Calculate upglade redshifts (#128)

* Update redshift reading

* Add helio to CMB redshift

* Update imports

* Update nb

* Run for Quijote

* Add script

* Update

* Update .gitignore

* Update imports

* Add Peery estimator

* Add bulk flow scripts

* Update typs

* Add comment

* Add blank space

* Update submission script

* Update description

* Add barriers

* Update nb

* Update nb

* Rename script

* Move to old

* Update imports

* Add nb

* Update script

* Fix catalogue key

* Update script

* Update submit

* Update comment

* Update .gitignore

* Update nb

* Update for stationary obsrevers

* Update submission

* Add nb

* Add better verbose control

* Update nb

* Update submit

* Update nb

* Add SN errors

* Add draft of the script

* Update verbosity flags

* Add submission script

* Debug script

* Quickfix

* Remove comment

* Update nb

* Update submission

* Update nb

* Processed UPGLADE
This commit is contained in:
Richard Stiskalek 2024-06-20 14:33:00 +01:00 committed by GitHub
parent c447d2e7b0
commit 779f2e76ac
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
24 changed files with 2066 additions and 300 deletions

View file

@ -77,9 +77,17 @@ def get_los(catalogue_name, simname, comm):
with File(fname, 'r') as f:
RA = f["RA"][:]
dec = f["DEC"][:]
elif catalogue_name == "UPGLADE":
fname = "/mnt/users/rstiskalek/csiborgtools/data/upglade_z_0p05_all_PROCESSED.h5" # noqa
with File(fname, 'r') as f:
RA = f["RA"][:]
dec = f["DEC"][:]
else:
raise ValueError(f"Unknown field name: `{catalogue_name}`.")
if comm.Get_rank() == 0:
print(f"The dataset contains {len(RA)} objects.")
# The Carrick+2015 is in galactic coordinates, so we need to convert
# the RA/dec to galactic coordinates.
if simname == "Carrick2015":
@ -210,7 +218,7 @@ def combine_from_simulations(catalogue_name, simname, nsims, outfolder,
def interpolate_field(pos, simname, nsim, MAS, grid, dump_folder, rmax,
dr, smooth_scales):
dr, smooth_scales, verbose=False):
"""
Interpolate the density and velocity fields along the line of sight.
@ -243,11 +251,13 @@ def interpolate_field(pos, simname, nsim, MAS, grid, dump_folder, rmax,
fname_out = join(dump_folder, f"los_{simname}_{nsim}.hdf5")
# First do the density field.
if verbose:
print(f"Interpolating density field for IC realisation `{nsim}`.",
flush=True)
density = get_field(simname, nsim, "density", MAS, grid)
rdist, finterp = csiborgtools.field.evaluate_los(
density, sky_pos=pos, boxsize=boxsize, rmax=rmax, dr=dr,
smooth_scales=smooth_scales, verbose=False)
smooth_scales=smooth_scales, verbose=verbose)
print(f"Writing temporary file `{fname_out}`.")
with File(fname_out, 'w') as f:
@ -257,11 +267,14 @@ def interpolate_field(pos, simname, nsim, MAS, grid, dump_folder, rmax,
del density, rdist, finterp
collect()
if verbose:
print(f"Interpolating velocity field for IC realisation `{nsim}`.",
flush=True)
velocity = get_field(simname, nsim, "velocity", MAS, grid)
rdist, finterp = csiborgtools.field.evaluate_los(
velocity[0], velocity[1], velocity[2],
sky_pos=pos, boxsize=boxsize, rmax=rmax, dr=dr,
smooth_scales=smooth_scales, verbose=False)
smooth_scales=smooth_scales, verbose=verbose)
with File(fname_out, 'a') as f:
f.create_dataset("velocity", data=finterp)
@ -308,7 +321,8 @@ if __name__ == "__main__":
def main(nsim):
interpolate_field(pos, args.simname, nsim, args.MAS, args.grid,
dump_folder, rmax, dr, smooth_scales)
dump_folder, rmax, dr, smooth_scales,
verbose=comm.Get_size() == 1)
work_delegation(main, nsims, comm, master_verbose=True)
comm.Barrier()

