mirror of
https://github.com/Richard-Sti/csiborgtools.git
synced 2024-12-22 12:48:02 +00:00
Merge plotting scritps
This commit is contained in:
parent
48cd5da88c
commit
7c2d7a86f5
2 changed files with 130 additions and 182 deletions
|
@ -13,15 +13,16 @@
|
||||||
# with this program; if not, write to the Free Software Foundation, Inc.,
|
# with this program; if not, write to the Free Software Foundation, Inc.,
|
||||||
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||||
|
|
||||||
from argparse import ArgumentParser
|
|
||||||
from os.path import join
|
from os.path import join
|
||||||
|
from argparse import ArgumentParser
|
||||||
|
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
import numpy
|
import numpy
|
||||||
import scienceplots # noqa
|
|
||||||
from cache_to_disk import cache_to_disk, delete_disk_caches_for_function
|
|
||||||
|
|
||||||
|
import scienceplots # noqa
|
||||||
import utils
|
import utils
|
||||||
|
from cache_to_disk import cache_to_disk, delete_disk_caches_for_function
|
||||||
|
from tqdm import tqdm
|
||||||
|
|
||||||
try:
|
try:
|
||||||
import csiborgtools
|
import csiborgtools
|
||||||
|
@ -31,6 +32,119 @@ except ModuleNotFoundError:
|
||||||
import csiborgtools
|
import csiborgtools
|
||||||
|
|
||||||
|
|
||||||
|
###############################################################################
|
||||||
|
# IC overlap plotting #
|
||||||
|
###############################################################################
|
||||||
|
|
||||||
|
def open_cat(nsim):
|
||||||
|
"""
|
||||||
|
Open a CSiBORG halo catalogue.
|
||||||
|
"""
|
||||||
|
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
|
||||||
|
bounds = {"totpartmass": (1e12, None)}
|
||||||
|
return csiborgtools.read.HaloCatalogue(nsim, paths, bounds=bounds)
|
||||||
|
|
||||||
|
|
||||||
|
@cache_to_disk(7)
|
||||||
|
def get_overlap(nsim0):
|
||||||
|
"""
|
||||||
|
Calculate the summed overlap and probability of no match for a single
|
||||||
|
reference simulation.
|
||||||
|
"""
|
||||||
|
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
|
||||||
|
nsimxs = csiborgtools.read.get_cross_sims(nsim0, paths, smoothed=True)
|
||||||
|
cat0 = open_cat(nsim0)
|
||||||
|
|
||||||
|
catxs = []
|
||||||
|
for nsimx in tqdm(nsimxs):
|
||||||
|
catxs.append(open_cat(nsimx))
|
||||||
|
|
||||||
|
reader = csiborgtools.read.NPairsOverlap(cat0, catxs, paths)
|
||||||
|
x = reader.cat0("totpartmass")
|
||||||
|
summed_overlap = reader.summed_overlap(True)
|
||||||
|
prob_nomatch = reader.prob_nomatch(True)
|
||||||
|
return x, summed_overlap, prob_nomatch
|
||||||
|
|
||||||
|
|
||||||
|
def plot_summed_overlap(nsim0):
|
||||||
|
"""
|
||||||
|
Plot the summed overlap and probability of no matching for a single
|
||||||
|
reference simulation as a function of the reference halo mass.
