mirror of
https://github.com/Richard-Sti/csiborgtools.git
synced 2024-12-22 07:18:03 +00:00
Within halo work and NFW fit (#4)
* add listing of snapshots * change distance to comoving * ignore cp files * rename nb * add str to list * add NFW profile shapes * add fits imports * Rename to Nsnap * in clumps_read only select props * make clumpid int * expand doc * add import * edit readme * distribute halos * add profile & posterior * add import * add import * add documentation * add rvs and init guess * update todo * update nb * add file * return end index too * change clump_ids format to int32 * skeleton of dump particle * update nb * add func to drop 0 clump indxs parts * add import * add halo dump * switch to float32 * Update TODO * update TODO * add func that loads a split * add halo object * Rename to clump * make post work with a clump * add optimiser * add Nsplits * ignore submission scripts * ignore .out * add dumppath * add job splitting * add split halos script * rename file * renaem files * rm file * rename imports * edit desc * add pick clump * add number of particles * update TODO * update todo * add script * add dumping * change dumpdir structure * change dumpdir * add import * Remove tqdm * Increase the number of splits * rm shuffle option * Change to remove split * add emojis * fix part counts in splits * change num of splits * rm with particle cut * keep splits * fit only if 10 part and more * add min distance * rm warning about not set vels * update TODO * calculate rho0 too * add results collection * add import * add func to combine splits * update TODO * add extract cols * update nb * update TODO
This commit is contained in:
parent
85a6a6d58a
commit
8a56c22813
15 changed files with 3815 additions and 397 deletions
5
.gitignore
vendored
5
.gitignore
vendored
|
@ -6,3 +6,8 @@ bin/
|
|||
*/.ipynb_checkpoints/
|
||||
plots/*
|
||||
.vscode/settings.json
|
||||
csiborgtools/fits/_halo_profile.py
|
||||
csiborgtools/fits/_filenames.py
|
||||
csiborgtools/fits/analyse_voids_25.py
|
||||
scripts/*.sh
|
||||
scripts/*.out
|
||||
|
|
11
README.md
11
README.md
|
@ -1 +1,10 @@
|
|||
# CSiBORG analysis tools
|
||||
# CSiBORG analysis tools :dart:
|
||||
|
||||
## TODO :scroll:
|
||||
- [ ] Calculate $\left\{M_{\rm vir}, R_{\rm vir}, c\right\}$ from $\left\{R_s, \rho_0, \ldots \right\}$
|
||||
- [ ] Calculate $M_{\rm 500c}$ by sphere shrinking
|
||||
- [ ] Calculate the cross-correlation in CSiBORG. Should see the scale of the constraints?
|
||||
|
||||
|
||||
## Open questions :bulb:
|
||||
- Get uncertainty on the fitted $R_{\rm s}$? If so get this directly from JAX.
|
|
@ -13,4 +13,4 @@
|
|||
# with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||
|
||||
from csiborgtools import (io, match, utils, units) # noqa
|
||||
from csiborgtools import (io, match, utils, units, fits) # noqa
|
||||
|
|
|
@ -12,3 +12,8 @@
|
|||
# You should have received a copy of the GNU General Public License along
|
||||
# with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||
|
||||
from .haloprofile import (NFWProfile, NFWPosterior) # noqa
|
||||
from .halo import (distribute_halos, clump_with_particles, # noqa
|
||||
dump_split_particles, load_split_particles, # noqa
|
||||
split_jobs, pick_single_clump, Clump) # noqa
|
465
csiborgtools/fits/halo.py
Normal file
465
csiborgtools/fits/halo.py
Normal file
|
@ -0,0 +1,465 @@
|
|||
# Copyright (C) 2022 Richard Stiskalek, Deaglan Bartlett
|
||||
# This program is free software; you can redistribute it and/or modify it
|
||||
# under the terms of the GNU General Public License as published by the
|
||||
# Free Software Foundation; either version 3 of the License, or (at your
|
||||
# option) any later version.
|
||||
#
|
||||
# This program is distributed in the hope that it will be useful, but
|
||||
# WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
|
||||
# Public License for more details.
|
||||
#
|
||||
# You should have received a copy of the GNU General Public License along
|
||||
# with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||
"""
|
||||
Tools for splitting the particles and a clump object.
|
||||
"""
|
||||
|
||||
|
||||
import numpy
|
||||
from os import remove
|
||||
from warnings import warn
|
||||
from os.path import join
|
||||
from tqdm import trange
|
||||
from ..io import nparts_to_start_ind
|
||||
|
||||
|
||||
def clump_with_particles(particle_clumps, clumps):
|
||||
"""
|
||||
Count how many particles does each clump have.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
particle_clumps : 1-dimensional array
|
||||
Array of particles' clump IDs.
|
||||
clumps : structured array
|
||||
The clumps array.
|
||||
|
||||
Returns
|
||||
-------
|
||||
with_particles : 1-dimensional array
|
||||
Array of whether a clump has any particles.
|
||||
"""
|
||||
return numpy.isin(clumps["index"], particle_clumps)
|
||||
|
||||
|
||||
def distribute_halos(Nsplits, clumps):
|
||||
"""
|
||||
Evenly distribute clump indices to smaller splits. Clumps should only be
|
||||
clumps that contain particles.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
Nsplits : int
|
||||
Number of splits.
|
||||
clumps : structured array
|
||||
The clumps array.
|
||||
|
||||
Returns
|
||||
-------
|
||||
splits : 2-dimensional array
|
||||
Array of starting and ending indices of each CPU of shape `(Njobs, 2)`.
|
||||
"""
|
||||
# Make sure these are unique IDs
|
||||
indxs = clumps["index"]
|
||||
if indxs.size > numpy.unique((indxs)).size:
|
||||
raise ValueError("`clump_indxs` constains duplicate indices.")
|
||||
Ntotal = indxs.size
|
||||
Njobs_per_cpu = numpy.ones(Nsplits, dtype=int) * Ntotal // Nsplits
|
||||
# Split the remainder Ntotal % Njobs among the CPU
|
||||
Njobs_per_cpu[:Ntotal % Nsplits] += 1
|
||||
start = nparts_to_start_ind(Njobs_per_cpu)
|
||||
return numpy.vstack([start, start + Njobs_per_cpu]).T
|
||||
|
||||
|
||||
def dump_split_particles(particles, particle_clumps, clumps, Nsplits,
|
||||
dumpfolder, Nsim, Nsnap, verbose=True):
|
||||
"""
|
||||
Save the data needed for each split so that a process does not have to load
|
||||
everything.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
particles : structured array
|
||||
The particle array.
|
||||
particle_clumps : 1-dimensional array
|
||||
Array of particles' clump IDs.
|
||||
clumps : structured array
|
||||
The clumps array.
|
||||
Nsplits : int
|
||||
Number of times to split the clumps.
|
||||
dumpfolder : str
|
||||
Path to the folder where to dump the splits.
|
||||
Nsim : int
|
||||
CSiBORG simulation index.
|
||||
Nsnap : int
|
||||
Snapshot index.
|
||||
verbose : bool, optional
|
||||
Verbosity flag. By default `True`.
|
||||
|
||||
Returns
|
||||
-------
|
||||
None
|
||||
"""
|
||||
if particles.size != particle_clumps.size:
|
||||
raise ValueError("`particles` must correspond to `particle_clumps`.")
|
||||
# Calculate which clumps have particles
|
||||
with_particles = clump_with_particles(particle_clumps, clumps)
|
||||
clumps = numpy.copy(clumps)[with_particles]
|
||||
if verbose:
|
||||
warn(r"There are {:.4f}% clumps that have identified particles."
|
||||
.format(with_particles.sum() / with_particles.size * 100))
|
||||
|
||||
# The starting clump index of each split
|
||||
splits = distribute_halos(Nsplits, clumps)
|
||||
fname = join(dumpfolder, "out_{}_snap_{}_{}.npz")
|
||||
|
||||
iters = trange(Nsplits) if verbose else range(Nsplits)
|
||||
tot = 0
|
||||
for n in iters:
|
||||
# Lower and upper array index of the clumps array
|
||||
i, j = splits[n, :]
|
||||
# Clump indices in this split
|
||||
indxs = clumps["index"][i:j]
|
||||
hmin, hmax = indxs.min(), indxs.max()
|
||||
mask = (particle_clumps >= hmin) & (particle_clumps <= hmax)
|
||||
# Check number of clumps
|
||||
npart_unique = numpy.unique(particle_clumps[mask]).size
|
||||
if indxs.size > npart_unique:
|
||||
raise RuntimeError(
|
||||
"Split `{}` contains more unique clumps (`{}`) than there are "
|
||||
"unique particles' clump indices (`{}`)after removing clumps "
|
||||
"with no particles.".format(n, indxs.size, npart_unique))
|
||||
# Dump it!
|
||||
tot += mask.sum()
|
||||
fout = fname.format(Nsim, Nsnap, n)
|
||||
numpy.savez(fout, particles[mask], particle_clumps[mask], clumps[i:j])
|
||||
|
||||
# There are particles whose clump ID is > 1 and have no counterpart in the
|
||||
# clump file. Therefore can save fewer particles, depending on the cut.
|
||||
if tot > particle_clumps.size:
|
||||
raise RuntimeError(
|
||||
"Num. of dumped particles `{}` is greater than the particle file "
|
||||
"size `{}`.".format(tot, particle_clumps.size))
|
||||
|
||||
|
||||
def split_jobs(Njobs, Ncpu):
|
||||
"""
|
||||
Split `Njobs` amongst `Ncpu`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
Njobs : int
|
||||
Number of jobs.