View file

@ -1,5 +1,5 @@
nthreads=6
memory=42
nthreads=1
memory=32
on_login=0
queue="berg"
env="/mnt/users/rstiskalek/csiborgtools/venv_csiborg/bin/python"

View file

@ -7,8 +7,9 @@ queue="berg"
env="/mnt/users/rstiskalek/csiborgtools/venv_csiborg/bin/python"
file="flow_validation.py"
#"Pantheon+_zSN"
catalogue="Pantheon+_groups"
simname="csiborg2_varysmall"
simname="Carrick2015"
pythoncm="$env $file --catalogue $catalogue --simname $simname --ksmooth $ksmooth"

View file

@ -0,0 +1,165 @@
# Copyright (C) 2023 Richard Stiskalek
# This program is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3 of the License, or (at your
# option) any later version.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
# Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
"""
A script to calculate the bulk flow in Quijote to compare the volume average
definition to various estimators that rely on radial velocities (e.g. Nusser
2014 and Peery+2018).
"""
from argparse import ArgumentParser
from datetime import datetime
from os import remove
from os.path import join
import csiborgtools
import numpy as np
from mpi4py import MPI
from taskmaster import work_delegation # noqa
###############################################################################
# Read in information about the simulation #
###############################################################################
def t():
return datetime.now()
def get_reader(simname, paths, nsim):
"""Get the appropriate snaspshot reader for the simulation."""
# We only want Quijote because it has all particles of the same mass.
if simname == "quijote":
# We want the z = 0 snapshots
reader = csiborgtools.read.QuijoteSnapshot(nsim, 4, paths)
else:
raise ValueError(f"Unknown simname: `{simname}`.")
return reader
def get_particles(reader, verbose=True):
"""
Get the distance of particles from the center of the box and their masses.
"""
if verbose:
print(f"{t()},: reading coordinates and calculating radial distance.")
pos = reader.coordinates().astype(np.float64)
vel = reader.velocities().astype(np.float64)
return pos, vel
###############################################################################
# Main & command line interface #
###############################################################################
def main(simname, nsim, folder, Rmax):
observers = csiborgtools.read.fiducial_observers(boxsize, Rmax)
distances = np.linspace(0, Rmax, 101)[1:]
reader = get_reader(simname, paths, nsim)
pos, vel = get_particles(reader, verbose=False)
mass = np.ones(len(pos)) # Quijote has equal masses
bf_volume = np.full((len(observers), len(distances), 3), np.nan)
bf_peery = np.full_like(bf_volume, np.nan)
bf_const = np.full_like(bf_volume, np.nan)
for i in range(len(observers)):
print(f"{t()}: Calculating bulk flow for observer {i + 1} of simulation {nsim}.") # noqa
# Subtract the observer position.
pos_current = pos - observers[i]
# Get the distance of each particle from the observer and sort it.
rdist = np.linalg.norm(pos_current, axis=1)
indxs = np.argsort(rdist)
pos_current = pos_current[indxs]
vel_current = vel[indxs]
rdist = rdist[indxs]
# Volume average
bf_volume[i, ...] = csiborgtools.field.particles_enclosed_momentum(
rdist, mass, vel_current, distances)
bf_volume[i, ...] /= csiborgtools.field.particles_enclosed_mass(
rdist, mass, distances)[:, np.newaxis]
# Peery 2018 1 / r^2 weighted
bf_peery[i, ...] = csiborgtools.field.bulkflow_peery2018(
rdist, mass, pos_current, vel_current, distances, "1/r^2",
verbose=False)
# Constant weight
bf_const[i, ...] = csiborgtools.field.bulkflow_peery2018(
rdist, mass, pos_current, vel_current, distances, "constant",
verbose=False)
# Finally save the output
fname = join(folder, f"bf_estimators_addconstant_{simname}_{nsim}.npz")
print(f"Saving to `{fname}`.")
np.savez(fname, bf_volume=bf_volume, bf_peery=bf_peery, bf_const=bf_const,
distances=distances)
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument("--simname", type=str, help="Simulation name.",
choices=["quijote"]) # noqa
args = parser.parse_args()
Rmax = 150
folder = "/mnt/extraspace/rstiskalek/csiborg_postprocessing/field_shells"
comm = MPI.COMM_WORLD
rank = comm.Get_rank()
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
boxsize = csiborgtools.simname2boxsize(args.simname)
def main_wrapper(nsim):
main(args.simname, nsim, folder, Rmax)
nsims = list(paths.get_ics(args.simname))
if rank == 0:
print(f"Running with {len(nsims)} Quijote simulations.")
comm.Barrier()
work_delegation(main_wrapper, nsims, comm, master_verbose=True)
comm.Barrier()
# Collect the results
if rank == 0:
for i, nsim in enumerate(nsims):
fname = join(folder, f"bf_estimators_{args.simname}_{nsim}.npz")
data = np.load(fname)
if i == 0:
bf_volume = np.empty((len(nsims), *data["bf_volume"].shape))
bf_peery = np.empty_like(bf_volume)
bf_const = np.empty_like(bf_volume)
distances = data["distances"]
bf_volume[i, ...] = data["bf_volume"]
bf_peery[i, ...] = data["bf_peery"]
bf_const[i, ...] = data["bf_const"]
# Remove file from this rank
remove(fname)
# Save the results
fname = join(folder, f"bf_estimators_{args.simname}.npz")
print(f"Saving final results to `{fname}`.")
np.savez(fname, bf_volume=bf_volume, bf_peery=bf_peery,
bf_const=bf_const, distances=distances)

