12,7 @@
|
||||||
# with this program; if not, write to the Free Software Foundation, Inc.,
|
# with this program; if not, write to the Free Software Foundation, Inc.,
|
||||||
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||||
"""A script to match all IC pairs of a simulation."""
|
"""A script to match all IC pairs of a simulation."""
|
||||||
|
import warnings
|
||||||
from argparse import ArgumentParser
|
from argparse import ArgumentParser
|
||||||
from distutils.util import strtobool
|
from distutils.util import strtobool
|
||||||
from itertools import combinations
|
from itertools import combinations
|
||||||
|
@ -20,15 +21,8 @@ from random import Random
|
||||||
from mpi4py import MPI
|
from mpi4py import MPI
|
||||||
from taskmaster import work_delegation
|
from taskmaster import work_delegation
|
||||||
|
|
||||||
from match_singlematch import pair_match
|
import csiborgtools
|
||||||
|
from match_singlematch import pair_match, pair_match_max
|
||||||
try:
|
|
||||||
import csiborgtools
|
|
||||||
except ModuleNotFoundError:
|
|
||||||
import sys
|
|
||||||
|
|
||||||
sys.path.append("../")
|
|
||||||
import csiborgtools
|
|
||||||
|
|
||||||
|
|
||||||
def get_combs(simname):
|
def get_combs(simname):
|
||||||
|
@ -53,7 +47,7 @@ def get_combs(simname):
|
||||||
return combs
|
return combs
|
||||||
|
|
||||||
|
|
||||||
def main(comb, simname, min_logmass, sigma, verbose):
|
def main(comb, kind, simname, min_logmass, sigma, mult, verbose):
|
||||||
"""
|
"""
|
||||||
Match a pair of simulations.
|
Match a pair of simulations.
|
||||||
|
|
||||||
|
@ -61,12 +55,16 @@ def main(comb, simname, min_logmass, sigma, verbose):
|
||||||
----------
|
----------
|
||||||
comb : tuple
|
comb : tuple
|
||||||
Pair of simulation IC indices.
|
Pair of simulation IC indices.
|
||||||
|
kind : str
|
||||||
|
Kind of matching.
|
||||||
simname : str
|
simname : str
|
||||||
Simulation name.
|
Simulation name.
|
||||||
min_logmass : float
|
min_logmass : float
|
||||||
Minimum log halo mass.
|
Minimum log halo mass.
|
||||||
sigma : float
|
sigma : float
|
||||||
Smoothing scale in number of grid cells.
|
Smoothing scale in number of grid cells.
|
||||||
|
mult : float
|
||||||
|
Multiplicative factor for search radius.
|
||||||
verbose : bool
|
verbose : bool
|
||||||
Verbosity flag.
|
Verbosity flag.
|
||||||
|
|
||||||
|
@ -75,25 +73,46 @@ def main(comb, simname, min_logmass, sigma, verbose):
|
||||||
None
|
None
|
||||||
"""
|
"""
|
||||||
nsim0, nsimx = comb
|
nsim0, nsimx = comb
|
||||||
pair_match(nsim0, nsimx, simname, min_logmass, sigma, verbose)
|
if kind == "overlap":
|
||||||
|
pair_match(nsim0, nsimx, simname, min_logmass, sigma, verbose)
|
||||||
|
elif args.kind == "max":
|
||||||
|
pair_match_max(nsim0, nsimx, simname, min_logmass, mult, verbose)
|
||||||
|
else:
|
||||||
|
raise ValueError(f"Unknown matching kind: `{kind}`.")
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
parser = ArgumentParser()
|
parser = ArgumentParser()
|
||||||
|
parser.add_argument("--kind", type=str, required=True,
|
||||||
|
choices=["overlap", "max"], help="Kind of matching.")
|
||||||
parser.add_argument("--simname", type=str, required=True,
|
parser.add_argument("--simname", type=str, required=True,
|
||||||
help="Simulation name.", choices=["csiborg", "quijote"])
|
help="Simulation name.",
|
||||||
|
choices=["csiborg", "quijote"])
|
||||||
|
parser.add_argument("--nsim0", type=int, default=None,
|
||||||
|
help="Reference IC for Max's matching method.")
|
||||||
parser.add_argument("--min_logmass", type=float, required=True,
|
parser.add_argument("--min_logmass", type=float, required=True,
|
||||||
help="Minimum log halo mass.")
|
help="Minimum log halo mass.")
|
||||||
parser.add_argument("--sigma", type=float, default=0,
|
parser.add_argument("--sigma", type=float, default=0,
|
||||||
help="Smoothing scale in number of grid cells.")
|
help="Smoothing scale in number of grid cells.")
|
||||||
|
parser.add_argument("--mult", type=float, default=5,
|
||||||
|
help="Search radius multiplier for Max's method.")
|
||||||
parser.add_argument("--verbose", type=lambda x: bool(strtobool(x)),
|
parser.add_argument("--verbose", type=lambda x: bool(strtobool(x)),
|
||||||
default=False, help="Verbosity flag.")
|
default=False, help="Verbosity flag.")
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
|
|
||||||
combs = get_combs()
|
if args.kind == "overlap":
|
||||||
|
combs = get_combs(args.simname)
|
||||||
|
else:
|
||||||
|
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
|
||||||
|
combs = [(args.nsim0, nsimx) for nsimx in paths.get_ics(args.simname)
|
||||||
|
if nsimx != args.nsim0]
|
||||||
|
|
||||||
def _main(comb):
|
def _main(comb):
|
||||||
main(comb, args.simname, args.min_logmass, args.sigma, args.verbose)
|
with warnings.catch_warnings():
|
||||||
|
warnings.filterwarnings("ignore",
|
||||||
|
"invalid value encountered in cast",
|
||||||
|
RuntimeWarning)
|
||||||
|
main(comb, args.kind, args.simname, args.min_logmass, args.sigma,
|
||||||
|
args.mult, args.verbose)
|
||||||
|
|
||||||
work_delegation(_main, combs, MPI.COMM_WORLD)
|
work_delegation(_main, combs, MPI.COMM_WORLD)
|
||||||
|
|
||||||
|
|
|
@ -23,13 +23,75 @@ from distutils.util import strtobool
|
||||||
import numpy
|
import numpy
|
||||||
from scipy.ndimage import gaussian_filter
|
from scipy.ndimage import gaussian_filter
|
||||||
|
|
||||||
try:
|
import csiborgtools
|
||||||
import csiborgtools
|
|
||||||
except ModuleNotFoundError:
|
|
||||||
import sys
|
|
||||||
|
|
||||||
sys.path.append("../")
|
|
||||||
import csiborgtools
|
def pair_match_max(nsim0, nsimx, simname, min_logmass, mult, verbose):
|
||||||
|
"""
|
||||||
|
Match a pair of simulations using the method of [1].