|
||||
Ncpu : int
|
||||
Number of CPUs.
|
||||
|
||||
Returns
|
||||
-------
|
||||
jobs : list of lists of integers
|
||||
Outer list of each CPU and inner lists for CPU's jobs.
|
||||
"""
|
||||
njobs_per_cpu, njobs_remainder = divmod(Njobs, Ncpu)
|
||||
jobs = numpy.arange(njobs_per_cpu * Ncpu).reshape((njobs_per_cpu, Ncpu)).T
|
||||
jobs = jobs.tolist()
|
||||
for i in range(njobs_remainder):
|
||||
jobs[i].append(njobs_per_cpu * Ncpu + i)
|
||||
|
||||
return jobs
|
||||
|
||||
|
||||
def load_split_particles(Nsplit, dumpfolder, Nsim, Nsnap, remove_split=False):
|
||||
"""
|
||||
Load particles of a split saved by `dump_split_particles`.
|
||||
|
||||
Parameters
|
||||
--------
|
||||
Nsplit : int
|
||||
Split index.
|
||||
dumpfolder : str
|
||||
Path to the folder where the splits were dumped.
|
||||
Nsim : int
|
||||
CSiBORG simulation index.
|
||||
Nsnap : int
|
||||
Snapshot index.
|
||||
remove_split : bool, optional
|
||||
Whether to remove the split file. By default `False`.
|
||||
|
||||
Returns
|
||||
-------
|
||||
particles : structured array
|
||||
Particle array of this split.
|
||||
clumps_indxs : 1-dimensional array
|
||||
Array of particles' clump IDs of this split.
|
||||
clumps : 1-dimensional array
|
||||
Clumps belonging to this split.
|
||||
"""
|
||||
fname = join(
|
||||
dumpfolder, "out_{}_snap_{}_{}.npz".format(Nsim, Nsnap, Nsplit))
|
||||
file = numpy.load(fname)
|
||||
particles, clump_indxs, clumps = (file[f] for f in file.files)
|
||||
if remove_split:
|
||||
remove(fname)
|
||||
return particles, clump_indxs, clumps
|
||||
|
||||
|
||||
def pick_single_clump(n, particles, particle_clumps, clumps):
|
||||
"""
|
||||
Get particles belonging to the `n`th clump in `clumps` arrays.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
n : int
|
||||
Clump position in `clumps` array. Not its halo finder index!
|
||||
particles : structured array
|
||||
Particle array.
|
||||
particle_clumps : 1-dimensional array
|
||||
Array of particles' clump IDs.
|
||||
clumps : structured array
|
||||
Array of clumps.
|
||||
|
||||
Returns
|
||||
-------
|
||||
sel_particles : structured array
|
||||
Particles belonging to the requested clump.
|
||||
sel_clump : array
|
||||
A slice of a `clumps` array corresponding to this clump. Must
|
||||
contain `["peak_x", "peak_y", "peak_z", "mass_cl"]`.
|
||||
"""
|
||||
# Clump index on the nth position
|
||||
k = clumps["index"][n]
|
||||
# Mask of which particles belong to this clump
|
||||
mask = particle_clumps == k
|
||||
return particles[mask], clumps[n]
|
||||
|
||||
|
||||
class Clump:
|
||||
"""
|
||||
A clump (halo) object to handle the particles and their clump's data.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : 1-dimensional array
|
||||
Particle coordinates along the x-axis.
|
||||
y : 1-dimensional array
|
||||
Particle coordinates along the y-axis.
|
||||
z : 1-dimensional array
|
||||
Particle coordinates along the z-axis.
|
||||
m : 1-dimensional array
|
||||
Particle masses.
|
||||
x0 : float
|
||||
Clump center coordinate along the x-axis.
|
||||
y0 : float
|
||||
Clump center coordinate along the y-axis.
|
||||
z0 : float
|
||||
Clump center coordinate along the z-axis.
|
||||
clump_mass : float
|
||||
Mass of the clump.
|
||||
vx : 1-dimensional array
|
||||
Particle velocity along the x-axis.
|
||||
vy : 1-dimensional array
|
||||
Particle velocity along the y-axis.
|
||||
vz : 1-dimensional array
|
||||
Particle velocity along the z-axis.
|
||||
"""
|
||||
_r = None
|
||||
_pos = None
|
||||
_clump_pos = None
|
||||
_clump_mass = None
|
||||
_vel = None
|
||||
|
||||
def __init__(self, x, y, z, m, x0, y0, z0, clump_mass=None,
|
||||
vx=None, vy=None, vz=None):
|
||||
self.pos = (x, y, z, x0, y0, z0)
|
||||
self.clump_pos = (x0, y0, z0)
|
||||
self.clump_mass = clump_mass
|
||||
self.vel = (vx, vy, vz)
|
||||
self.m = m
|
||||
|
||||
@property
|
||||
def pos(self):
|
||||
"""
|
||||
Cartesian particle coordinates centered at the clump.
|
||||
|
||||
Returns
|
||||
-------
|
||||
pos : 2-dimensional array
|
||||
Array of shape `(n_particles, 3)`.
|
||||
"""
|
||||
return self._pos
|
||||
|
||||
@pos.setter
|
||||
def pos(self, X):
|
||||
"""Sets `pos` and calculates radial distance."""
|
||||
x, y, z, x0, y0, z0 = X
|
||||
self._pos = numpy.vstack([x - x0, y - y0, z - z0]).T
|
||||
self.r = numpy.sum(self.pos**2, axis=1)**0.5
|
||||
|
||||
@property
|
||||
def Npart(self):
|
||||
"""
|
||||
Number of particles associated with this clump.
|
||||
|
||||
Returns
|
||||
-------
|
||||
Npart : int
|
||||
Number of particles.
|
||||
"""
|
||||
return self.r.size
|
||||
|
||||
@property
|
||||
def clump_pos(self):
|
||||
"""
|
||||
Cartesian clump coordinates.
|
||||
|
||||
Returns
|
||||
-------
|
||||
pos : 1-dimensional array
|
||||
Array of shape `(3, )`.
|
||||
"""
|
||||
return self._clump_pos
|
||||
|
||||
@clump_pos.setter
|
||||
def clump_pos(self, pos):
|
||||
"""Sets `clump_pos`. Makes sure it is the correct shape."""
|
||||
pos = numpy.asarray(pos)
|
||||
if pos.shape != (3,):
|
||||
raise TypeError("Invalid clump position `{}`".format(pos.shape))
|
||||
self._clump_pos = pos
|
||||
|
||||
@property
|
||||
def clump_mass(self):
|
||||
"""
|
||||
Clump mass.
|
||||
|
||||
Returns
|
||||
-------
|
||||
mass : float
|
||||
Clump mass.
|
||||
"""
|
||||
return self._clump_mass
|
||||
|
||||
@clump_mass.setter
|
||||
def clump_mass(self, mass):
|
||||
"""Sets `clump_mass`, making sure it is a float."""
|
||||
if not isinstance(mass, float):
|
||||
raise ValueError("`clump_mass` must be a float.")
|
||||
self._clump_mass = mass
|
||||
|
||||
@property
|
||||
def vel(self):
|
||||
"""
|
||||
Cartesian particle velocities. Throws an error if they are not set.
|
||||
|
||||
Returns
|
||||
-------
|
||||
vel : 2-dimensional array
|
||||
Array of shape (`n_particles, 3`).
|
||||
"""
|
||||
if self._vel is None:
|
||||
raise ValueError("Velocities `vel` have not been set.")
|
||||
return self._vel
|
||||
|
||||
@vel.setter
|
||||
def vel(self, V):
|
||||
"""Sets the particle velocities, making sure the shape is OK."""
|
||||
if any(v is None for v in V):
|
||||
return
|
||||
vx, vy, vz = V
|
||||
self._vel = numpy.vstack([vx, vy, vz]).T
|
||||
if self.pos.shape != self.vel.shape:
|
||||
raise ValueError("Different `pos` and `vel` arrays!")
|
||||
|
||||
@property
|
||||
def m(self):
|
||||
"""
|
||||
Particle masses.