|
||||||
|
"""
|
||||||
|
x, summed_overlap, prob_nomatch = get_overlap(nsim0)
|
||||||
|
|
||||||
|
mean_overlap = numpy.mean(summed_overlap, axis=1)
|
||||||
|
std_overlap = numpy.std(summed_overlap, axis=1)
|
||||||
|
|
||||||
|
mean_prob_nomatch = numpy.mean(prob_nomatch, axis=1)
|
||||||
|
# std_prob_nomatch = numpy.std(prob_nomatch, axis=1)
|
||||||
|
|
||||||
|
mask = mean_overlap > 0
|
||||||
|
x = x[mask]
|
||||||
|
mean_overlap = mean_overlap[mask]
|
||||||
|
std_overlap = std_overlap[mask]
|
||||||
|
mean_prob_nomatch = mean_prob_nomatch[mask]
|
||||||
|
|
||||||
|
# Mean summed overlap
|
||||||
|
with plt.style.context(utils.mplstyle):
|
||||||
|
plt.figure()
|
||||||
|
plt.hexbin(x, mean_overlap, mincnt=1, xscale="log", bins="log",
|
||||||
|
gridsize=50)
|
||||||
|
plt.colorbar(label="Counts in bins")
|
||||||
|
plt.xlabel(r"$M_{\rm tot} / M_\odot$")
|
||||||
|
plt.ylabel(r"$\langle \mathcal{O}_{a}^{\mathcal{A} \mathcal{B}} \rangle_{\mathcal{B}}$") # noqa
|
||||||
|
plt.ylim(0., 1.)
|
||||||
|
|
||||||
|
plt.tight_layout()
|
||||||
|
for ext in ["png", "pdf"]:
|
||||||
|
fout = join(utils.fout, f"overlap_mean_{nsim0}.{ext}")
|
||||||
|
print(f"Saving to `{fout}`.")
|
||||||
|
plt.savefig(fout, dpi=utils.dpi, bbox_inches="tight")
|
||||||
|
plt.close()
|
||||||
|
|
||||||
|
# Std summed overlap
|
||||||
|
with plt.style.context(utils.mplstyle):
|
||||||
|
plt.figure()
|
||||||
|
plt.hexbin(x, std_overlap, mincnt=1, xscale="log", bins="log",
|
||||||
|
gridsize=50)
|
||||||
|
plt.colorbar(label="Counts in bins")
|
||||||
|
plt.xlabel(r"$M_{\rm tot} / M_\odot$")
|
||||||
|
plt.ylabel(r"$\delta \left( \mathcal{O}_{a}^{\mathcal{A} \mathcal{B}} \right)_{\mathcal{B}}$") # noqa
|
||||||
|
plt.ylim(0., 1.)
|
||||||
|
plt.tight_layout()
|
||||||
|
|
||||||
|
for ext in ["png", "pdf"]:
|
||||||
|
fout = join(utils.fout, f"overlap_std_{nsim0}.{ext}")
|
||||||
|
print(f"Saving to `{fout}`.")
|
||||||
|
plt.savefig(fout, dpi=utils.dpi, bbox_inches="tight")
|
||||||
|
plt.close()
|
||||||
|
|
||||||
|
# 1 - mean summed overlap vs mean prob nomatch
|
||||||
|
with plt.style.context(utils.mplstyle):
|
||||||
|
plt.figure()
|
||||||
|
plt.scatter(1 - mean_overlap, mean_prob_nomatch, c=numpy.log10(x), s=2,
|
||||||
|
rasterized=True)
|
||||||
|
plt.colorbar(label=r"$\log_{10} M_{\rm halo} / M_\odot$")
|
||||||
|
|
||||||
|
t = numpy.linspace(0.3, 1, 100)
|
||||||
|
plt.plot(t, t, color="red", linestyle="--")
|
||||||
|
|
||||||
|
plt.xlabel(r"$1 - \langle \mathcal{O}_a^{\mathcal{A} \mathcal{B}} \rangle_{\mathcal{B}}$") # noqa
|
||||||
|
plt.ylabel(r"$\langle \eta_a^{\mathcal{A} \mathcal{B}} \rangle_{\mathcal{B}}$") # noqa
|
||||||
|
plt.tight_layout()
|
||||||
|
|
||||||
|
for ext in ["png", "pdf"]:
|
||||||
|
fout = join(utils.fout, f"overlap_vs_prob_nomatch_{nsim0}.{ext}")
|
||||||
|
print(f"Saving to `{fout}`.")