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
nsim0 : int
|
||||||
|
The reference simulation IC index.
|
||||||
|
nsimx : int
|
||||||
|
The cross simulation IC index.
|
||||||
|
simname : str
|
||||||
|
Simulation name.
|
||||||
|
min_logmass : float
|
||||||
|
Minimum log halo mass.
|
||||||
|
mult : float
|
||||||
|
Multiplicative factor for search radius.
|
||||||
|
verbose : bool
|
||||||
|
Verbosity flag.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
None
|
||||||
|
|
||||||
|
References
|
||||||
|
----------
|
||||||
|
[1] Maxwell L Hutt, Harry Desmond, Julien Devriendt, Adrianne Slyz; The
|
||||||
|
effect of local Universe constraints on halo abundance and clustering;
|
||||||
|
Monthly Notices of the Royal Astronomical Society, Volume 516, Issue 3,
|
||||||
|
November 2022, Pages 3592–3601, https://doi.org/10.1093/mnras/stac2407
|
||||||
|
"""
|
||||||
|
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
|
||||||
|
|
||||||
|
if simname == "csiborg":
|
||||||
|
mass_kind = "fof_totpartmass"
|
||||||
|
maxdist = 155
|
||||||
|
periodic = False
|
||||||
|
bounds = {"dist": (0, maxdist), mass_kind: (10**min_logmass, None)}
|
||||||
|
cat0 = csiborgtools.read.CSiBORGHaloCatalogue(
|
||||||
|
nsim0, paths, bounds=bounds, load_fitted=True, load_initial=False)
|
||||||
|
catx = csiborgtools.read.CSiBORGHaloCatalogue(
|
||||||
|
nsimx, paths, bounds=bounds, load_fitted=True, load_initial=False)
|
||||||
|
elif simname == "quijote":
|
||||||
|
mass_kind = "group_mass"
|
||||||
|
maxdist = None
|
||||||
|
periodic = True
|
||||||
|
bounds = {mass_kind: (10**min_logmass, None)}
|
||||||
|
cat0 = csiborgtools.read.QuijoteHaloCatalogue(
|
||||||
|
nsim0, paths, 4, bounds=bounds, load_fitted=True,
|
||||||
|
load_initial=False)
|
||||||
|
catx = csiborgtools.read.QuijoteHaloCatalogue(
|
||||||
|
nsimx, paths, 4, bounds=bounds, load_fitted=True,
|
||||||
|
load_initial=False)
|
||||||
|
else:
|
||||||
|
raise ValueError(f"Unknown simulation `{simname}`.")
|
||||||
|
|
||||||
|
reader = csiborgtools.read.PairOverlap(cat0, catx, paths, min_logmass,
|
||||||
|
maxdist=maxdist)
|
||||||
|
out = csiborgtools.match.matching_max(
|
||||||
|
cat0, catx, mass_kind, mult=mult, periodic=periodic,
|
||||||
|
overlap=reader.overlap(from_smoothed=True),
|
||||||
|
match_indxs=reader["match_indxs"], verbose=verbose)
|
||||||
|
|
||||||
|
fout = paths.match_max(simname, nsim0, nsimx, min_logmass, mult)
|
||||||
|
if verbose:
|
||||||
|
print(f"{datetime.now()}: saving to ... `{fout}`.", flush=True)
|
||||||
|
numpy.savez(fout, **{p: out[p] for p in out.dtype.names})
|
||||||
|
|
||||||
|
|
||||||
def pair_match(nsim0, nsimx, simname, min_logmass, sigma, verbose):
|
def pair_match(nsim0, nsimx, simname, min_logmass, sigma, verbose):
|
||||||
|
@ -95,27 +157,17 @@ def pair_match(nsim0, nsimx, simname, min_logmass, sigma, verbose):
|
||||||
paths.initmatch(nsimx, simname, "particles"))["particles"]
|
paths.initmatch(nsimx, simname, "particles"))["particles"]
|
||||||
hid2mapx = {hid: i for i, hid in enumerate(halomapx[:, 0])}
|
hid2mapx = {hid: i for i, hid in enumerate(halomapx[:, 0])}
|
||||||
|
|
||||||
if verbose:
|
|
||||||
print(f"{datetime.now()}: calculating the background density fields.",
|
|
||||||
flush=True)
|
|
||||||
overlapper = csiborgtools.match.ParticleOverlap(**overlapper_kwargs)
|
overlapper = csiborgtools.match.ParticleOverlap(**overlapper_kwargs)
|
||||||
delta_bckg = overlapper.make_bckg_delta(parts0, halomap0, hid2map0, cat0,
|
delta_bckg = overlapper.make_bckg_delta(parts0, halomap0, hid2map0, cat0,
|
||||||
verbose=verbose)
|
verbose=verbose)
|
||||||
delta_bckg = overlapper.make_bckg_delta(partsx, halomapx, hid2mapx, catx,
|
delta_bckg = overlapper.make_bckg_delta(partsx, halomapx, hid2mapx, catx,
|
||||||
delta=delta_bckg, verbose=verbose)
|
delta=delta_bckg, verbose=verbose)
|
||||||
if verbose:
|
|
||||||
print()
|
|
||||||
|
|
||||||
|
|
||||||
if verbose:
|
|
||||||
print(f"{datetime.now()}: NGP crossing the simulations.", flush=True)
|
|
||||||
matcher = csiborgtools.match.RealisationsMatcher(
|
matcher = csiborgtools.match.RealisationsMatcher(
|
||||||
mass_kind=mass_kind, **overlapper_kwargs)
|
mass_kind=mass_kind, **overlapper_kwargs)
|
||||||
match_indxs, ngp_overlap = matcher.cross(cat0, catx, parts0, partsx,
|
match_indxs, ngp_overlap = matcher.cross(cat0, catx, parts0, partsx,
|
||||||
halomap0, halomapx, delta_bckg,
|
halomap0, halomapx, delta_bckg,
|
||||||
verbose=verbose)
|
verbose=verbose)
|
||||||
if verbose:
|
|
||||||
print()
|
|
||||||
|
|
||||||
# We want to store the halo IDs of the matches, not their array positions
|
# We want to store the halo IDs of the matches, not their array positions
|
||||||
# in the catalogues.
|
# in the catalogues.
|
||||||
|
@ -151,6 +203,8 @@ def pair_match(nsim0, nsimx, simname, min_logmass, sigma, verbose):
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
parser = ArgumentParser()
|
parser = ArgumentParser()
|
||||||
|
parser.add_argument("--kind", type=str, required=True,
|
||||||
|
choices=["overlap", "max"], help="Kind of matching.")
|
||||||
parser.add_argument("--nsim0", type=int, required=True,
|
parser.add_argument("--nsim0", type=int, required=True,
|
||||||
help="Reference simulation IC index.")
|
help="Reference simulation IC index.")
|
||||||
parser.add_argument("--nsimx", type=int, required=True,
|
parser.add_argument("--nsimx", type=int, required=True,
|
||||||
|
@ -159,11 +213,19 @@ if __name__ == "__main__":
|
||||||
help="Simulation name.")
|
help="Simulation name.")
|
||||||
parser.add_argument("--min_logmass", type=float, required=True,
|
parser.add_argument("--min_logmass", type=float, required=True,
|
||||||
help="Minimum log halo mass.")
|
help="Minimum log halo mass.")
|
||||||
|
parser.add_argument("--mult", type=float, default=5,
|
||||||
|
help="Search radius multiplier for Max's method.")
|
||||||
parser.add_argument("--sigma", type=float, default=0,
|
parser.add_argument("--sigma", type=float, default=0,
|
||||||
help="Smoothing scale in number of grid cells.")
|
help="Smoothing scale in number of grid cells.")
|
||||||
parser.add_argument("--verbose", type=lambda x: bool(strtobool(x)),
|
parser.add_argument("--verbose", type=lambda x: bool(strtobool(x)),
|
||||||
default=False, help="Verbosity flag.")
|
default=False, help="Verbosity flag.")