|
||||
|
||||
Returns
|
||||
-------
|
||||
m : 1-dimensional array
|
||||
Array of shape `(n_particles, )`.
|
||||
"""
|
||||
return self._m
|
||||
|
||||
@m.setter
|
||||
def m(self, m):
|
||||
"""Sets particle masses `m`, ensuring it is the right size."""
|
||||
if not isinstance(m, numpy.ndarray) and m.size != self.r.size:
|
||||
raise TypeError("`r` and `m` must be equal size 1-dim arrays.")
|
||||
self._m = m
|
||||
|
||||
@property
|
||||
def r(self):
|
||||
"""
|
||||
Radial distance of particles from the clump peak.
|
||||
|
||||
Returns
|
||||
-------
|
||||
r : 1-dimensional array
|
||||
Array of shape `(n_particles, )`
|
||||
"""
|
||||
return self._r
|
||||
|
||||
@r.setter
|
||||
def r(self, r):
|
||||
"""Sets `r`. Again checks the shape."""
|
||||
if not isinstance(r, numpy.ndarray) and r.ndim == 1:
|
||||
raise TypeError("`r` must be a 1-dimensional array.")
|
||||
if not numpy.all(r >= 0):
|
||||
raise ValueError("`r` larger than zero.")
|
||||
self._r = r
|
||||
|
||||
@property
|
||||
def total_particle_mass(self):
|
||||
"""
|
||||
Total mass of all particles.
|
||||
|
||||
Returns
|
||||
-------
|
||||
tot_mass : float
|
||||
The summed mass.
|
||||
"""
|
||||
return numpy.sum(self.m)
|
||||
|
||||
@property
|
||||
def mean_particle_pos(self):
|
||||
"""
|
||||
Mean Cartesian particle coordinate. Not centered at the halo!
|
||||
|
||||
Returns
|
||||
-------
|
||||
pos : 1-dimensional array
|
||||
Array of shape `(3, )`.
|
||||
"""
|
||||
return numpy.mean(self.pos + self.clump_pos, axis=0)
|
||||
|
||||
@classmethod
|
||||
def from_arrays(cls, particles, clump):
|
||||
"""
|
||||
Initialises `Halo` from `particles` containing the relevant particle
|
||||
information and its `clump` information.
|
||||
|
||||
Paramaters
|
||||
----------
|
||||
particles : structured array
|
||||
Array of particles belonging to this clump. Must contain
|
||||
`["x", "y", "z", "M"]` and optionally also `["vx", "vy", "vz"]`.
|
||||
clump : array
|
||||
A slice of a `clumps` array corresponding to this clump. Must
|
||||
contain `["peak_x", "peak_y", "peak_z", "mass_cl"]`.
|
||||
|
||||
Returns
|
||||
-------
|
||||
halo : `Halo`
|
||||
An initialised halo object.
|
||||
"""
|
||||
x, y, z, m = (particles[p] for p in ["x", "y", "z", "M"])
|
||||
x0, y0, z0, cl_mass = (
|
||||
clump[p] for p in ["peak_x", "peak_y", "peak_z", "mass_cl"])
|
||||
try:
|
||||
vx, vy, vz = (particles[p] for p in ["vx", "vy", "vz"])
|
||||
except ValueError:
|
||||
vx, vy, vz = None, None, None
|
||||
return cls(x, y, z, m, x0, y0, z0, cl_mass, vx, vy, vz)
|
461
csiborgtools/fits/haloprofile.py
Normal file
461
csiborgtools/fits/haloprofile.py
Normal file
|
@ -0,0 +1,461 @@
|
|||
# Copyright (C) 2022 Richard Stiskalek, Deaglan Bartlett
|
||||
# This program is free software; you can redistribute it and/or modify it
|
||||
# under the terms of the GNU General Public License as published by the
|
||||
# Free Software Foundation; either version 3 of the License, or (at your
|
||||
# option) any later version.
|
||||
#
|
||||
# This program is distributed in the hope that it will be useful, but
|
||||
# WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
|
||||
# Public License for more details.
|
||||
#
|
||||
# You should have received a copy of the GNU General Public License along
|
||||
# with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||
"""
|
||||
Halo profiles functions and posteriors.
|
||||
"""
|
||||
|
||||
|
||||
import numpy
|
||||
from scipy.optimize import minimize_scalar
|
||||
from scipy.stats import uniform
|
||||
from .halo import Clump
|
||||
|
||||
|
||||
class NFWProfile:
|
||||
r"""
|
||||
The Navarro-Frenk-White (NFW) density profile defined as
|
||||
|
||||
.. math::
|
||||
\rho(r) = \frac{\rho_0}{x(1 + x)^2}
|
||||
|
||||
where :math:`x = r / R_s` with free parameters :math:`R_s, \rho_0`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
Rs : float
|
||||
Scale radius :math:`R_s`.
|
||||
rho0 : float
|
||||
NFW density parameter :math:`\rho_0`.
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
def profile(self, r, Rs, rho0):
|
||||
r"""
|
||||
Halo profile evaluated at :math:`r`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
r : float or 1-dimensional array
|
||||
Radial distance :math:`r`.
|
||||
Rs : float
|
||||
Scale radius :math:`R_s`.
|
||||
rho0 : float
|
||||
NFW density parameter :math:`\rho_0`.
|
||||
|
||||
Returns
|
||||
-------
|
||||
density : float or 1-dimensional array
|
||||
Density of the NFW profile at :math:`r`.
|
||||
"""
|
||||
x = r / Rs
|
||||
return rho0 / (x * (1 + x)**2)
|
||||
|
||||
def logprofile(self, r, Rs, rho0):
|
||||
r"""
|
||||
Natural logarithm of the halo profile evaluated at :math:`r`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
r : float or 1-dimensional array
|
||||
Radial distance :math:`r`.
|
||||
Rs : float
|
||||
Scale radius :math:`R_s`.
|
||||
rho0 : float
|
||||
NFW density parameter :math:`\rho_0`.
|
||||
|
||||
Returns
|
||||
-------
|
||||
logdensity : float or 1-dimensional array
|
||||
Logarithmic density of the NFW profile at :math:`r`.
|
||||
"""
|
||||
x = r / Rs
|
||||
return numpy.log(rho0) - numpy.log(x) - 2 * numpy.log(1 + x)
|
||||
|
||||
def enclosed_mass(self, r, Rs, rho0):
|
||||
r"""
|
||||
Enclosed mass of a NFW profile in radius :math:`r`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
r : float or 1-dimensional array
|
||||
Radial distance :math:`r`.
|
||||
Rs : float
|
||||
Scale radius :math:`R_s`.
|
||||
rho0 : float
|
||||
NFW density parameter :math:`\rho_0`.
|
||||
|
||||
Returns
|
||||
-------
|
||||
M : float or 1-dimensional array
|
||||
The enclosed mass.
|
||||
"""
|
||||
x = r / Rs
|
||||
out = numpy.log(1 + x) - x / (1 + x)
|
||||
return 4 * numpy.pi * rho0 * Rs**3 * out
|
||||
|
||||
def bounded_enclosed_mass(self, rmin, rmax, Rs, rho0):
|
||||
"""
|
||||
Calculate the enclosed mass between :math:`r_min <= r <= r_max`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
rmin : float
|
||||
The minimum radius.
|
||||
rmax : float
|
||||
The maximum radius.
|
||||
Rs : float
|
||||
Scale radius :math:`R_s`.
|
||||
rho0 : float
|
||||
NFW density parameter :math:`\rho_0`.
|
||||
|
||||
Returns
|
||||
-------
|
||||
M : float
|
||||
The enclosed mass within the radial range.
|
||||
"""
|
||||
return (self.enclosed_mass(rmax, Rs, rho0)
|
||||
- self.enclosed_mass(rmin, Rs, rho0))
|
||||
|
||||
def pdf(self, r, Rs, rmin, rmax):
|
||||
r"""
|
||||
The radial probability density function of the NFW profile calculated
|
||||
as
|
||||
|
||||
.. math::
|
||||
\frac{4\pi r^2 \rho(r)} {M(r_\min, r_\max)}
|
||||
|
||||
where :math:`M(r_\min, r_\max)` is the enclosed mass between
|
||||
:math:`r_\min` and :math:`r_\max'. Note that the dependance on
|
||||
:math:`\rho_0` is cancelled.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
r : float or 1-dimensional array
|
||||
Radial distance :math:`r`.
|
||||
Rs : float
|
||||
Scale radius :math:`R_s`.
|
||||
rmin : float
|
||||
The minimum radius.
|
||||
rmax : float
|
||||
The maximum radius.
|
||||
|
||||
Returns
|
||||
-------
|
||||
pdf : float or 1-dimensional array
|
||||
Probability density of the NFW profile at :math:`r`.