|
||||||
|
plt.savefig(fout, dpi=utils.dpi, bbox_inches="tight")
|
||||||
|
plt.close()
|
||||||
|
|
||||||
|
|
||||||
|
###############################################################################
|
||||||
|
# Nearest neighbour plotting #
|
||||||
|
###############################################################################
|
||||||
|
|
||||||
|
|
||||||
@cache_to_disk(7)
|
@cache_to_disk(7)
|
||||||
def read_dist(simname, run, kind, kwargs):
|
def read_dist(simname, run, kind, kwargs):
|
||||||
paths = csiborgtools.read.Paths(**kwargs["paths_kind"])
|
paths = csiborgtools.read.Paths(**kwargs["paths_kind"])
|
||||||
|
@ -199,32 +313,22 @@ if __name__ == "__main__":
|
||||||
parser.add_argument('-c', '--clean', action='store_true')
|
parser.add_argument('-c', '--clean', action='store_true')
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
|
|
||||||
kwargs = {"rmax_radial": 155 / 0.705,
|
cached_funcs = ["get_overlap", "read_dist", "make_kl", "make_ks"]
|
||||||
"nbins_radial": 20,
|
|
||||||
"rmax_neighbour": 100.,
|
|
||||||
"nbins_neighbour": 150,
|
|
||||||
"paths_kind": csiborgtools.paths_glamdring}
|
|
||||||
|
|
||||||
cached_funcs = ["read_dist", "make_kl", "make_ks"]
|
|
||||||
if args.clean:
|
if args.clean:
|
||||||
for func in cached_funcs:
|
for func in cached_funcs:
|
||||||
print(f"Cleaning cache for function `{func}`.")
|
print(f"Cleaning cache for function {func}.")
|
||||||
delete_disk_caches_for_function(func)
|
delete_disk_caches_for_function(func)
|
||||||
|
|
||||||
paths = csiborgtools.read.Paths(**kwargs["paths_kind"])
|
neighbour_kwargs = {"rmax_radial": 155 / 0.705,
|
||||||
reader = csiborgtools.read.NearestNeighbourReader(**kwargs, paths=paths)
|
"nbins_radial": 20,
|
||||||
|
"rmax_neighbour": 100.,
|
||||||
|
"nbins_neighbour": 150,
|
||||||
|
"paths_kind": csiborgtools.paths_glamdring}
|
||||||
|
|
||||||
|
paths = csiborgtools.read.Paths(**neighbour_kwargs["paths_kind"])
|
||||||
|
nn_reader = csiborgtools.read.NearestNeighbourReader(**neighbour_kwargs,
|
||||||
|
paths=paths)
|
||||||
run = "mass003"
|
run = "mass003"
|
||||||
|
|
||||||
# for kind in ["pdf", "cdf"]:
|
# for ic in [7444, 8812, 9700]:
|
||||||
# plot_dist(run, kind, kwargs)
|
# plot_summed_overlap(ic)
|
||||||
# for kind in ["kl", "ks"]:
|
|
||||||
# # plot_significance_hist("csiborg", run, 7444, nobs=None, kind=kind,
|
|
||||||
# # kwargs=kwargs)
|
|
||||||
# plot_significance_mass("quijote", run, 0, nobs=0, kind=kind,
|
|
||||||
# kwargs=kwargs)
|
|
||||||
|
|
||||||
# plot_significance_mass("quijote", run, 0, nobs=0, kind="ks",
|
|
||||||
# kwargs=kwargs)
|
|
||||||
|
|
||||||
plot_kl_vs_ks("quijote", run, 0, nobs=0, kwargs=kwargs)
|
|
||||||
plot_kl_vs_ks("csiborg", run, 7444, nobs=None, kwargs=kwargs)