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
|
|
||||||
pair_match(args.nsim0, args.nsimx, args.simname, args.min_logmass,
|
if args.kind == "overlap":
|
||||||
args.sigma, args.verbose)
|
pair_match(args.nsim0, args.nsimx, args.simname, args.min_logmass,
|
||||||
|
args.sigma, args.verbose)
|
||||||
|
elif args.kind == "max":
|
||||||
|
pair_match_max(args.nsim0, args.nsimx, args.simname, args.min_logmass,
|
||||||
|
args.mult, args.verbose)
|
||||||
|
else:
|
||||||
|
raise ValueError(f"Unknown matching kind: `{args.kind}`.")
|
||||||
|
|
|
@ -14,17 +14,15 @@
|
||||||
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||||
|
|
||||||
from argparse import ArgumentParser
|
from argparse import ArgumentParser
|
||||||
from gc import collect
|
|
||||||
from os.path import join
|
from os.path import join
|
||||||
|
|
||||||
import matplotlib as mpl
|
import matplotlib as mpl
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
from mpl_toolkits.axes_grid1.inset_locator import inset_axes
|
|
||||||
import numpy
|
import numpy
|
||||||
import scienceplots # noqa
|
import scienceplots # noqa
|
||||||
from cache_to_disk import cache_to_disk, delete_disk_caches_for_function
|
from cache_to_disk import cache_to_disk, delete_disk_caches_for_function
|
||||||
from scipy.stats import kendalltau
|
from scipy.stats import kendalltau
|
||||||
from tqdm import trange, tqdm
|
from tqdm import tqdm
|
||||||
|
|
||||||
import plt_utils
|
import plt_utils
|
||||||
|
|
||||||
|
@ -36,11 +34,7 @@ except ModuleNotFoundError:
|
||||||
import csiborgtools
|
import csiborgtools
|
||||||
|
|
||||||
|
|
||||||
###############################################################################
|
def open_cat(nsim, simname):
|
||||||
# IC overlap plotting #
|
|
||||||
###############################################################################
|
|
||||||
|
|
||||||
def open_cat(nsim: int, simname: str):
|
|
||||||
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
|
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
|
||||||
|
|
||||||
if simname == "csiborg":
|
if simname == "csiborg":
|
||||||
|
@ -56,648 +50,17 @@ def open_cat(nsim: int, simname: str):
|
||||||
|
|
||||||
return cat
|
return cat
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def open_cats(nsims, simname):
|
||||||
|
catxs = [None] * len(nsims)
|
||||||
|
|
||||||
@cache_to_disk(7)
|
for i, nsim in enumerate(tqdm(nsims, desc="Opening catalogues")):
|
||||||
def get_overlap(simname, nsim0):
|
catxs[i] = open_cat(nsim, simname)
|
||||||
"""
|
|
||||||
Calculate the summed overlap and probability of no match for a single
|
|
||||||
reference simulation.
|
|
||||||
|
|
||||||
Parameters
|
return catxs
|
||||||
----------
|
|
||||||
simname : str
|
|
||||||
Simulation name.
|
|
||||||
nsim0 : int
|
|
||||||
Simulation index.
|
|
||||||
|
|
||||||
Returns
|
|
||||||
-------
|
|
||||||
mass : 1-dimensional array
|
|
||||||
Mass of halos in the reference simulation.
|
|
||||||
hindxs : 1-dimensional array
|
|
||||||
Halo indices in the reference simulation.
|
|
||||||
max_overlap : 2-dimensional array
|
|
||||||
Maximum overlap for each halo in the reference simulation.
|
|
||||||
summed_overlap : 2-dimensional array
|
|
||||||
Summed overlap for each halo in the reference simulation.
|
|
||||||
prob_nomatch : 2-dimensional array
|
|
||||||
Probability of no match for each halo in the reference simulation.
|
|
||||||
"""
|
|
||||||
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
|
|
||||||
nsimxs = csiborgtools.read.get_cross_sims(simname, nsim0, paths,
|
|
||||||
smoothed=True)
|
|
||||||
cat0 = open_cat(nsim0)
|
|
||||||
|
|
||||||
catxs = []
|
|
||||||
print("Opening catalogues...", flush=True)
|
|
||||||
for nsimx in tqdm(nsimxs):
|
|
||||||
catxs.append(open_cat(nsimx))
|
|
||||||
|
|
||||||
reader = csiborgtools.read.NPairsOverlap(cat0, catxs, paths)
|
|
||||||
mass = reader.cat0("totpartmass")
|
|
||||||
|
|
||||||
hindxs = reader.cat0("index")
|
|
||||||
summed_overlap = reader.summed_overlap(True)
|
|
||||||
max_overlap = reader.max_overlap(True)
|
|
||||||
prob_nomatch = reader.prob_nomatch(True)
|
|
||||||
return mass, hindxs, max_overlap, summed_overlap, prob_nomatch
|
|
||||||
|
|
||||||
|
|
||||||
@cache_to_disk(7)
|
|
||||||
def get_max_key(simname, nsim0, key):
|
|
||||||
"""
|
|
||||||
Get the value of a maximum overlap halo's property.
|
|
||||||
|
|
||||||
Parameters
|
|
||||||
----------
|
|
||||||
simname : str
|
|
||||||
Simulation name.
|
|
||||||
nsim0 : int
|
|
||||||
Reference simulation index.
|
|
||||||
key : str
|
|
||||||
Property to get.
|
|
||||||
|
|
||||||
Returns
|
|
||||||
-------
|
|
||||||
mass0 : 1-dimensional array
|
|
||||||
Mass of the reference haloes.
|
|
||||||
key_val : 1-dimensional array
|
|
||||||
Value of the property of the reference haloes.
|
|
||||||
max_overlap : 2-dimensional array
|
|
||||||
Maximum overlap of the reference haloes.
|
|
||||||
stat : 2-dimensional array
|
|
||||||
Value of the property of the maximum overlap halo.
|
|
||||||
"""
|
|
||||||
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
|
|
||||||
nsimxs = csiborgtools.read.get_cross_sims(simname, nsim0, paths,
|
|
||||||
smoothed=True)
|
|
||||||
nsimxs = nsimxs
|
|
||||||
cat0 = open_cat(nsim0)
|
|
||||||
|
|
||||||
catxs = []
|
|
||||||
print("Opening catalogues...", flush=True)
|
|
||||||
for nsimx in tqdm(nsimxs):
|
|
||||||
catxs.append(open_cat(nsimx))
|
|
||||||
|
|
||||||
reader = csiborgtools.read.NPairsOverlap(cat0, catxs, paths)
|
|
||||||
|
|
||||||
mass0 = reader.cat0("totpartmass")
|
|
||||||
key_val = reader.cat0(key)
|
|
||||||
max_overlap = reader.max_overlap(True)
|
|
||||||
stat = reader.max_overlap_key(key, True)
|
|
||||||
return mass0, key_val, max_overlap, stat
|
|
||||||
|
|
||||||
|
|
||||||
def plot_mass_vs_pairoverlap(nsim0, nsimx):
|
|
||||||
"""
|
|
||||||
Plot the pair overlap of a reference simulation with a single cross
|
|
||||||
simulation as a function of the reference halo mass.
|
|
||||||
|
|
||||||
Parameters
|
|
||||||
----------
|
|
||||||
nsim0 : int
|
|
||||||
Reference simulation index.
|
|
||||||
nsimx : int
|
|
||||||
Cross simulation index.
|
|
||||||
"""
|
|
||||||
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
|
|
||||||
cat0 = open_cat(nsim0)
|
|
||||||
catx = open_cat(nsimx)
|
|
||||||
reader = csiborgtools.read.PairOverlap(cat0, catx, paths)
|
|
||||||
|
|
||||||
x = reader.copy_per_match("totpartmass")
|
|
||||||
y = reader.overlap(True)
|
|
||||||
|
|
||||||
x = numpy.log10(numpy.concatenate(x))
|
|
||||||
y = numpy.concatenate(y)
|
|
||||||
|
|
||||||
with plt.style.context(plt_utils.mplstyle):
|
|
||||||
plt.figure()
|
|
||||||
plt.hexbin(x, y, mincnt=1, bins="log",
|
|
||||||
gridsize=50)
|
|
||||||
plt.colorbar(label="Counts in bins")
|
|
||||||
plt.xlabel(r"$\log M_{\rm tot} ~ [M_\odot / h]$")
|
|
||||||
plt.ylabel("Pair overlap")
|
|
||||||
plt.ylim(0., 1.)
|
|
||||||
|
|
||||||
plt.tight_layout()
|
|
||||||
for ext in ["png"]:
|
|
||||||
fout = join(plt_utils.fout, f"mass_vs_pair_overlap{nsim0}.{ext}")
|
|
||||||
print(f"Saving to `{fout}`.")