View file

@ -0,0 +1,21 @@
nthreads=20
memory=24
on_login=0
queue="berg"
env="/mnt/zfsusers/rstiskalek/csiborgtools/venv_csiborg/bin/python"
file="field_bulk_estimator.py"
simname="quijote"
pythoncm="$env $file --simname $simname"
if [ $on_login -eq 1 ]; then
echo $pythoncm
$pythoncm
else
cm="addqueue -q $queue -n $nthreads -m $memory $pythoncm"
echo "Submitting:"
echo $cm
echo
eval $cm
fi

162
scripts/post_upglade.py Normal file
View file

@ -0,0 +1,162 @@
# Copyright (C) 2024 Richard Stiskalek
# This program is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3 of the License, or (at your
# option) any later version.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
# Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
"""
Script to calculate cosmological redshifts from observed redshifts assuming
the Carrick+2015 peculiar velocity model. In the future this may be extended
to include other peculiar velocity models.
"""
from datetime import datetime
from os import remove
from os.path import join
import csiborgtools
import numpy as np
from h5py import File
from mpi4py import MPI
from taskmaster import work_delegation # noqa
from tqdm import tqdm
SPEED_OF_LIGHT = 299792.458 # km / s
def t():
return datetime.now().strftime("%H:%M:%S")
def load_calibration(catalogue, simname, nsim, ksmooth, verbose=False):
"""Load the pre-computed calibration samples."""
fname = f"/mnt/extraspace/rstiskalek/csiborg_postprocessing/peculiar_velocity/flow_samples_{catalogue}_{simname}_smooth_{ksmooth}.hdf5" # noqa
keys = ["Vext_x", "Vext_y", "Vext_z", "alpha", "beta", "sigma_v"]
calibration_samples = {}
with File(fname, 'r') as f:
for key in keys:
# NOTE: here the posterior samples are down-sampled
calibration_samples[key] = f[f"sim_{nsim}/{key}"][:][::10]
if verbose:
k = list(calibration_samples.keys())[0]
nsamples = len(calibration_samples[k])
print(f"{t()}: found {nsamples} calibration posterior samples.",
flush=True)
return calibration_samples
def main(loader, model, indxs, fdir, fname, num_split, verbose):
out = np.full(
len(indxs), np.nan,
dtype=[("mean_zcosmo", float), ("std_zcosmo", float)])
# Process each galaxy in this split
for i, n in enumerate(tqdm(indxs, desc=f"Split {num_split}",
disable=not verbose)):
x, y = model.posterior_zcosmo(
loader.cat["zcmb"][n], loader.cat["RA"][n], loader.cat["DEC"][n],
loader.los_density[n], loader.los_radial_velocity[n],
extra_sigma_v=loader.cat["e_zcmb"][n] * SPEED_OF_LIGHT,
verbose=False)
mu, std = model.posterior_mean_std(x, y)
out["mean_zcosmo"][i], out["std_zcosmo"][i] = mu, std
# Save the results of this rank
fname = join(fdir, f"{fname}_{num_split}.hdf5")
with File(fname, 'w') as f:
f.create_dataset("mean_zcosmo", data=out["mean_zcosmo"])
f.create_dataset("std_zcosmo", data=out["std_zcosmo"])
f.create_dataset("indxs", data=indxs)
###############################################################################
# Command line interface #
###############################################################################