|
||||
"""
|
||||
|
||||
norm = self.bounded_enclosed_mass(rmin, rmax, Rs, 1)
|
||||
return 4 * numpy.pi * r**2 * self.profile(r, Rs, 1) / norm
|
||||
|
||||
def rvs(self, rmin, rmax, Rs, N=1):
|
||||
"""
|
||||
Generate random samples from the NFW profile via rejection sampling.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
rmin : float
|
||||
The minimum radius.
|
||||
rmax : float
|
||||
The maximum radius.
|
||||
Rs : float
|
||||
Scale radius :math:`R_s`.
|
||||
N : int, optional
|
||||
Number of samples to generate. By default 1.
|
||||
|
||||
Returns
|
||||
-------
|
||||
samples : float or 1-dimensional array
|
||||
Samples following the NFW profile.
|
||||
"""
|
||||
gen = uniform(rmin, rmax-rmin)
|
||||
samples = numpy.full(N, numpy.nan)
|
||||
for i in range(N):
|
||||
while True:
|
||||
r = gen.rvs()
|
||||
if self.pdf(r, Rs, rmin, rmax) > numpy.random.rand():
|
||||
samples[i] = r
|
||||
break
|
||||
|
||||
if N == 1:
|
||||
return samples[0]
|
||||
return samples
|
||||
|
||||
|
||||
class NFWPosterior(NFWProfile):
|
||||
r"""
|
||||
Posterior of for fitting the NFW profile in the range specified by the
|
||||
closest and further particle. The likelihood is calculated as
|
||||
|
||||
.. math::
|
||||
\frac{4\pi r^2 \rho(r)} {M(r_\min, r_\max)} \frac{m}{M / N}
|
||||
|
||||
where :math:`M(r_\min, r_\max)` is the enclosed mass between the closest
|
||||
and further particle as expected from a NFW profile, :math:`m` is the
|
||||
particle mass, :math:`M` is the sum of the particle masses and :math:`N`
|
||||
is the number of particles.
|
||||
|
||||
Paramaters
|
||||
----------
|
||||
clump : `Clump`
|
||||
Clump object containing the particles and clump information.
|
||||
"""
|
||||
_clump = None
|
||||
_N = None
|
||||
_rmin = None
|
||||
_rmax = None
|
||||
_binsguess = 10
|
||||
|
||||
def __init__(self, clump):
|
||||
# Initialise the NFW profile
|
||||
super().__init__()
|
||||
self.clump = clump
|
||||
|
||||
@property
|
||||
def clump(self):
|
||||
"""
|
||||
Clump object.
|
||||
|
||||
Returns
|
||||
-------
|
||||
clump : `Clump`
|
||||
The clump object.
|
||||
"""
|
||||
return self._clump
|
||||
|
||||
@clump.setter
|
||||
def clump(self, clump):
|
||||
"""Sets `clump` and precalculates useful things."""
|
||||
if not isinstance(clump, Clump):
|
||||
raise TypeError(
|
||||
"`clump` must be :py:class:`csiborgtools.fits.Clump` type. "
|
||||
"Currently `{}`".format(type(clump)))
|
||||
self._clump = clump
|
||||
# Set here the rest of the radial info
|
||||
self._rmax = numpy.max(self.r)
|
||||
# r_min could be zero if particle in the potential minimum.
|
||||
# Set it to the closest particle that is at distance > 0
|
||||
self._rmin = numpy.sort(self.r[self.r > 0])[0]
|
||||
self._logrmin = numpy.log(self.rmin)
|
||||
self._logrmax = numpy.log(self.rmax)
|
||||
self._logprior_volume = numpy.log(self._logrmax - self._logrmin)
|
||||
self._N = self.r.size
|
||||
# Precalculate useful things
|
||||
self._logMtot = numpy.log(numpy.sum(self.clump.m))
|
||||
gamma = 4 * numpy.pi * self.r**2 * self.clump.m * self.N
|
||||
self._ll0 = numpy.sum(numpy.log(gamma)) - self.N * self._logMtot
|
||||
|
||||
@property
|
||||
def r(self):
|
||||
"""
|
||||
Radial distance of particles.
|
||||
|
||||
Returns
|
||||
-------
|
||||
r : 1-dimensional array
|
||||
Radial distance of particles.
|
||||
"""
|
||||
return self.clump.r
|
||||
|
||||
@property
|
||||
def rmin(self):
|
||||
"""
|
||||
Minimum radial distance of a particle belonging to this clump.
|
||||
|
||||
Returns
|
||||
-------
|
||||
rmin : float
|
||||
The minimum distance.
|
||||
"""
|
||||
return self._rmin
|
||||
|
||||
@property
|
||||
def rmax(self):
|
||||
"""
|
||||
Maximum radial distance of a particle belonging to this clump.
|
||||
|
||||
Returns
|
||||
-------
|
||||
rmin : float
|
||||
The maximum distance.
|
||||
"""
|
||||
return self._rmax
|
||||
|
||||
@property
|
||||
def N(self):
|
||||
"""
|
||||
The number of particles in this clump.
|
||||
|
||||
Returns
|
||||
-------
|
||||
N : int
|
||||
Number of particles.
|
||||
"""
|
||||
return self._N
|
||||
|
||||
def rho0_from_logRs(self, logRs):
|
||||
"""
|
||||
Obtain :math:`\rho_0` of the NFW profile from the integral constraint
|
||||
on total mass. Calculated as the ratio between the total particle mass
|
||||
and the enclosed NFW profile mass.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
logRs : float
|
||||
Logarithmic scale factor in units matching the coordinates.
|
||||
|
||||
Returns
|
||||
-------
|
||||
rho0: float
|
||||
The NFW density parameter.
|
||||
"""
|
||||
Mtot = numpy.exp(self._logMtot)
|
||||
Rs = numpy.exp(logRs)
|
||||
Mnfw_norm = self.bounded_enclosed_mass(self.rmin, self.rmax, Rs, 1)
|
||||
return Mtot / Mnfw_norm
|
||||
|
||||
def logprior(self, logRs):
|
||||
r"""
|
||||
Logarithmic uniform prior on :math:`\log R_{\rm s}`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
logRs : float
|
||||
Logarithmic scale factor in units matching the coordinates.
|
||||
|
||||
Returns
|
||||
-------
|
||||
ll : float
|
||||
The logarithmic prior.
|
||||
"""
|
||||
if not self._logrmin < logRs < self._logrmax:
|
||||
return - numpy.infty
|
||||
return - self._logprior_volume
|
||||
|
||||
def loglikelihood(self, logRs):
|
||||
"""
|
||||
Logarithmic likelihood.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
logRs : float
|
||||
Logarithmic scale factor in units matching the coordinates.
|
||||
|
||||
Returns
|
||||
-------
|
||||
ll : float
|
||||
The logarithmic likelihood.
|
||||
"""
|
||||
Rs = numpy.exp(logRs)
|
||||
# Expected enclosed mass from a NFW
|
||||
Mnfw = self.bounded_enclosed_mass(self.rmin, self.rmax, Rs, 1)
|
||||
ll = self._ll0 + numpy.sum(self.logprofile(self.r, Rs, 1))
|
||||
return ll - self.N * numpy.log(Mnfw)
|
||||
|
||||
@property
|
||||
def initlogRs(self):
|
||||
r"""
|
||||
The most often occuring value of :math:`r` used as initial guess of
|
||||
:math:`R_{\rm s}` since :math:`r^2 \rho(r)` peaks at
|
||||
:math:`r = R_{\rm s}`.
|
||||
|
||||
Returns
|
||||
-------
|
||||
initlogRs : float
|
||||
The initial guess of :math:`\log R_{\rm s}`.
|
||||
"""
|
||||
bins = numpy.linspace(self.rmin, self.rmax, self._binsguess)
|
||||
counts, edges = numpy.histogram(self.r, bins)
|
||||
return numpy.log(edges[numpy.argmax(counts)])
|
||||
|
||||
def __call__(self, logRs):
|
||||
"""
|
||||
Logarithmic posterior. Sum of the logarithmic prior and likelihood.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
logRs : float
|
||||
Logarithmic scale factor in units matching the coordinates.
|
||||
|
||||
Returns
|
||||
-------
|
||||
lpost : float
|
||||
The logarithmic posterior.
|
||||
"""
|
||||
lp = self.logprior(logRs)
|
||||
if not numpy.isfinite(lp):
|
||||
return - numpy.infty
|
||||
return self.loglikelihood(logRs) + lp
|
||||
|
||||
def hamiltonian(self, logRs):
|
||||
"""
|
||||
Negative logarithmic posterior (i.e. the Hamiltonian).
|
||||
|
||||
Parameters
|
||||
----------
|
||||
logRs : float
|
||||
Logarithmic scale factor in units matching the coordinates.
|
||||
|
||||
Returns
|
||||
-------
|
||||
neg_lpost : float
|
||||
The Hamiltonian.