|
|
||||||
plt.savefig(fout, dpi=plt_utils.dpi, bbox_inches="tight")
|
|
||||||
plt.close()
|
|
||||||
|
|
||||||
|
|
||||||
def plot_mass_vs_maxpairoverlap(nsim0, nsimx):
|
|
||||||
"""
|
|
||||||
Plot the maximum pair overlap of a reference simulation haloes with a
|
|
||||||
single cross simulation.
|
|
||||||
|
|
||||||
Parameters
|
|
||||||
----------
|
|
||||||
nsim0 : int
|
|
||||||
Reference simulation index.
|
|
||||||
nsimx : int
|
|
||||||
Cross simulation index.
|
|
||||||
"""
|
|
||||||
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
|
|
||||||
cat0 = open_cat(nsim0)
|
|
||||||
catx = open_cat(nsimx)
|
|
||||||
reader = csiborgtools.read.PairOverlap(cat0, catx, paths)
|
|
||||||
|
|
||||||
x = numpy.log10(cat0["totpartmass"])
|
|
||||||
y = reader.overlap(True)
|
|
||||||
|
|
||||||
def get_max(y_):
|
|
||||||
if len(y_) == 0:
|
|
||||||
return numpy.nan
|
|
||||||
return numpy.max(y_)
|
|
||||||
|
|
||||||
y = numpy.array([get_max(y_) for y_ in y])
|
|
||||||
|
|
||||||
with plt.style.context(plt_utils.mplstyle):
|
|
||||||
plt.figure()
|
|
||||||
plt.hexbin(x, y, mincnt=1, bins="log",
|
|
||||||
gridsize=50)
|
|
||||||
plt.colorbar(label="Counts in bins")
|
|
||||||
plt.xlabel(r"$\log M_{\rm tot} ~ [M_\odot / h]$")
|
|
||||||
plt.ylabel("Maximum pair overlap")
|
|
||||||
plt.ylim(0., 1.)
|
|
||||||
|
|
||||||
plt.tight_layout()
|
|
||||||
for ext in ["png"]:
|
|
||||||
fout = join(plt_utils.fout, f"mass_vs_maxpairoverlap{nsim0}.{ext}")
|
|
||||||
print(f"Saving to `{fout}`.")
|
|
||||||
plt.savefig(fout, dpi=plt_utils.dpi, bbox_inches="tight")
|
|
||||||
plt.close()
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def plot_mass_vsmedmaxoverlap(nsim0):
|
|
||||||
"""
|
|
||||||
Plot the mean maximum overlap of a reference simulation haloes with all the
|
|
||||||
cross simulations.
|
|
||||||
|
|
||||||
Parameters
|
|
||||||
----------
|
|
||||||
nsim0 : int
|
|
||||||
Reference simulation index.
|
|
||||||
"""
|
|
||||||
x, __, max_overlap, __, __ = get_overlap("csiborg", nsim0)
|
|
||||||
|
|
||||||
for i in trange(max_overlap.shape[0]):
|
|
||||||
if numpy.sum(numpy.isnan(max_overlap[i, :])) > 0:
|
|
||||||
max_overlap[i, :] = numpy.nan
|
|
||||||
|
|
||||||
x = numpy.log10(x)
|
|
||||||
|
|
||||||
with plt.style.context(plt_utils.mplstyle):
|
|
||||||
fig, axs = plt.subplots(ncols=3, figsize=(3.5 * 2, 2.625))
|
|
||||||
im1 = axs[0].hexbin(x, numpy.nanmean(max_overlap, axis=1), gridsize=30,
|
|
||||||
mincnt=1, bins="log")
|
|
||||||
|
|
||||||
im2 = axs[1].hexbin(x, numpy.nanstd(max_overlap, axis=1), gridsize=30,
|
|
||||||
mincnt=1, bins="log")
|
|
||||||
im3 = axs[2].hexbin(numpy.nanmean(max_overlap, axis=1),
|
|
||||||
numpy.nanstd(max_overlap, axis=1), gridsize=30,
|
|
||||||
C=x, reduce_C_function=numpy.nanmean)
|
|
||||||
|
|
||||||
axs[0].set_xlabel(r"$\log M_{\rm tot} ~ [M_\odot / h]$")
|
|
||||||
axs[0].set_ylabel(r"Mean max. pair overlap")
|
|
||||||
axs[1].set_xlabel(r"$\log M_{\rm tot} ~ [M_\odot / h]$")
|
|
||||||
axs[1].set_ylabel(r"Uncertainty of max. pair overlap")
|
|
||||||
axs[2].set_xlabel(r"Mean max. pair overlap")
|
|
||||||
axs[2].set_ylabel(r"Uncertainty of max. pair overlap")
|
|
||||||
|
|
||||||
label = ["Bin counts", "Bin counts", r"$\log M_{\rm tot} / M_\odot$"]
|
|
||||||
ims = [im1, im2, im3]
|
|
||||||
for i in range(3):
|
|
||||||
axins = inset_axes(axs[i], width="100%", height="5%",
|
|
||||||
loc='upper center', borderpad=-0.75)
|
|
||||||
fig.colorbar(ims[i], cax=axins, orientation="horizontal",
|
|
||||||
label=label[i])
|
|
||||||
axins.xaxis.tick_top()
|
|
||||||
axins.xaxis.set_tick_params(labeltop=True)
|
|
||||||
axins.xaxis.set_label_position("top")
|
|
||||||
|
|
||||||
fig.tight_layout()
|
|
||||||
for ext in ["png"]:
|
|
||||||
fout = join(plt_utils.fout, f"maxpairoverlap_{nsim0}.{ext}")
|
|
||||||
print(f"Saving to `{fout}`.")
|
|
||||||
fig.savefig(fout, dpi=plt_utils.dpi, bbox_inches="tight")
|
|
||||||
plt.close()
|
|
||||||
|
|
||||||
|
|
||||||
def plot_summed_overlap_vs_mass(nsim0):
|
|
||||||
"""
|
|
||||||
Plot the summed overlap of probability of no matching for a single
|
|
||||||
reference simulations as a function of the reference halo mass, along with
|
|
||||||
their comparison.
|
|
||||||
|
|
||||||
Parameters
|
|
||||||
----------
|
|
||||||
nsim0 : int
|
|
||||||
Simulation index.
|
|
||||||
|
|
||||||
Returns
|
|
||||||
-------
|
|
||||||
None
|
|
||||||
"""
|
|
||||||
x, __, __, summed_overlap, prob_nomatch = get_overlap("csiborg", nsim0)
|
|
||||||
del __
|
|
||||||
collect()
|
|
||||||
|
|
||||||
for i in trange(summed_overlap.shape[0]):
|
|
||||||
if numpy.sum(numpy.isnan(summed_overlap[i, :])) > 0:
|
|
||||||
summed_overlap[i, :] = numpy.nan
|
|
||||||
|
|
||||||
x = numpy.log10(x)
|
|
||||||
|
|
||||||
mean_overlap = numpy.nanmean(summed_overlap, axis=1)
|
|
||||||
std_overlap = numpy.nanstd(summed_overlap, axis=1)
|
|
||||||
mean_prob_nomatch = numpy.nanmean(prob_nomatch, axis=1)
|
|
||||||
|
|
||||||
mask = mean_overlap > 0
|
|
||||||
x = x[mask]
|
|
||||||
mean_overlap = mean_overlap[mask]
|
|
||||||
std_overlap = std_overlap[mask]
|
|
||||||
mean_prob_nomatch = mean_prob_nomatch[mask]
|
|
||||||
|
|
||||||
with plt.style.context(plt_utils.mplstyle):
|
|
||||||
fig, axs = plt.subplots(ncols=3, figsize=(3.5 * 2, 2.625))
|
|
||||||
im1 = axs[0].hexbin(x, mean_overlap, mincnt=1, bins="log",
|
|
||||||
gridsize=30)
|
|
||||||
im2 = axs[1].hexbin(x, std_overlap, mincnt=1, bins="log",
|
|
||||||
gridsize=30)
|
|
||||||
im3 = axs[2].scatter(1 - mean_overlap, mean_prob_nomatch, c=x, s=2,
|
|
||||||
rasterized=True)
|
|
||||||
t = numpy.linspace(0.3, 1, 100)
|
|
||||||
axs[2].plot(t, t, color="red", linestyle="--")
|
|
||||||
axs[0].set_ylim(0.)