if __name__ == "__main__":
comm = MPI.COMM_WORLD
rank, size = comm.Get_rank(), comm.Get_size()
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
# Calibration parameters
simname = "Carrick2015"
ksmooth = 0
nsim = 0
catalogue_calibration = "Pantheon+_zSN"
# Galaxy sample parameters
catalogue = "UPGLADE"
fpath_data = "/mnt/users/rstiskalek/csiborgtools/data/upglade_z_0p05_all_PROCESSED.h5" # noqa
# Number of splits for MPI
nsplits = 1000
# Folder to save the results
fdir = "/mnt/extraspace/rstiskalek/csiborg_postprocessing/peculiar_velocity/UPGLADE" # noqa
fname = f"zcosmo_{catalogue}"
# Load in the data, calibration samples and the model
loader = csiborgtools.flow.DataLoader(
simname, nsim, catalogue, fpath_data, paths, ksmooth=ksmooth,
verbose=rank == 0)
calibration_samples = load_calibration(
catalogue_calibration, simname, nsim, ksmooth, verbose=rank == 0)
model = csiborgtools.flow.Observed2CosmologicalRedshift(
calibration_samples, loader.rdist, loader._Omega_m)
if rank == 0:
print(f"{t()}: the catalogue size is {loader.cat['zcmb'].size}.")
print(f"{t()}: loaded calibration samples and model.", flush=True)
# Decide how to split up the job
if rank == 0:
indxs = np.arange(loader.cat["zcmb"].size)
split_indxs = np.array_split(indxs, nsplits)
else:
indxs = None
split_indxs = None
indxs = comm.bcast(indxs, root=0)
split_indxs = comm.bcast(split_indxs, root=0)
# Process all splits with MPI, the rank 0 delegates the jobs.
def main_wrapper(n):
main(loader, model, split_indxs[n], fdir, fname, n, verbose=size == 1)
comm.Barrier()
work_delegation(
main_wrapper, list(range(nsplits)), comm, master_verbose=True)
comm.Barrier()
# Combine the results to a single file
if rank == 0:
print("Combining results from all ranks.", flush=True)
mean_zcosmo = np.full(loader.cat["zcmb"].size, np.nan)
std_zcosmo = np.full_like(mean_zcosmo, np.nan)
for n in range(nsplits):
fname_current = join(fdir, f"{fname}_{n}.hdf5")
with File(fname_current, 'r') as f:
mask = f["indxs"][:]
mean_zcosmo[mask] = f["mean_zcosmo"][:]
std_zcosmo[mask] = f["std_zcosmo"][:]
remove(fname_current)
# Save the results
fname = join(fdir, f"{fname}.hdf5")
print(f"Saving results to `{fname}`.")
with File(fname, 'w') as f:
f.create_dataset("mean_zcosmo", data=mean_zcosmo)
f.create_dataset("std_zcosmo", data=std_zcosmo)
f.create_dataset("indxs", data=indxs)

31
scripts/post_upglade.sh Executable file
View file

@ -0,0 +1,31 @@
nthreads=${1}
on_login=${2}
memory=4
queue="redwood"
env="/mnt/zfsusers/rstiskalek/csiborgtools/venv_csiborg/bin/python"
file="post_upglade.py"
if [[ "$on_login" != "0" && "$on_login" != "1" ]]
then
echo "Error: on_login must be either 0 or 1."
exit 1
fi
if ! [[ "$nthreads" =~ ^[0-9]+$ ]] || [ "$nthreads" -le 0 ]; then
echo "Error: nthreads must be an integer larger than 0."
exit 1
fi
pythoncm="$env $file"
if [ $on_login -eq 1 ]; then
echo $pythoncm
$pythoncm
else
cm="addqueue -q $queue -n $nthreads -m $memory $pythoncm"
echo "Submitting:"
echo $cm
echo
eval $cm
fi