|
||||
"""
|
||||
return - self(logRs)
|
||||
|
||||
def maxpost_logRs(self):
|
||||
r"""
|
||||
Maximum a-posterio estimate of the scale radius :math:`\log R_{\rm s}`.
|
||||
|
||||
Returns
|
||||
-------
|
||||
res : `scipy.optimize.OptimizeResult`
|
||||
Optimisation result.
|
||||
"""
|
||||
bounds = (self._logrmin, self._logrmax)
|
||||
return minimize_scalar(
|
||||
self.hamiltonian, bounds=bounds, method='bounded')
|
||||
|
||||
@classmethod
|
||||
def from_coords(cls, x, y, z, m, x0, y0, z0):
|
||||
"""
|
||||
Initiate `NFWPosterior` from a set of Cartesian coordinates.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : 1-dimensional array
|
||||
Particle coordinates along the x-axis.
|
||||
y : 1-dimensional array
|
||||
Particle coordinates along the y-axis.
|
||||
z : 1-dimensional array
|
||||
Particle coordinates along the z-axis.
|
||||
m : 1-dimensional array
|
||||
Particle masses.
|
||||
x0 : float
|
||||
Halo center coordinate along the x-axis.
|
||||
y0 : float
|
||||
Halo center coordinate along the y-axis.
|
||||
z0 : float
|
||||
Halo center coordinate along the z-axis.
|
||||
|
||||
Returns
|
||||
-------
|
||||
post : `NFWPosterior`
|
||||
Initiated `NFWPosterior` instance.
|
||||
"""
|
||||
r = numpy.sqrt((x - x0)**2 + (y - y0)**2 + (z - z0)**2)
|
||||
return cls(r, m)
|
|
@ -13,8 +13,10 @@
|
|||
# with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||
|
||||
from .readsim import (get_csiborg_ids, get_sim_path, get_snapshot_path, # noqa
|
||||
read_info, # noqa
|
||||
from .readsim import (get_csiborg_ids, get_sim_path, get_snapshots, # noqa
|
||||
get_snapshot_path, read_info, nparts_to_start_ind, # noqa
|
||||
open_particle, open_unbinding, read_particle, # noqa
|
||||
drop_zero_indx, # noqa
|
||||
read_clumpid, read_clumps, read_mmain) # noqa
|
||||
from .readobs import (read_planck2015, read_2mpp) # noqa
|
||||
from .outsim import (dump_split, combine_splits) # noqa
|
||||
|
|
124
csiborgtools/io/outsim.py
Normal file
124
csiborgtools/io/outsim.py
Normal file
|
@ -0,0 +1,124 @@
|
|||
# Copyright (C) 2022 Richard Stiskalek, Harry Desmond
|
||||
# This program is free software; you can redistribute it and/or modify it
|
||||
# under the terms of the GNU General Public License as published by the
|
||||
# Free Software Foundation; either version 3 of the License, or (at your
|
||||
# option) any later version.
|
||||
#
|
||||
# This program is distributed in the hope that it will be useful, but
|
||||
# WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
|
||||
# Public License for more details.
|
||||
#
|
||||
# You should have received a copy of the GNU General Public License along
|
||||
# with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||
"""
|
||||
I/O functions for analysing the CSiBORG realisations.
|
||||
"""
|
||||
|
||||
|
||||
import numpy
|
||||
from os.path import join
|
||||
from os import remove
|
||||
from tqdm import trange
|
||||
from .readsim import (get_sim_path, read_clumps)
|
||||
|
||||
I64 = numpy.int64
|
||||
F64 = numpy.float64
|
||||
|
||||
|
||||
def dump_split(arr, Nsplit, Nsim, Nsnap, outdir):
|
||||
"""
|
||||
Dump an array from a split.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
arr : n-dimensional or structured array
|
||||
Array to be saved.
|
||||
Nsplit : int
|
||||
The split index.
|
||||
Nsim : int
|
||||
The CSiBORG realisation index.
|
||||
Nsnap : int
|
||||
The index of a redshift snapshot.
|
||||
outdir : string
|
||||
Directory where to save the temporary files.
|
||||
|
||||
Returns
|
||||
-------
|
||||
None
|
||||
"""
|
||||
Nsim = str(Nsim).zfill(5)
|
||||
Nsnap = str(Nsnap).zfill(5)
|
||||
fname = join(outdir, "ramses_out_{}_{}_{}.npy".format(Nsim, Nsnap, Nsplit))
|
||||
numpy.save(fname, arr)
|
||||
|
||||
|
||||
def combine_splits(Nsplits, Nsim, Nsnap, outdir, cols_add, remove_splits=False,
|
||||
verbose=True):
|
||||
"""
|
||||
Combine results of many splits saved from `dump_split`. Identifies to which
|
||||
clump the clumps in the split correspond to by matching their index.
|
||||
Returns an array that contains the original clump data along with the newly
|
||||
calculated quantities.
|
||||
|
||||
Paramaters
|
||||
----------
|
||||
Nsplits : int
|
||||
The total number of clump splits.
|
||||
Nsim : int
|
||||
The CSiBORG realisation index.
|
||||
Nsnap : int
|
||||
The index of a redshift snapshot.
|
||||
outdir : str
|
||||
Directory where to save the new array.
|
||||
cols_add : list of `(str, dtype)`
|
||||
Colums to add. Must be formatted as, for example,
|
||||
`[("npart", numpy.float64), ("totpartmass", numpy.float64)]`.
|
||||
remove_splits : bool, optional
|
||||
Whether to remove the splits files. By default `False`.
|
||||
verbose : bool, optional
|
||||
Verbosity flag. By default `True`.
|
||||
|
||||
Returns
|
||||
-------
|
||||
out : structured array
|
||||
Clump array with appended results from the splits.
|
||||
"""
|
||||
# Will be grabbing these columns from each split
|
||||
cols_add = [("npart", I64), ("totpartmass", F64), ("logRs", F64),
|
||||
("rho0", F64)]
|
||||
# Load clumps to see how many there are and will add to this array
|
||||
simpath = get_sim_path(Nsim)
|
||||
clumps = read_clumps(Nsnap, simpath, cols=None)
|
||||
# Get the old + new dtypes and create an empty array
|
||||
descr = clumps.dtype.descr + cols_add
|
||||
out = numpy.full(clumps.size, numpy.nan, dtype=descr)
|
||||
# Now put the old values into the array
|
||||
for par in clumps.dtype.names:
|
||||
out[par] = clumps[par]
|
||||
|
||||
# Filename of splits data
|
||||
froot = "ramses_out_{}_{}".format(str(Nsim).zfill(5), str(Nsnap).zfill(5))
|
||||
fname = join(outdir, froot + "_{}.npy")
|
||||
|
||||
# Iterate over splits and add to the output array
|
||||
cols_add_names = [col[0] for col in cols_add]
|
||||
iters = trange(Nsplits) if verbose else range(Nsplits)
|
||||
for n in iters:
|
||||
fnamesplit = fname.format(n)
|
||||
arr = numpy.load(fnamesplit)
|
||||
|
||||
# Check that all halo indices from the split are in the clump file
|
||||
if not numpy.alltrue(numpy.isin(arr["index"], out["index"])):
|
||||
raise KeyError("....")
|
||||
# Mask of where to put the values from the split
|
||||
mask = numpy.isin(out["index"], arr["index"])
|
||||
for par in cols_add_names:
|
||||
out[par][mask] = arr[par]
|
||||
|
||||
# Now remove this split
|
||||
if remove_splits:
|
||||
remove(fnamesplit)
|
||||
|
||||
return out
|
|
@ -12,8 +12,9 @@
|
|||
# You should have received a copy of the GNU General Public License along
|
||||
# with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||
|
||||
"""Functions to read in the particle and clump files."""
|
||||
"""
|
||||
Functions to read in the particle and clump files.
|
||||
"""
|
||||
|
||||
import numpy
|
||||
from scipy.io import FortranFile
|
||||
|
@ -84,6 +85,27 @@ def get_sim_path(n, fname="ramses_out_{}", srcdir="/mnt/extraspace/hdesmond"):
|
|||
return join(srcdir, fname.format(n))
|
||||
|
||||
|
||||
def get_snapshots(simpath):
|
||||
"""
|
||||
Get the list of snapshots for the given IC realisation.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
simpath : str
|
||||
Path to the CSiBORG IC realisation.
|
||||
|
||||
Returns
|
||||
-------
|
||||
snapshots : 1-dimensional array
|
||||
Array of snapshot IDs.
|
||||
"""
|
||||
# Get all files in simpath that start with output_
|
||||
snaps = glob(join(simpath, "output_*"))
|
||||
# Take just the last _00XXXX from each file and strip zeros
|
||||
snaps = [int(snap.split('_')[-1].lstrip('0')) for snap in snaps]
|
||||
return numpy.sort(snaps)
|
||||
|
||||
|
||||
def get_snapshot_path(Nsnap, simpath):
|
||||
"""
|
||||
Get a path to a CSiBORG IC realisation snapshot.