|
|
||||||
axs[1].set_ylim(0.)
|
|
||||||
axs[0].set_xlabel(r"$\log M_{\rm tot} ~ [M_\odot / h]$")
|
|
||||||
axs[0].set_ylabel("Mean summed overlap")
|
|
||||||
axs[1].set_xlabel(r"$\log M_{\rm tot} ~ [M_\odot / h]$")
|
|
||||||
axs[1].set_ylabel("Uncertainty of summed overlap")
|
|
||||||
axs[2].set_xlabel(r"$1 - $ mean summed overlap")
|
|
||||||
axs[2].set_ylabel("Mean prob. of no match")
|
|
||||||
|
|
||||||
label = ["Bin counts", "Bin counts",
|
|
||||||
r"$\log M_{\rm tot} ~ [M_\odot / h]$"]
|
|
||||||
ims = [im1, im2, im3]
|
|
||||||
for i in range(3):
|
|
||||||
axins = inset_axes(axs[i], width="100%", height="5%",
|
|
||||||
loc='upper center', borderpad=-0.75)
|
|
||||||
fig.colorbar(ims[i], cax=axins, orientation="horizontal",
|
|
||||||
label=label[i])
|
|
||||||
axins.xaxis.tick_top()
|
|
||||||
axins.xaxis.set_tick_params(labeltop=True)
|
|
||||||
axins.xaxis.set_label_position("top")
|
|
||||||
|
|
||||||
fig.tight_layout()
|
|
||||||
for ext in ["png"]:
|
|
||||||
fout = join(plt_utils.fout, f"overlap_stat_{nsim0}.{ext}")
|
|
||||||
print(f"Saving to `{fout}`.")
|
|
||||||
fig.savefig(fout, dpi=plt_utils.dpi, bbox_inches="tight")
|
|
||||||
plt.close()
|
|
||||||
|
|
||||||
|
|
||||||
def plot_mass_vs_separation(nsim0, nsimx, plot_std=False, min_overlap=0.0):
|
|
||||||
"""
|
|
||||||
Plot the mass of a reference halo against the weighted separation of
|
|
||||||
its counterparts.
|
|
||||||
|
|
||||||
Parameters
|
|
||||||
----------
|
|
||||||
nsim0 : int
|
|
||||||
Reference simulation index.
|
|
||||||
nsimx : int
|
|
||||||
Cross simulation index.
|
|
||||||
plot_std : bool, optional
|
|
||||||
Whether to plot thestd instead of mean.
|
|
||||||
min_overlap : float, optional
|
|
||||||
Minimum overlap to consider.
|
|
||||||
|
|
||||||
Returns
|
|
||||||
-------
|
|
||||||
None
|
|
||||||
"""
|
|
||||||
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
|
|
||||||
cat0 = open_cat(nsim0)
|
|
||||||
catx = open_cat(nsimx)
|
|
||||||
|
|
||||||
reader = csiborgtools.read.PairOverlap(cat0, catx, paths,
|
|
||||||
maxdist=155)
|
|
||||||
mass = numpy.log10(reader.cat0("totpartmass"))
|
|
||||||
dist = reader.dist(in_initial=False, norm_kind="r200c")
|
|
||||||
overlap = reader.overlap(True)
|
|
||||||
dist = csiborgtools.read.weighted_stats(dist, overlap,
|
|
||||||
min_weight=min_overlap)
|
|
||||||
|
|
||||||
mask = numpy.isfinite(dist[:, 0])
|
|
||||||
mass = mass[mask]
|
|
||||||
dist = dist[mask, :]
|
|
||||||
dist = numpy.log10(dist)
|
|
||||||
|
|
||||||
if not plot_std:
|
|
||||||
p = numpy.polyfit(mass, dist[:, 0], 1)
|
|
||||||
else:
|
|
||||||
p = numpy.polyfit(mass, dist[:, 1], 1)
|
|
||||||
|
|
||||||
xrange = numpy.linspace(numpy.min(mass), numpy.max(mass), 1000)
|
|
||||||
txt = r"$m = {}$, $c = {}$".format(*plt_utils.latex_float(*p, n=3))
|
|
||||||
|
|
||||||
with plt.style.context(plt_utils.mplstyle):
|
|
||||||
fig, ax = plt.subplots()
|
|
||||||
ax.set_title(txt, fontsize="small")
|
|
||||||
|
|
||||||
if not plot_std:
|
|
||||||
cx = ax.hexbin(mass, dist[:, 0], mincnt=1, bins="log", gridsize=50)
|
|
||||||
ax.set_ylabel(r"$\log \langle \Delta R / R_{\rm 200c}\rangle$")
|
|
||||||
else:
|
|
||||||
cx = ax.hexbin(mass, dist[:, 1], mincnt=1, bins="log", gridsize=50)
|
|
||||||
ax.set_ylabel(
|
|
||||||
r"$\delta \log \langle \Delta R / R_{\rm 200c}\rangle$")
|
|
||||||
|
|
||||||
ax.plot(xrange, numpy.polyval(p, xrange), color="red",
|
|
||||||
linestyle="--")
|
|
||||||
fig.colorbar(cx, label="Bin counts")
|
|
||||||
ax.set_xlabel(r"$\log M_{\rm tot} ~ [M_\odot / h]$")
|
|
||||||
ax.set_ylabel(r"$\log \langle \Delta R / R_{\rm 200c}\rangle$")
|
|
||||||
|
|
||||||
fig.tight_layout()
|
|
||||||
for ext in ["png"]:
|
|
||||||
fout = join(plt_utils.fout,
|
|
||||||
f"mass_vs_sep_{nsim0}_{nsimx}_{min_overlap}.{ext}")
|
|
||||||
if plot_std:
|
|
||||||
fout = fout.replace(f".{ext}", f"_std.{ext}")
|
|
||||||
print(f"Saving to `{fout}`.")
|
|
||||||
fig.savefig(fout, dpi=plt_utils.dpi, bbox_inches="tight")
|
|
||||||
plt.close()
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def plot_maxoverlap_mass(nsim0):
|
|
||||||
"""
|
|
||||||
Plot the mass of the reference haloes against the mass of the maximum
|
|
||||||
overlap haloes.
|
|
||||||
|
|
||||||
Parameters
|
|
||||||
----------
|
|
||||||
nsim0 : int
|
|
||||||
Reference simulation index.