199
scripts/quijote_bulkflow.py Normal file
View file

@ -0,0 +1,199 @@
# Copyright (C) 2023 Richard Stiskalek
# This program is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3 of the License, or (at your
# option) any later version.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
# Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
"""
A script to calculate the bulk flow in Quijote simulations from either
particles or FoF haloes and to also save the resulting smaller halo catalogues.
"""
from datetime import datetime
from os.path import join
import csiborgtools
import numpy as np
from mpi4py import MPI
from taskmaster import work_delegation # noqa
from warnings import catch_warnings, simplefilter
from h5py import File
from sklearn.neighbors import NearestNeighbors
###############################################################################
# Read in information about the simulation #
###############################################################################
def t():
return datetime.now()
def get_data(nsim, verbose=True):
if verbose:
print(f"{t()}: reading particles of simulation `{nsim}`.")
reader = csiborgtools.read.QuijoteSnapshot(nsim, 4, paths)
part_pos = reader.coordinates().astype(np.float64)
part_vel = reader.velocities().astype(np.float64)
if verbose:
print(f"{t()}: reading haloes of simulation `{nsim}`.")
reader = csiborgtools.read.QuijoteCatalogue(nsim)
halo_pos = reader.coordinates
halo_vel = reader.velocities
halo_mass = reader.totmass
return part_pos, part_vel, halo_pos, halo_vel, halo_mass
def volume_bulk_flow(rdist, mass, vel, distances):
out = csiborgtools.field.particles_enclosed_momentum(
rdist, mass, vel, distances)
with catch_warnings():
simplefilter("ignore", category=RuntimeWarning)
out /= csiborgtools.field.particles_enclosed_mass(
rdist, mass, distances)[:, np.newaxis]
return out
###############################################################################
# Main & command line interface #
###############################################################################
def main(nsim, folder, fname_basis, Rmax, subtract_observer_velocity,
verbose=True):
boxsize = csiborgtools.simname2boxsize("quijote")
observers = csiborgtools.read.fiducial_observers(boxsize, Rmax)
distances = np.linspace(0, Rmax, 101)[1:]
part_pos, part_vel, halo_pos, halo_vel, halo_mass = get_data(nsim, verbose)
if verbose:
print(f"{t()}: Fitting the particle and halo trees of simulation `{nsim}`.") # noqa
part_tree = NearestNeighbors().fit(part_pos)
halo_tree = NearestNeighbors().fit(halo_pos)
samples = {}
bf_volume_part = np.full((len(observers), len(distances), 3), np.nan)
bf_volume_halo = np.full_like(bf_volume_part, np.nan)
bf_volume_halo_uniform = np.full_like(bf_volume_part, np.nan)
bf_vrad_weighted_part = np.full_like(bf_volume_part, np.nan)
bf_vrad_weighted_halo_uniform = np.full_like(bf_volume_part, np.nan)
bf_vrad_weighted_halo = np.full_like(bf_volume_part, np.nan)
for i in range(len(observers)):
print(f"{t()}: Calculating bulk flow for observer {i + 1} of simulation {nsim}.") # noqa
# Select particles within Rmax of the observer
rdist_part, indxs = part_tree.radius_neighbors(
np.asarray(observers[i]).reshape(1, -1), Rmax,
return_distance=True, sort_results=True)
rdist_part, indxs = rdist_part[0], indxs[0]
part_pos_current = part_pos[indxs] - observers[i]
part_vel_current = part_vel[indxs]
# Quijote particle masses are all equal
part_mass = np.ones_like(rdist_part)
# Select haloes within Rmax of the observer
rdist_halo, indxs = halo_tree.radius_neighbors(
np.asarray(observers[i]).reshape(1, -1), Rmax,