|
|
|
@ -1,156 +0,0 @@
|
||||||
# Copyright (C) 2023 Richard Stiskalek
|
|
||||||
# This program is free software; you can redistribute it and/or modify it
|
|
||||||
# under the terms of the GNU General Public License as published by the
|
|
||||||
# Free Software Foundation; either version 3 of the License, or (at your
|
|
||||||
# option) any later version.
|
|
||||||
#
|
|
||||||
# This program is distributed in the hope that it will be useful, but
|
|
||||||
# WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
||||||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
|
|
||||||
# Public License for more details.
|
|
||||||
#
|
|
||||||
# You should have received a copy of the GNU General Public License along
|
|
||||||
# with this program; if not, write to the Free Software Foundation, Inc.,
|
|
||||||
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
||||||
|
|
||||||
from os.path import join
|
|
||||||
from argparse import ArgumentParser
|
|
||||||
|
|
||||||
import matplotlib.pyplot as plt
|
|
||||||
import numpy
|
|
||||||
|
|
||||||
import scienceplots # noqa
|
|
||||||
import utils
|
|
||||||
from cache_to_disk import cache_to_disk, delete_disk_caches_for_function
|
|
||||||
from tqdm import tqdm
|
|
||||||
|
|
||||||
try:
|
|
||||||
import csiborgtools
|
|
||||||
except ModuleNotFoundError:
|
|
||||||
import sys
|
|
||||||
sys.path.append("../")
|
|
||||||
import csiborgtools
|
|
||||||
|
|
||||||
|
|
||||||
###############################################################################
|
|
||||||
# Probability of matching a reference simulation halo #
|
|
||||||
###############################################################################
|
|
||||||
|
|
||||||
|
|
||||||
def open_cat(nsim):
|
|
||||||
"""
|
|
||||||
Open a CSiBORG halo catalogue.
|
|
||||||
"""
|
|
||||||
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
|
|
||||||
bounds = {"totpartmass": (1e12, None)}
|
|
||||||
return csiborgtools.read.HaloCatalogue(nsim, paths, bounds=bounds)
|
|
||||||
|
|
||||||
|
|
||||||
@cache_to_disk(7)
|
|
||||||
def get_overlap(nsim0):
|
|
||||||
"""
|
|
||||||
Calculate the summed overlap and probability of no match for a single
|
|
||||||
reference simulation.
|
|
||||||
"""
|
|
||||||
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
|
|
||||||
nsimxs = csiborgtools.read.get_cross_sims(nsim0, paths, smoothed=True)
|
|
||||||
cat0 = open_cat(nsim0)
|
|
||||||
|
|
||||||
catxs = []
|
|
||||||
for nsimx in tqdm(nsimxs):
|
|
||||||
catxs.append(open_cat(nsimx))
|
|
||||||
|
|
||||||
reader = csiborgtools.read.NPairsOverlap(cat0, catxs, paths)
|
|
||||||
x = reader.cat0("totpartmass")
|
|
||||||
summed_overlap = reader.summed_overlap(True)
|
|
||||||
prob_nomatch = reader.prob_nomatch(True)
|
|
||||||
return x, summed_overlap, prob_nomatch
|
|
||||||
|
|
||||||
|
|
||||||
def plot_summed_overlap(nsim0):
|
|
||||||
"""
|
|
||||||
Plot the summed overlap and probability of no matching for a single
|
|
||||||
reference simulation as a function of the reference halo mass.
|
|
||||||
"""
|
|
||||||
x, summed_overlap, prob_nomatch = get_overlap(nsim0)
|
|
||||||
|
|
||||||
mean_overlap = numpy.mean(summed_overlap, axis=1)
|
|
||||||
std_overlap = numpy.std(summed_overlap, axis=1)
|
|
||||||
|
|
||||||
mean_prob_nomatch = numpy.mean(prob_nomatch, axis=1)
|
|
||||||
# std_prob_nomatch = numpy.std(prob_nomatch, axis=1)
|
|
||||||
|
|
||||||
mask = mean_overlap > 0
|
|
||||||
x = x[mask]
|
|
||||||
mean_overlap = mean_overlap[mask]
|
|
||||||
std_overlap = std_overlap[mask]
|
|
||||||
mean_prob_nomatch = mean_prob_nomatch[mask]
|
|
||||||
|
|
||||||
# Mean summed overlap
|
|
||||||
with plt.style.context(utils.mplstyle):
|
|
||||||
plt.figure()
|
|
||||||
plt.hexbin(x, mean_overlap, mincnt=1, xscale="log", bins="log",
|
|
||||||
gridsize=50)
|
|
||||||
plt.colorbar(label="Counts in bins")
|
|
||||||
plt.xlabel(r"$M_{\rm tot} / M_\odot$")
|
|
||||||
plt.ylabel(r"$\langle \mathcal{O}_{a}^{\mathcal{A} \mathcal{B}} \rangle_{\mathcal{B}}$") # noqa
|
|
||||||
plt.ylim(0., 1.)