|
|
||||||
"""
|
|
||||||
mass0, __, __, stat = get_max_key("csiborg", nsim0, "totpartmass")
|
|
||||||
|
|
||||||
mu = numpy.mean(stat, axis=1)
|
|
||||||
std = numpy.std(numpy.log10(stat), axis=1)
|
|
||||||
mu = numpy.log10(mu)
|
|
||||||
|
|
||||||
mass0 = numpy.log10(mass0)
|
|
||||||
with plt.style.context(plt_utils.mplstyle):
|
|
||||||
fig, axs = plt.subplots(ncols=2, figsize=(3.5 * 1.75, 2.625))
|
|
||||||
|
|
||||||
im0 = axs[0].hexbin(mass0, mu, mincnt=1, bins="log", gridsize=50)
|
|
||||||
im1 = axs[1].hexbin(mass0, std, mincnt=1, bins="log", gridsize=50)
|
|
||||||
|
|
||||||
m = numpy.isfinite(mass0) & numpy.isfinite(mu)
|
|
||||||
print("True to expectation corr: ", kendalltau(mass0[m], mu[m]))
|
|
||||||
|
|
||||||
t = numpy.linspace(*numpy.percentile(mass0, [0, 100]), 1000)
|
|
||||||
axs[0].plot(t, t, color="red", linestyle="--")
|
|
||||||
axs[0].plot(t, t + 0.2, color="red", linestyle="--", alpha=0.5)
|
|
||||||
axs[0].plot(t, t - 0.2, color="red", linestyle="--", alpha=0.5)
|
|
||||||
|
|
||||||
axs[0].set_xlabel(r"$\log M_{\rm tot} ~ [M_\odot / h]$")
|
|
||||||
axs[1].set_xlabel(r"$\log M_{\rm tot} ~ [M_\odot / h]$")
|
|
||||||
axs[0].set_ylabel(
|
|
||||||
r"Max. overlap mean of $\log M_{\rm tot} ~ [M_\odot / h]$")
|
|
||||||
axs[1].set_ylabel(
|
|
||||||
r"Max. overlap std. of $\log M_{\rm tot} ~ [M_\odot / h]$")
|
|
||||||
|
|
||||||
ims = [im0, im1]
|
|
||||||
for i in range(2):
|
|
||||||
axins = inset_axes(axs[i], width="100%", height="5%",
|
|
||||||
loc='upper center', borderpad=-0.75)
|
|
||||||
fig.colorbar(ims[i], cax=axins, orientation="horizontal",
|
|
||||||
label="Bin counts")
|
|
||||||
axins.xaxis.tick_top()
|
|
||||||
axins.xaxis.set_tick_params(labeltop=True)
|
|
||||||
axins.xaxis.set_label_position("top")
|
|
||||||
|
|
||||||
fig.tight_layout()
|
|
||||||
for ext in ["png"]:
|
|
||||||
fout = join(plt_utils.fout,
|
|
||||||
f"max_totpartmass_{nsim0}.{ext}")
|
|
||||||
print(f"Saving to `{fout}`.")
|
|
||||||
fig.savefig(fout, dpi=plt_utils.dpi, bbox_inches="tight")
|
|
||||||
plt.close()
|
|
||||||
|
|
||||||
|
|
||||||
def plot_maxoverlapstat(nsim0, key):
|
|
||||||
"""
|
|
||||||
Plot the mass of the reference haloes against the value of the maximum
|
|
||||||
overlap statistic.
|
|
||||||
|
|
||||||
Parameters
|
|
||||||
----------
|
|
||||||
nsim0 : int
|
|
||||||
Reference simulation index.
|
|
||||||
key : str
|
|
||||||
Property to get.
|
|
||||||
"""
|
|
||||||
assert key != "totpartmass"
|
|
||||||
mass0, key_val, __, stat = get_max_key("csiborg", nsim0, key)
|
|
||||||
|
|
||||||
xlabels = {"lambda200c": r"\log \lambda_{\rm 200c}"}
|
|
||||||
key_label = xlabels.get(key, key)
|
|
||||||
|
|
||||||
mass0 = numpy.log10(mass0)
|
|
||||||
key_val = numpy.log10(key_val)
|
|
||||||
|
|
||||||
mu = numpy.mean(stat, axis=1)
|
|
||||||
std = numpy.std(numpy.log10(stat), axis=1)
|
|
||||||
mu = numpy.log10(mu)
|
|
||||||
|
|
||||||
with plt.style.context(plt_utils.mplstyle):
|
|
||||||
fig, axs = plt.subplots(ncols=3, figsize=(3.5 * 2, 2.625))
|
|
||||||
|
|
||||||
im0 = axs[0].hexbin(mass0, mu, mincnt=1, bins="log", gridsize=30)
|
|
||||||
im1 = axs[1].hexbin(mass0, std, mincnt=1, bins="log", gridsize=30)
|
|
||||||
im2 = axs[2].hexbin(key_val, mu, mincnt=1, bins="log", gridsize=30)
|
|
||||||
m = numpy.isfinite(key_val) & numpy.isfinite(mu)
|
|
||||||
print("True to expectation corr: ", kendalltau(key_val[m], mu[m]))
|
|
||||||
|
|
||||||
axs[0].set_xlabel(r"$\log M_{\rm tot} ~ [M_\odot / h]$")
|
|
||||||
axs[0].set_ylabel(r"Max. overlap mean of ${}$".format(key_label))
|
|
||||||
axs[1].set_xlabel(r"$\log M_{\rm tot} ~ [M_\odot / h]$")
|
|
||||||
axs[1].set_ylabel(r"Max. overlap std. of ${}$".format(key_label))
|
|
||||||
axs[2].set_xlabel(r"${}$".format(key_label))
|
|
||||||
axs[2].set_ylabel(r"Max. overlap mean of ${}$".format(key_label))
|
|
||||||
|
|
||||||
ims = [im0, im1, im2]
|
|
||||||
for i in range(3):
|
|
||||||
axins = inset_axes(axs[i], width="100%", height="5%",
|
|
||||||
loc='upper center', borderpad=-0.75)
|
|
||||||
fig.colorbar(ims[i], cax=axins, orientation="horizontal",
|
|
||||||
label="Bin counts")
|
|
||||||
axins.xaxis.tick_top()
|
|
||||||
axins.xaxis.set_tick_params(labeltop=True)
|
|
||||||
axins.xaxis.set_label_position("top")
|
|
||||||
|
|
||||||
fig.tight_layout()
|
|
||||||
for ext in ["png"]:
|
|
||||||
fout = join(plt_utils.fout,
|
|
||||||
f"max_{key}_{nsim0}.{ext}")
|
|
||||||
print(f"Saving to `{fout}`.")
|
|
||||||
fig.savefig(fout, dpi=plt_utils.dpi, bbox_inches="tight")
|
|
||||||
plt.close()
|
|
||||||
|
|
||||||
|
|
||||||
@cache_to_disk(7)
|
|
||||||
def get_expected_mass(simname, nsim0, min_overlap):
|
|
||||||
"""
|
|
||||||
Get the expected mass of a reference halo given its overlap with halos
|
|
||||||
from other simulations.
|
|
||||||
|
|
||||||
Parameters
|
|
||||||
----------
|
|
||||||
simname : str
|
|
||||||
Simulation name.
|
|
||||||
nsim0 : int
|
|
||||||
Reference simulation index.
|
|
||||||
min_overlap : float
|
|
||||||
Minimum overlap to consider between a pair of haloes.
|
|
||||||
|
|
||||||
Returns
|
|
||||||
-------
|
|
||||||
mass : 1-dimensional array
|
|
||||||
Mass of the reference haloes.
|
|
||||||
mu : 1-dimensional array
|
|
||||||
Expected mass of the matched haloes.
|
|
||||||
std : 1-dimensional array
|
|
||||||
Standard deviation of the expected mass of the matched haloes.
|
|
||||||
prob_nomatch : 2-dimensional array
|
|
||||||
Probability of not matching the reference halo.
|
|
||||||
"""
|
|
||||||
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
|
|
||||||
nsimxs = csiborgtools.read.get_cross_sims(simname, nsim0, paths,
|
|
||||||
smoothed=True)
|
|
||||||
nsimxs = nsimxs
|
|
||||||
cat0 = open_cat(nsim0)
|
|
||||||
|
|
||||||
catxs = []
|
|
||||||
print("Opening catalogues...", flush=True)
|
|
||||||
for nsimx in tqdm(nsimxs):
|
|
||||||
catxs.append(open_cat(nsimx))
|
|
||||||
|
|
||||||
reader = csiborgtools.read.NPairsOverlap(cat0, catxs, paths)
|
|
||||||
mass = reader.cat0("totpartmass")
|
|
||||||
|
|
||||||
mu, std = reader.counterpart_mass(True, overlap_threshold=min_overlap,
|
|
||||||
in_log=False, return_full=False)
|
|
||||||
prob_nomatch = reader.prob_nomatch(True)
|
|
||||||
return mass, mu, std, prob_nomatch
|
|
||||||
|
|
||||||
|
|
||||||
def plot_mass_vs_expected_mass(nsim0, min_overlap=0, max_prob_nomatch=1):
|
|
||||||
"""
|
|
||||||
Plot the mass of a reference halo against the expected mass of its
|
|
||||||
counterparts.