|
||||
|
@ -135,13 +157,13 @@ def read_info(Nsnap, simpath):
|
|||
return {key: val for key, val in zip(keys, vals)}
|
||||
|
||||
|
||||
def open_particle(n, simpath, verbose=True):
|
||||
def open_particle(Nsnap, simpath, verbose=True):
|
||||
"""
|
||||
Open particle files to a given CSiBORG simulation.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
n : int
|
||||
Nsnap : int
|
||||
The index of a redshift snapshot.
|
||||
simpath : str
|
||||
The complete path to the CSiBORG simulation.
|
||||
|
@ -156,9 +178,9 @@ def open_particle(n, simpath, verbose=True):
|
|||
Opened part files.
|
||||
"""
|
||||
# Zeros filled snapshot number and the snapshot path
|
||||
nout = str(n).zfill(5)
|
||||
snappath = get_snapshot_path(n, simpath)
|
||||
ncpu = int(read_info(n, simpath)["ncpu"])
|
||||
nout = str(Nsnap).zfill(5)
|
||||
snappath = get_snapshot_path(Nsnap, simpath)
|
||||
ncpu = int(read_info(Nsnap, simpath)["ncpu"])
|
||||
|
||||
if verbose:
|
||||
print("Reading in output `{}` with ncpu = `{}`.".format(nout, ncpu))
|
||||
|
@ -245,7 +267,7 @@ def nparts_to_start_ind(nparts):
|
|||
return numpy.hstack([[0], numpy.cumsum(nparts[:-1])])
|
||||
|
||||
|
||||
def read_particle(pars_extract, n, simpath, verbose=True):
|
||||
def read_particle(pars_extract, Nsnap, simpath, verbose=True):
|
||||
"""
|
||||
Read particle files of a simulation at a given snapshot and return
|
||||
values of `pars_extract`.
|
||||
|
@ -254,7 +276,7 @@ def read_particle(pars_extract, n, simpath, verbose=True):
|
|||
----------
|
||||
pars_extract : list of str
|
||||
Parameters to be extacted.
|
||||
n : int
|
||||
Nsnap : int
|
||||
The index of the redshift snapshot.
|
||||
simpath : str
|
||||
The complete path to the CSiBORG simulation.
|
||||
|
@ -267,17 +289,19 @@ def read_particle(pars_extract, n, simpath, verbose=True):
|
|||
The data read from the particle file.
|
||||
"""
|
||||
# Open the particle files
|
||||
nparts, partfiles = open_particle(n, simpath)
|
||||
nparts, partfiles = open_particle(Nsnap, simpath)
|
||||
if verbose:
|
||||
print("Opened {} particle files.".format(nparts.size))
|
||||
ncpu = nparts.size
|
||||
# Order in which the particles are written in the FortranFile
|
||||
forder = [("x", F16), ("y", F16), ("z", F16),
|
||||
("vx", F16), ("vy", F16), ("vz", F16),
|
||||
forder = [("x", F32), ("y", F32), ("z", F32),
|
||||
("vx", F32), ("vy", F32), ("vz", F32),
|
||||
("M", F32), ("ID", I32), ("level", I32)]
|
||||
fnames = [fp[0] for fp in forder]
|
||||
fdtypes = [fp[1] for fp in forder]
|
||||
# Check there are no strange parameters
|
||||
if isinstance(pars_extract, str):
|
||||
pars_extract = [pars_extract]
|
||||
for p in pars_extract:
|
||||
if p not in fnames:
|
||||
raise ValueError("Undefined parameter `{}`. Must be one of `{}`."
|
||||
|
@ -305,7 +329,7 @@ def read_particle(pars_extract, n, simpath, verbose=True):
|
|||
return out
|
||||
|
||||
|
||||
def open_unbinding(cpu, n, simpath):
|
||||
def open_unbinding(cpu, Nsnap, simpath):
|
||||
"""
|
||||
Open particle files to a given CSiBORG simulation. Note that to be
|
||||
consistent CPU is incremented by 1.
|
||||
|
@ -314,7 +338,7 @@ def open_unbinding(cpu, n, simpath):
|
|||
----------
|
||||
cpu : int
|
||||
The CPU index.
|
||||
n : int
|
||||
Nsnap : int
|
||||
The index of a redshift snapshot.
|
||||
simpath : str
|
||||
The complete path to the CSiBORG simulation.
|
||||
|
@ -324,7 +348,7 @@ def open_unbinding(cpu, n, simpath):
|
|||
unbinding : `scipy.io.FortranFile`
|
||||
The opened unbinding FortranFile.
|
||||
"""
|
||||
nout = str(n).zfill(5)
|
||||
nout = str(Nsnap).zfill(5)
|
||||
cpu = str(cpu + 1).zfill(5)
|
||||
fpath = join(simpath, "output_{}".format(nout),
|
||||
"unbinding_{}.out{}".format(nout, cpu))
|
||||
|
@ -332,13 +356,13 @@ def open_unbinding(cpu, n, simpath):
|
|||
return FortranFile(fpath)
|
||||
|
||||
|
||||
def read_clumpid(n, simpath, verbose=True):
|
||||
def read_clumpid(Nsnap, simpath, verbose=True):
|
||||
"""
|
||||
Read clump IDs from unbinding files.
|
||||
Read clump IDs of halos from unbinding files.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
n : int
|
||||
Nsnap : int
|
||||
The index of a redshift snapshot.
|
||||
simpath : str
|
||||
The complete path to the CSiBORG simulation.
|
||||
|
@ -350,52 +374,94 @@ def read_clumpid(n, simpath, verbose=True):
|
|||
clumpid : 1-dimensional array
|
||||
The array of clump IDs.
|
||||
"""
|
||||
nparts, __ = open_particle(n, simpath, verbose)
|
||||
nparts, __ = open_particle(Nsnap, simpath, verbose)
|
||||
start_ind = nparts_to_start_ind(nparts)
|
||||
ncpu = nparts.size
|
||||
|
||||
clumpid = numpy.full(numpy.sum(nparts), numpy.nan)
|
||||
clumpid = numpy.full(numpy.sum(nparts), numpy.nan, dtype=I32)
|
||||
iters = tqdm(range(ncpu)) if verbose else range(ncpu)
|
||||
for cpu in iters:
|
||||
i = start_ind[cpu]
|
||||
j = nparts[cpu]
|
||||
ff = open_unbinding(cpu, n, simpath)
|
||||
ff = open_unbinding(cpu, Nsnap, simpath)
|
||||
clumpid[i:i + j] = ff.read_ints()
|
||||
|
||||
return clumpid
|
||||
|
||||
|
||||
def read_clumps(n, simpath):
|
||||
def drop_zero_indx(clump_ids, particles):
|
||||
"""
|
||||
Read in a precomputed clump file `clump_N.dat`.
|
||||
Drop from `clump_ids` and `particles` entries whose clump index is 0.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
n : int
|
||||
clump_ids : 1-dimensional array
|
||||
Array of clump IDs.
|
||||
particles : structured array
|
||||
Array of the particle data.
|
||||
|
||||
Returns
|
||||
-------
|
||||
clump_ids : 1-dimensional array
|
||||
The array of clump IDs after removing zero clump ID entries.
|
||||
particles : structured array
|
||||
The particle data after removing zero clump ID entries.
|
||||
"""
|
||||
mask = clump_ids != 0
|
||||
return clump_ids[mask], particles[mask]
|
||||
|
||||
|
||||
def read_clumps(Nsnap, simpath, cols=None):
|
||||
"""
|
||||
Read in a clump file `clump_Nsnap.dat`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
Nsnap : int
|
||||
The index of a redshift snapshot.
|
||||
simpath : str
|
||||
The complete path to the CSiBORG simulation.
|
||||
cols : list of str, optional.
|
||||
Columns to extract. By default `None` and all columns are extracted.
|
||||
|
||||
Returns
|
||||
-------
|
||||
out : structured array
|
||||
Structured array of the clumps.