|
|
||||||
|
|
||||||
plt.tight_layout()
|
|
||||||
for ext in ["png", "pdf"]:
|
|
||||||
fout = join(utils.fout, f"overlap_mean_{nsim0}.{ext}")
|
|
||||||
print(f"Saving to `{fout}`.")
|
|
||||||
plt.savefig(fout, dpi=utils.dpi, bbox_inches="tight")
|
|
||||||
plt.close()
|
|
||||||
|
|
||||||
# Std summed overlap
|
|
||||||
with plt.style.context(utils.mplstyle):
|
|
||||||
plt.figure()
|
|
||||||
plt.hexbin(x, std_overlap, mincnt=1, xscale="log", bins="log",
|
|
||||||
gridsize=50)
|
|
||||||
plt.colorbar(label="Counts in bins")
|
|
||||||
plt.xlabel(r"$M_{\rm tot} / M_\odot$")
|
|
||||||
plt.ylabel(r"$\delta \left( \mathcal{O}_{a}^{\mathcal{A} \mathcal{B}} \right)_{\mathcal{B}}$") # noqa
|
|
||||||
plt.ylim(0., 1.)
|
|
||||||
plt.tight_layout()
|
|
||||||
|
|
||||||
for ext in ["png", "pdf"]:
|
|
||||||
fout = join(utils.fout, f"overlap_std_{nsim0}.{ext}")
|
|
||||||
print(f"Saving to `{fout}`.")
|
|
||||||
plt.savefig(fout, dpi=utils.dpi, bbox_inches="tight")
|
|
||||||
plt.close()
|
|
||||||
|
|
||||||
# 1 - mean summed overlap vs mean prob nomatch
|
|
||||||
with plt.style.context(utils.mplstyle):
|
|
||||||
plt.figure()
|
|
||||||
plt.scatter(1 - mean_overlap, mean_prob_nomatch, c=numpy.log10(x), s=2,
|
|
||||||
rasterized=True)
|
|
||||||
plt.colorbar(label=r"$\log_{10} M_{\rm halo} / M_\odot$")
|
|
||||||
|
|
||||||
t = numpy.linspace(0.3, 1, 100)
|
|
||||||
plt.plot(t, t, color="red", linestyle="--")
|
|
||||||
|
|
||||||
plt.xlabel(r"$1 - \langle \mathcal{O}_a^{\mathcal{A} \mathcal{B}} \rangle_{\mathcal{B}}$") # noqa
|
|
||||||
plt.ylabel(r"$\langle \eta_a^{\mathcal{A} \mathcal{B}} \rangle_{\mathcal{B}}$") # noqa
|
|
||||||
plt.tight_layout()
|
|
||||||
|
|
||||||
for ext in ["png", "pdf"]:
|
|
||||||
fout = join(utils.fout, f"overlap_vs_prob_nomatch_{nsim0}.{ext}")
|
|
||||||
print(f"Saving to `{fout}`.")
|
|
||||||
plt.savefig(fout, dpi=utils.dpi, bbox_inches="tight")
|
|
||||||
plt.close()
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
parser = ArgumentParser()
|
|
||||||
parser.add_argument('-c', '--clean', action='store_true')
|
|
||||||
args = parser.parse_args()
|
|
||||||
|
|
||||||
cached_funcs = ["get_overlap"]
|
|
||||||
if args.clean:
|
|
||||||
for func in cached_funcs:
|
|
||||||
print(f"Cleaning cache for function {func}.")
|
|
||||||
delete_disk_caches_for_function(func)
|
|
||||||
|
|
||||||
for ic in [7444, 8812, 9700]:
|
|
||||||
plot_summed_overlap(ic)
|
|
Loading…
Reference in a new issue