|
|
||||||
|
|
||||||
Parameters
|
|
||||||
----------
|
|
||||||
nsim0 : int
|
|
||||||
Reference simulation index.
|
|
||||||
min_overlap : float, optional
|
|
||||||
Minimum overlap between a pair of haloes to consider.
|
|
||||||
max_prob_nomatch : float, optional
|
|
||||||
Maximum probability of no match to consider.
|
|
||||||
"""
|
|
||||||
mass, mu, std, prob_nomatch = get_expected_mass("csiborg", nsim0,
|
|
||||||
min_overlap)
|
|
||||||
|
|
||||||
std = std / mu / numpy.log(10)
|
|
||||||
mass = numpy.log10(mass)
|
|
||||||
mu = numpy.log10(mu)
|
|
||||||
prob_nomatch = numpy.nanmedian(prob_nomatch, axis=1)
|
|
||||||
|
|
||||||
mask = numpy.isfinite(mass) & numpy.isfinite(mu)
|
|
||||||
mask &= (prob_nomatch < max_prob_nomatch)
|
|
||||||
|
|
||||||
with plt.style.context(plt_utils.mplstyle):
|
|
||||||
fig, axs = plt.subplots(ncols=3, figsize=(3.5 * 2, 2.625))
|
|
||||||
|
|
||||||
im0 = axs[0].hexbin(mass[mask], mu[mask], mincnt=1, bins="log",
|
|
||||||
gridsize=50,)
|
|
||||||
im1 = axs[1].hexbin(mass[mask], std[mask], mincnt=1, bins="log",
|
|
||||||
gridsize=50)
|
|
||||||
im2 = axs[2].hexbin(1 - prob_nomatch[mask], mass[mask] - mu[mask],
|
|
||||||
gridsize=50, C=mass[mask],
|
|
||||||
reduce_C_function=numpy.nanmedian)
|
|
||||||
axs[2].axhline(0, color="red", linestyle="--", alpha=0.5)
|
|
||||||
axs[0].set_xlabel(r"True $\log M_{\rm tot} ~ [M_\odot / h]$")
|
|
||||||
axs[0].set_ylabel(r"Expected $\log M_{\rm tot} ~ [M_\odot / h]$")
|
|
||||||
axs[1].set_xlabel(r"True $\log M_{\rm tot} ~ [M_\odot / h]$")
|
|
||||||
axs[1].set_ylabel(r"Std. of $\sigma_{\log M_{\rm tot}}$")
|
|
||||||
axs[2].set_xlabel(r"1 - median prob. of no match")
|
|
||||||
axs[2].set_ylabel(r"$\log M_{\rm tot} - \log M_{\rm tot, exp}$")
|
|
||||||
|
|
||||||
t = numpy.linspace(*numpy.percentile(mass[mask], [0, 100]), 1000)
|
|
||||||
axs[0].plot(t, t, color="red", linestyle="--")
|
|
||||||
axs[0].plot(t, t + 0.2, color="red", linestyle="--", alpha=0.5)
|
|
||||||
axs[0].plot(t, t - 0.2, color="red", linestyle="--", alpha=0.5)
|
|
||||||
|
|
||||||
ims = [im0, im1, im2]
|
|
||||||
labels = ["Bin counts", "Bin counts",
|
|
||||||
r"$\log M_{\rm tot} ~ [M_\odot / h]$"]
|
|
||||||
for i in range(3):
|
|
||||||
axins = inset_axes(axs[i], width="100%", height="5%",
|
|
||||||
loc='upper center', borderpad=-0.75)
|
|
||||||
fig.colorbar(ims[i], cax=axins, orientation="horizontal",
|
|
||||||
label=labels[i])
|
|
||||||
axins.xaxis.tick_top()
|
|
||||||
axins.xaxis.set_tick_params(labeltop=True)
|
|
||||||
axins.xaxis.set_label_position("top")
|
|
||||||
|
|
||||||
fig.tight_layout()
|
|
||||||
for ext in ["png"]:
|
|
||||||
fout = join(plt_utils.fout,
|
|
||||||
f"mass_vs_expmass_{nsim0}_{max_prob_nomatch}.{ext}")
|
|
||||||
print(f"Saving to `{fout}`.")
|
|
||||||
fig.savefig(fout, dpi=plt_utils.dpi, bbox_inches="tight")
|
|
||||||
plt.close()
|
|
||||||
|
|
||||||
|
|
||||||
###############################################################################
|
|
||||||
# Nearest neighbour plotting #
|
|
||||||
###############################################################################
|
|
||||||
|
|
||||||
|
|
||||||
def read_dist(simname, run, kind, kwargs):
|
def read_dist(simname, run, kind, kwargs):
|
||||||
"""
|
|
||||||
Read PDF/CDF of a nearest neighbour distribution.
|
|
||||||
|
|
||||||
Parameters
|
|
||||||
----------
|
|
||||||
simname : str
|
|
||||||
Simulation name. Must be either `csiborg` or `quijote`.
|
|
||||||
run : str
|
|
||||||
Run name.
|
|
||||||
kind : str
|
|
||||||
Kind of distribution. Must be either `pdf` or `cdf`.
|
|
||||||
kwargs : dict
|
|
||||||
Nearest neighbour reader keyword arguments.
|
|
||||||
|
|
||||||
Returns
|
|
||||||
-------
|
|
||||||
dist : 2-dimensional array
|
|
||||||
Distribution of distances in radial and neighbour bins.
|
|
||||||
"""
|
|
||||||
paths = csiborgtools.read.Paths(**kwargs["paths_kind"])
|
paths = csiborgtools.read.Paths(**kwargs["paths_kind"])
|
||||||
reader = csiborgtools.read.NearestNeighbourReader(**kwargs, paths=paths)
|
reader = csiborgtools.read.NearestNeighbourReader(**kwargs, paths=paths)
|
||||||
|
|
||||||
|
@ -707,26 +70,6 @@ def read_dist(simname, run, kind, kwargs):
|
||||||
|
|
||||||
|
|
||||||
def pull_cdf(x, fid_cdf, test_cdf):
|
def pull_cdf(x, fid_cdf, test_cdf):
|
||||||
"""
|
|
||||||
Pull a CDF so that it matches the fiducial CDF at 0.5. Rescales the x-axis,
|
|
||||||
while keeping the corresponding CDF values fixed.
|
|
||||||
|
|
||||||
Parameters
|
|
||||||
----------
|
|
||||||
x : 1-dimensional array
|
|
||||||
The x-axis of the CDF.
|
|
||||||
fid_cdf : 1-dimensional array
|
|
||||||
The fiducial CDF.
|
|
||||||
test_cdf : 1-dimensional array
|
|
||||||
The test CDF to be pulled.
|
|
||||||
|
|
||||||
Returns
|
|
||||||
-------
|
|
||||||
xnew : 1-dimensional array
|
|
||||||
The new x-axis of the test CDF.
|
|
||||||
test_cdf : 1-dimensional array
|
|
||||||
The new test CDF.