|
||||
"""
|
||||
n = str(n).zfill(5)
|
||||
fname = join(simpath, "output_{}".format(n), "clump_{}.dat".format(n))
|
||||
Nsnap = str(Nsnap).zfill(5)
|
||||
fname = join(simpath, "output_{}".format(Nsnap),
|
||||
"clump_{}.dat".format(Nsnap))
|
||||
# Check the file exists.
|
||||
if not isfile(fname):
|
||||
raise FileExistsError("Clump file `{}` does not exist.".format(fname))
|
||||
|
||||
# Read in the clump array. This is how the columns must be written!
|
||||
arr = numpy.genfromtxt(fname)
|
||||
cols = [("index", I64), ("level", I64), ("parent", I64), ("ncell", F64),
|
||||
("peak_x", F64), ("peak_y", F64), ("peak_z", F64),
|
||||
("rho-", F64), ("rho+", F64), ("rho_av", F64),
|
||||
("mass_cl", F64), ("relevance", F64)]
|
||||
out = cols_to_structured(arr.shape[0], cols)
|
||||
for i, name in enumerate(out.dtype.names):
|
||||
out[name] = arr[:, i]
|
||||
data = numpy.genfromtxt(fname)
|
||||
clump_cols = [("index", I64), ("level", I64), ("parent", I64),
|
||||
("ncell", F64), ("peak_x", F64), ("peak_y", F64),
|
||||
("peak_z", F64), ("rho-", F64), ("rho+", F64),
|
||||
("rho_av", F64), ("mass_cl", F64), ("relevance", F64)]
|
||||
out0 = cols_to_structured(data.shape[0], clump_cols)
|
||||
for i, name in enumerate(out0.dtype.names):
|
||||
out0[name] = data[:, i]
|
||||
# If take all cols then return
|
||||
if cols is None:
|
||||
return out0
|
||||
# Make sure we have a list
|
||||
cols = [cols] if isinstance(cols, str) else cols
|
||||
# Get the indxs of clump_cols to output
|
||||
clump_names = [col[0] for col in clump_cols]
|
||||
indxs = [None] * len(cols)
|
||||
for i, col in enumerate(cols):
|
||||
if col not in clump_names:
|
||||
raise KeyError("...")
|
||||
indxs[i] = clump_names.index(col)
|
||||
# Make an array and fill it
|
||||
out = cols_to_structured(out0.size, [clump_cols[i] for i in indxs])
|
||||
for name in out.dtype.names:
|
||||
out[name] = out0[name]
|
||||
|
||||
return out
|
||||
|
||||
|
||||
|
|
|
@ -29,9 +29,11 @@ PI = 3.1415926535897932384626433
|
|||
|
||||
|
||||
class BoxUnits:
|
||||
"""
|
||||
r"""
|
||||
Box units class for converting between box and physical units.
|
||||
|
||||
TODO: check factors of :math:`a` in mass and density transformations
|
||||
|
||||
Paramaters
|
||||
----------
|
||||
Nsnap : int
|
||||
|
@ -62,7 +64,7 @@ class BoxUnits:
|
|||
|
||||
def box2kpc(self, length):
|
||||
r"""
|
||||
Convert length from box units to :math:`\mathrm{kpc}` (with
|
||||
Convert length from box units to :math:`\mathrm{ckpc}` (with
|
||||
:math:`h=0.705`).
|
||||
|
||||
Parameters
|
||||
|
@ -73,26 +75,26 @@ class BoxUnits:
|
|||
Returns
|
||||
-------
|
||||
length : foat
|
||||
Length in :math:`\mathrm{kpc}`
|
||||
Length in :math:`\mathrm{ckpc}`
|
||||
"""
|
||||
return length * self.unit_l / KPC_TO_CM
|
||||
return length * self.unit_l / KPC_TO_CM / self.aexp
|
||||
|
||||
def kpc2box(self, length):
|
||||
r"""
|
||||
Convert length from :math:`\mathrm{kpc}` (with :math:`h=0.705`) to
|
||||
Convert length from :math:`\mathrm{ckpc}` (with :math:`h=0.705`) to
|
||||
box units.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
length : float
|
||||
Length in :math:`\mathrm{kpc}`
|
||||
Length in :math:`\mathrm{ckpc}`
|
||||
|
||||
Returns
|
||||
-------
|
||||
length : foat
|
||||
Length in box units.
|
||||
"""
|
||||
return length / self.unit_l * KPC_TO_CM
|
||||
return length / self.unit_l * KPC_TO_CM * self.aexp
|
||||
|
||||
def solarmass2box(self, mass):
|
||||
r"""
|
||||
|
|
2484
scripts/concentration_fit.ipynb
Normal file
2484
scripts/concentration_fit.ipynb
Normal file
File diff suppressed because one or more lines are too long
92
scripts/run_fit_halos.py
Normal file
92
scripts/run_fit_halos.py
Normal file
|
@ -0,0 +1,92 @@
|
|||
# Copyright (C) 2022 Richard Stiskalek
|
||||
# This program is free software; you can redistribute it and/or modify it
|
||||
# under the terms of the GNU General Public License as published by the
|
||||
# Free Software Foundation; either version 3 of the License, or (at your
|
||||
# option) any later version.
|
||||
#
|
||||
# This program is distributed in the hope that it will be useful, but
|
||||
# WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
|
||||
# Public License for more details.
|
||||
#
|
||||
# You should have received a copy of the GNU General Public License along
|
||||
# with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||
"""
|
||||
A script to fit halos (concentration, ...). The particle array of each CSiBORG
|
||||
realisation must have been split in advance by `run_split_halos`.
|
||||
"""
|
||||
|
||||
import numpy
|
||||
from os.path import join
|
||||
from mpi4py import MPI
|
||||
try:
|
||||
import csiborgtools
|
||||
except ModuleNotFoundError:
|
||||
import sys
|
||||
sys.path.append("../")
|
||||
import csiborgtools
|
||||
import utils
|
||||
|
||||
F64 = numpy.float64
|
||||
I64 = numpy.int64
|
||||
|
||||
# Simulations and their snapshot to analyze
|
||||
Nsims = [9844]
|
||||
Nsnap = 1016
|
||||
|
||||
# Get MPI things
|
||||
comm = MPI.COMM_WORLD
|
||||
rank = comm.Get_rank()
|
||||
nproc = comm.Get_size()
|
||||
|
||||
|
||||
dumpdir = utils.dumpdir
|
||||
loaddir = join(utils.dumpdir, "temp")
|
||||
cols_collect = [("npart", I64), ("totpartmass", F64), ("logRs", F64),
|
||||
("rho0", F64)]
|
||||
# NOTE later loop over sims too
|
||||
Nsim = Nsims[0]
|
||||
|
||||
jobs = csiborgtools.fits.split_jobs(utils.Nsplits, nproc)[rank]
|
||||
for Nsplit in jobs:
|
||||
print("Rank {} working on {}.".format(rank, Nsplit))
|
||||
parts, part_clumps, clumps = csiborgtools.fits.load_split_particles(
|
||||
Nsplit, loaddir, Nsim, Nsnap, remove_split=False)
|
||||
|
||||
N = clumps.size
|
||||
cols = [("index", I64), ("npart", I64), ("totpartmass", F64),
|
||||
("logRs", F64), ("rho0", F64)]
|
||||
out = csiborgtools.utils.cols_to_structured(N, cols)
|
||||
out["index"] = clumps["index"]
|
||||
|
||||
for n in range(N):
|
||||
# Pick clump and its particles
|
||||
xs = csiborgtools.fits.pick_single_clump(n, parts, part_clumps, clumps)
|
||||
clump = csiborgtools.fits.Clump.from_arrays(*xs)
|
||||
out["npart"][n] = clump.Npart
|
||||
out["totpartmass"][n] = clump.total_particle_mass
|
||||
|
||||
# NFW profile fit
|
||||
if clump.Npart > 10:
|
||||
nfwpost = csiborgtools.fits.NFWPosterior(clump)
|
||||
logRs = nfwpost.maxpost_logRs()
|
||||
if logRs.success:
|
||||
out["logRs"][n] = logRs.x
|
||||
out["rho0"][n] = nfwpost.rho0_from_logRs(logRs.x)
|
||||
|
||||
csiborgtools.io.dump_split(out, Nsplit, Nsim, Nsnap, dumpdir)
|
||||
|
||||
# Force all ranks to wait
|
||||
comm.Barrier()
|
||||
# Use the rank 0 to combine outputs for this CSiBORG realisation
|
||||
if rank == 0:
|
||||
print("Collecting results!")
|
||||
out_collected = csiborgtools.io.combine_splits(
|
||||
utils.Nsplits, Nsim, Nsnap, utils.dumpdir, cols_collect,
|
||||
remove_splits=True, verbose=False)
|
||||
fname = join(utils.dumpdir, "ramses_out_{}_{}.npy"
|
||||
.format(str(Nsim).zfill(5), str(Nsnap).zfill(5)))
|
||||
print("Saving results to `{}`.".format(fname))
|
||||
numpy.save(fname, out_collected)
|
||||
print("All finished! See ya!")
|
51
scripts/run_split_halos.py
Normal file
51
scripts/run_split_halos.py
Normal file
|
@ -0,0 +1,51 @@
|
|||
# Copyright (C) 2022 Richard Stiskalek
|
||||
# This program is free software; you can redistribute it and/or modify it
|
||||
# under the terms of the GNU General Public License as published by the
|
||||
# Free Software Foundation; either version 3 of the License, or (at your
|
||||
# option) any later version.
|
||||
#
|
||||
# This program is distributed in the hope that it will be useful, but
|
||||
# WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
|
||||
# Public License for more details.
|
||||
#
|
||||
# You should have received a copy of the GNU General Public License along
|
||||
# with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||
"""
|
||||
Script to split particles into smaller files according to their clump
|
||||
membership for faster manipulation. Running this will require a lot of memory.