return_distance=True, sort_results=True)
rdist_halo, indxs = rdist_halo[0], indxs[0]
halo_pos_current = halo_pos[indxs] - observers[i]
halo_vel_current = halo_vel[indxs]
halo_mass_current = halo_mass[indxs]
# Subtract the observer velocity
if subtract_observer_velocity:
rscale = 0.5 # Mpc / h
weights = np.exp(-0.5 * (rdist_part / rscale)**2)
obs_vel_x = np.average(part_vel_current[:, 0], weights=weights)
obs_vel_y = np.average(part_vel_current[:, 1], weights=weights)
obs_vel_z = np.average(part_vel_current[:, 2], weights=weights)
part_vel_current[:, 0] -= obs_vel_x
part_vel_current[:, 1] -= obs_vel_y
part_vel_current[:, 2] -= obs_vel_z
halo_vel_current[:, 0] -= obs_vel_x
halo_vel_current[:, 1] -= obs_vel_y
halo_vel_current[:, 2] -= obs_vel_z
# Calculate the volume average bulk flows
bf_volume_part[i, ...] = volume_bulk_flow(
rdist_part, part_mass, part_vel_current, distances)
bf_volume_halo[i, ...] = volume_bulk_flow(
rdist_halo, halo_mass_current, halo_vel_current, distances)
bf_volume_halo_uniform[i, ...] = volume_bulk_flow(
rdist_halo, np.ones_like(halo_mass_current), halo_vel_current,
distances)
bf_vrad_weighted_part[i, ...] = csiborgtools.field.bulkflow_peery2018(
rdist_part, part_mass, part_pos_current, part_vel_current,
distances, weights="1/r^2", verbose=False)
# Calculate the bulk flow from projected velocities w. 1/r^2 weights
bf_vrad_weighted_halo_uniform[i, ...] = csiborgtools.field.bulkflow_peery2018( # noqa
rdist_halo, np.ones_like(halo_mass_current), halo_pos_current,
halo_vel_current, distances, weights="1/r^2", verbose=False)
bf_vrad_weighted_halo[i, ...] = csiborgtools.field.bulkflow_peery2018(
rdist_halo, halo_mass_current, halo_pos_current,
halo_vel_current, distances, weights="1/r^2", verbose=False)
# Store the haloes around this observer
samples[i] = {
"halo_pos": halo_pos_current,
"halo_vel": halo_vel_current,
"halo_mass": halo_mass_current}
# Finally save the output
fname = join(folder, f"{fname_basis}_{nsim}.hdf5")
if verbose:
print(f"Saving to `{fname}`.")
with File(fname, 'w') as f:
f["distances"] = distances
f["bf_volume_part"] = bf_volume_part
f["bf_volume_halo"] = bf_volume_halo
f["bf_vrad_weighted_part"] = bf_vrad_weighted_part
f["bf_volume_halo_uniform"] = bf_volume_halo_uniform
f["bf_vrad_weighted_halo_uniform"] = bf_vrad_weighted_halo_uniform
f["bf_vrad_weighted_halo"] = bf_vrad_weighted_halo
for i in range(len(observers)):
g = f.create_group(f"obs_{str(i)}")
g["halo_pos"] = samples[i]["halo_pos"]
g["halo_vel"] = samples[i]["halo_vel"]
g["halo_mass"] = samples[i]["halo_mass"]
if __name__ == "__main__":
Rmax = 150
subtract_observer_velocity = True
folder = "/mnt/extraspace/rstiskalek/quijote/BulkFlow_fiducial"
fname_basis = "sBF_nsim" if subtract_observer_velocity else "BF_nsim"
comm = MPI.COMM_WORLD
rank = comm.Get_rank()
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
nsims = list(paths.get_ics("quijote"))
def main_wrapper(nsim):
main(nsim, folder, fname_basis, Rmax, subtract_observer_velocity,
verbose=rank == 0)
if rank == 0:
print(f"Running with {len(nsims)} Quijote simulations.")
comm.Barrier()
work_delegation(main_wrapper, nsims, comm, master_verbose=True)

19
scripts/quijote_bulkflow.sh Executable file
View file

@ -0,0 +1,19 @@
nthreads=20
memory=24
on_login=0
queue="berg"
env="/mnt/zfsusers/rstiskalek/csiborgtools/venv_csiborg/bin/python"
file="quijote_bulkflow.py"
pythoncm="$env $file"
if [ $on_login -eq 1 ]; then
echo $pythoncm
$pythoncm
else
cm="addqueue -q $queue -n $nthreads -m $memory $pythoncm"
echo "Submitting:"
echo $cm
echo
eval $cm
fi