|
|
||||||
"""
|
|
||||||
xnew = x * numpy.interp(0.5, fid_cdf, x) / numpy.interp(0.5, test_cdf, x)
|
xnew = x * numpy.interp(0.5, fid_cdf, x) / numpy.interp(0.5, test_cdf, x)
|
||||||
return xnew, test_cdf
|
return xnew, test_cdf
|
||||||
|
|
||||||
|
@ -1360,7 +703,7 @@ def plot_kl_vs_overlap(runs, nsim, kwargs, runs_to_mass, plot_std=True,
|
||||||
for run in runs:
|
for run in runs:
|
||||||
nn_data = nn_reader.read_single("csiborg", run, nsim, nobs=None)
|
nn_data = nn_reader.read_single("csiborg", run, nsim, nobs=None)
|
||||||
nn_hindxs = nn_data["ref_hindxs"]
|
nn_hindxs = nn_data["ref_hindxs"]
|
||||||
mass, overlap_hindxs, __, summed_overlap, prob_nomatch = get_overlap("csiborg", nsim) # noqa
|
mass, overlap_hindxs, __, summed_overlap, prob_nomatch = get_overlap_summary("csiborg", nsim) # noqa
|
||||||
|
|
||||||
# We need to match the hindxs between the two.
|
# We need to match the hindxs between the two.
|
||||||
hind2overlap_array = {hind: i for i, hind in enumerate(overlap_hindxs)}
|
hind2overlap_array = {hind: i for i, hind in enumerate(overlap_hindxs)}
|
||||||
|
@ -1457,8 +800,8 @@ if __name__ == "__main__":
|
||||||
"mass009": (14.0, 14.4), # There is no upper limit.
|
"mass009": (14.0, 14.4), # There is no upper limit.
|
||||||
}
|
}
|
||||||
|
|
||||||
# cached_funcs = ["get_overlap", "read_dist", "make_kl", "make_ks"]
|
# cached_funcs = ["get_overlap_summary", "read_dist", "make_kl", "make_ks"]
|
||||||
cached_funcs = ["get_max_key"]
|
cached_funcs = ["get_property_maxoverlap"]
|
||||||
if args.clean:
|
if args.clean:
|
||||||
for func in cached_funcs:
|
for func in cached_funcs:
|
||||||
print(f"Cleaning cache for function {func}.")
|
print(f"Cleaning cache for function {func}.")
|
||||||
|
|
File diff suppressed because it is too large
Load diff
|
@ -15,6 +15,7 @@
|
||||||
|
|
||||||
import numpy
|
import numpy
|
||||||
from scipy.stats import binned_statistic
|
from scipy.stats import binned_statistic
|
||||||
|
from scipy.special import erf
|
||||||
|
|
||||||
dpi = 600
|
dpi = 600
|
||||||
fout = "../plots/"
|
fout = "../plots/"
|
||||||
|
@ -56,38 +57,74 @@ def latex_float(*floats, n=2):
|
||||||
return latex_floats
|
return latex_floats
|
||||||
|
|
||||||
|
|
||||||
def binned_trend(x, y, weights, bins):
|
def nan_weighted_average(arr, weights=None, axis=None):
|
||||||
"""
|
if weights is None:
|
||||||
Calculate the weighted mean and standard deviation of `y` in bins of `x`.
|
weights = numpy.ones_like(arr)
|
||||||
|
|
||||||
Parameters
|
valid_entries = ~numpy.isnan(arr)
|
||||||
----------
|
|
||||||
x : 1-dimensional array
|
|
||||||
The x-coordinates of the data points.
|
|
||||||
y : 1-dimensional array
|
|
||||||
The y-coordinates of the data points.
|
|
||||||
weights : 1-dimensional array
|
|
||||||
The weights of the data points.
|
|
||||||
bins : 1-dimensional array
|
|
||||||
The bin edges.
|
|
||||||
|
|
||||||
Returns
|
# Set NaN entries in arr to 0 for computation
|
||||||
-------
|
arr = numpy.where(valid_entries, arr, 0)
|
||||||
stat_x : 1-dimensional array
|
|
||||||
The x-coordinates of the binned data points.
|
|
||||||
stat_mu : 1-dimensional array
|
|
||||||
The weighted mean of `y` in bins of `x`.
|
|
||||||
stat_std : 1-dimensional array
|
|
||||||
The weighted standard deviation of `y` in bins of `x`.
|
|
||||||
"""
|
|
||||||
stat_mu, __, __ = binned_statistic(x, y * weights, bins=bins,
|
|
||||||
statistic="sum")
|
|
||||||
stat_std, __, __ = binned_statistic(x, y * weights, bins=bins,
|
|
||||||
statistic=numpy.var)
|
|
||||||
stat_w, __, __ = binned_statistic(x, weights, bins=bins, statistic="sum")
|
|
||||||
|
|
||||||
stat_x = (bins[1:] + bins[:-1]) / 2
|
# Set weights of NaN entries to 0
|
||||||
stat_mu /= stat_w
|
weights = numpy.where(valid_entries, weights, 0)
|
||||||
stat_std /= stat_w
|
|
||||||
stat_std = numpy.sqrt(stat_std)
|
# Compute the weighted sum and the sum of weights along the axis
|
||||||
return stat_x, stat_mu, stat_std
|
weighted_sum = numpy.sum(arr * weights, axis=axis)
|
||||||
|
sum_weights = numpy.sum(weights, axis=axis)
|
||||||
|
|
||||||
|
return weighted_sum / sum_weights
|
||||||
|
|
||||||
|
|
||||||
|
def nan_weighted_std(arr, weights=None, axis=None, ddof=0):
|
||||||
|
if weights is None:
|
||||||
|
weights = numpy.ones_like(arr)
|
||||||
|
|
||||||
|
valid_entries = ~numpy.isnan(arr)
|
||||||
|
|
||||||
|
# Set NaN entries in arr to 0 for computation
|
||||||
|
arr = numpy.where(valid_entries, arr, 0)
|
||||||
|
|
||||||
|
# Set weights of NaN entries to 0
|
||||||
|
weights = numpy.where(valid_entries, weights, 0)
|
||||||
|
|
||||||
|
# Calculate weighted mean
|
||||||
|
weighted_mean = numpy.sum(
|
||||||
|
arr * weights, axis=axis) / numpy.sum(weights, axis=axis)
|
||||||
|
|
||||||
|
# Calculate the weighted variance
|
||||||
|
variance = numpy.sum(
|
||||||
|
weights * (arr - numpy.expand_dims(weighted_mean, axis))**2, axis=axis)
|
||||||
|
variance /= numpy.sum(weights, axis=axis) - ddof
|
||||||
|
|
||||||
|
return numpy.sqrt(variance)
|
||||||
|
|
||||||
|
|
||||||
|
def compute_error_bars(x, y, xbins, sigma):
|
||||||
|
bin_indices = numpy.digitize(x, xbins)
|
||||||
|
y_medians = numpy.array([numpy.median(y[bin_indices == i])
|
||||||
|
for i in range(1, len(xbins))])
|
||||||
|
|
||||||
|
lower_pct = 100 * 0.5 * (1 - erf(sigma / numpy.sqrt(2)))
|
||||||
|
upper_pct = 100 - lower_pct
|
||||||
|
|
||||||
|
y_lower = numpy.full(len(y_medians), numpy.nan)
|
||||||
|
y_upper = numpy.full(len(y_medians), numpy.nan)
|
||||||
|
|
||||||
|
for i in range(len(y_medians)):
|
||||||
|
if numpy.sum(bin_indices == i + 1) == 0:
|
||||||
|
continue
|
||||||
|
|
||||||
|
y_lower[i] = numpy.percentile(y[bin_indices == i + 1], lower_pct)
|
||||||
|
y_upper[i] = numpy.percentile(y[bin_indices == i + 1], upper_pct)
|
||||||
|
|
||||||
|
yerr = (y_medians - numpy.array(y_lower), numpy.array(y_upper) - y_medians)
|
||||||
|
|
||||||
|
return y_medians, yerr
|
||||||
|
|
||||||
|
|
||||||
|
def normalize_hexbin(hb):
|
||||||
|
hexagon_counts = hb.get_array()
|
||||||
|
normalized_counts = hexagon_counts / hexagon_counts.sum()
|
||||||
|
hb.set_array(normalized_counts)
|
||||||
|
hb.set_clim(normalized_counts.min(), normalized_counts.max())
|
||||||
|
|
Loading…
Reference in a new issue