|
||||
"""
|
||||
|
||||
from tqdm import tqdm
|
||||
from os.path import join
|
||||
try:
|
||||
import csiborgtools
|
||||
except ModuleNotFoundError:
|
||||
import sys
|
||||
sys.path.append("../")
|
||||
import csiborgtools
|
||||
import utils
|
||||
|
||||
Nsims = [9844]
|
||||
Nsnap = 1016
|
||||
partcols = ["x", "y", "z", "M", "level"]
|
||||
dumpdir = join(utils.dumpdir, "temp")
|
||||
|
||||
for Nsim in tqdm(Nsims):
|
||||
simpath = csiborgtools.io.get_sim_path(Nsim)
|
||||
# Load the clumps, particles' clump IDs and particles.
|
||||
clumps = csiborgtools.io.read_clumps(Nsnap, simpath)
|
||||
particle_clumps = csiborgtools.io.read_clumpid(Nsnap, simpath,
|
||||
verbose=False)
|
||||
particles = csiborgtools.io.read_particle(partcols, Nsnap, simpath,
|
||||
verbose=False)
|
||||
# Drop all particles whose clump index is 0 (not assigned to any halo)
|
||||
particle_clumps, particles = csiborgtools.io.drop_zero_indx(
|
||||
particle_clumps, particles)
|
||||
# Dump it!
|
||||
csiborgtools.fits.dump_split_particles(particles, particle_clumps, clumps,
|
||||
utils.Nsplits, dumpdir, Nsim, Nsnap,
|
||||
verbose=False)
|
||||
|
||||
print("All finished!")
|
|
@ -1,352 +0,0 @@
|
|||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"id": "5a38ed25",
|
||||
"metadata": {
|
||||
"ExecuteTime": {
|
||||
"end_time": "2022-10-20T21:53:10.387523Z",
|
||||
"start_time": "2022-10-20T21:53:08.558627Z"
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import numpy as np\n",
|
||||
"try:\n",
|
||||
" import csiborgtools\n",
|
||||
"except ModuleNotFoundError:\n",
|
||||
" import sys\n",
|
||||
" sys.path.append(\"../\")\n",
|
||||
" import csiborgtools\n",
|
||||
" \n",
|
||||
" \n",
|
||||
"%load_ext autoreload\n",
|
||||
"%autoreload 2"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 23,
|
||||
"id": "7accd798",
|
||||
"metadata": {
|
||||
"ExecuteTime": {
|
||||
"end_time": "2022-10-20T22:00:25.350404Z",
|
||||
"start_time": "2022-10-20T22:00:24.775748Z"
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"simpath = csiborgtools.io.get_sim_path(9844)\n",
|
||||
"Nsnap = 1016\n",
|
||||
"# csiborgtools.io.read_info(1016, simpath)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 59,
|
||||
"id": "131c3107",
|
||||
"metadata": {
|
||||
"ExecuteTime": {
|
||||
"end_time": "2022-10-20T22:25:59.104572Z",
|
||||
"start_time": "2022-10-20T22:25:59.074460Z"
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"box = csiborgtools.units.BoxUnits(Nsnap, simpath)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 61,
|
||||
"id": "b1a11aa6",
|
||||
"metadata": {
|
||||
"ExecuteTime": {
|
||||
"end_time": "2022-10-20T22:26:12.931468Z",
|
||||
"start_time": "2022-10-20T22:26:12.671686Z"
|
||||
}
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"3.765003070876428e+19"
|
||||
]
|
||||
},
|
||||
"execution_count": 61,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"box.box2solarmass(1)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 55,
|
||||
"id": "19f39a80",
|
||||
"metadata": {
|
||||
"ExecuteTime": {
|
||||
"end_time": "2022-10-20T22:24:59.563137Z",
|
||||
"start_time": "2022-10-20T22:24:59.530173Z"
|
||||
}
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"3.749e+19"
|
||||
]
|
||||
},
|
||||
"execution_count": 55,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"3.749e19"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 57,
|
||||
"id": "5d1413fd",
|
||||
"metadata": {
|
||||
"ExecuteTime": {
|
||||
"end_time": "2022-10-20T22:25:17.251057Z",
|
||||
"start_time": "2022-10-20T22:25:17.223543Z"
|
||||
}
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"0.9957495198343349"
|
||||
]
|
||||
},
|
||||
"execution_count": 57,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"box.solarmass2box(3.749e19)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "90cf9d61",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "b53e8166",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "b3eeca5b",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 49,
|
||||
"id": "93d32800",
|
||||
"metadata": {
|
||||
"ExecuteTime": {
|
||||
"end_time": "2022-10-20T22:09:12.915516Z",
|
||||
"start_time": "2022-10-20T22:09:12.856213Z"
|
||||
}
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"0.9988759675724455"
|
||||
]
|
||||
},
|
||||
"execution_count": 49,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"box.kpc2box(677.7 / 0.705 * 1000)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 43,
|
||||
"id": "66d3e98f",
|
||||
"metadata": {
|
||||
"ExecuteTime": {
|
||||
"end_time": "2022-10-20T22:06:46.471218Z",
|
||||
"start_time": "2022-10-20T22:06:46.437023Z"
|
||||
}
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"678.4626139789958"
|
||||
]
|
||||
},
|
||||
"execution_count": 43,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"box.box2kpc(1) / 1000 * 0.705"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "ef00a04c",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "d201838b",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"filename = \"/mnt/extraspace/hdesmond/ramses_out_9844/output_01016/info_01016.txt\""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "d012a21b",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "547f7944",
|
||||
"metadata": {
|
||||
"ExecuteTime": {
|
||||
"end_time": "2022-10-20T19:52:22.548299Z",
|
||||
"start_time": "2022-10-20T19:52:22.544342Z"
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"results_filepath = '/mnt/extraspace/deaglan/H-AGN/'\n",
|
||||
"sugata_filepath = '/mnt/extraspace/jeg/greenwhale/Sugata/'\n",
|
||||
"\n",
|
||||
"def info_dir():\n",
|
||||
" return sugata_filepath + 'INFO/'\n",
|
||||
"\n",
|
||||
"def info_file(nout):\n",
|
||||
" return info_dir() + 'info_' + str(nout).zfill(5) + '.txt'\n",
|
||||
"\n",
|
||||
"def h_agn_particle_directory(nout):\n",
|
||||
" return sugata_filepath + 'H-AGN/output_' + str(nout).zfill(5) + '/'\n",
|
||||
"\n",
|
||||
"def cosmo_dir():\n",
|
||||
" return './data/'\n",
|
||||
"\n",
|
||||
"def cosmo_file(nout):\n",
|
||||
" return cosmo_dir() + 'cosmo_table_' + str(nout).zfill(5) + '.txt'"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "30630635",
|
||||
"metadata": {
|
||||
"ExecuteTime": {
|
||||
"end_time": "2022-10-20T19:52:22.777853Z",
|
||||
"start_time": "2022-10-20T19:52:22.774584Z"
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"info_dir()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "a3fc21b2",
|
||||
"metadata": {
|
||||
"ExecuteTime": {
|
||||
"end_time": "2022-10-20T19:56:35.946185Z",
|
||||
"start_time": "2022-10-20T19:56:35.943643Z"
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"filename = \"/mnt/extraspace/hdesmond/ramses_out_9844/output_01016/info_01016.txt\""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "fae40a32",
|
||||
"metadata": {
|
||||
"ExecuteTime": {
|
||||
"end_time": "2022-10-20T20:05:04.410987Z",
|
||||
"start_time": "2022-10-20T20:05:04.403721Z"
|
||||
},
|
||||
"scrolled": false
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"e"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "de7e3ae7",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3.8.0 ('venv_galomatch': virtualenv)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.8.0"
|
||||
},
|
||||
"vscode": {
|
||||
"interpreter": {
|
||||
"hash": "f29d02a8350410abc2a9fb79641689d10bf7ab64afc03ec87ca3cf6ed2daa499"
|
||||
}
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
|
@ -28,6 +28,10 @@ except ModuleNotFoundError:
|
|||
sys.path.append("../")
|
||||
|
||||
|
||||
Nsplits = 200
|
||||
dumpdir = "/mnt/extraspace/rstiskalek/csiborg/"
|
||||
|
||||
|
||||
def load_mmain_convert(n):
|
||||
srcdir = "/users/hdesmond/Mmain"
|
||||
arr = csiborgtools.io.read_mmain(n, srcdir)
|
||||
|
|
Loading…
Reference in a new issue