mirror of
https://github.com/Richard-Sti/csiborgtools.git
synced 2024-12-22 10:48:02 +00:00
Add nb
This commit is contained in:
parent
8b92d632aa
commit
6974deca91
1 changed files with 336 additions and 0 deletions
336
notebooks/flow/void_test.ipynb
Normal file
336
notebooks/flow/void_test.ipynb
Normal file
|
@ -0,0 +1,336 @@
|
|||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Copyright (C) 2024 Richard Stiskalek\n",
|
||||
"# This program is free software; you can redistribute it and/or modify it\n",
|
||||
"# under the terms of the GNU General Public License as published by the\n",
|
||||
"# Free Software Foundation; either version 3 of the License, or (at your\n",
|
||||
"# option) any later version.\n",
|
||||
"#\n",
|
||||
"# This program is distributed in the hope that it will be useful, but\n",
|
||||
"# WITHOUT ANY WARRANTY; without even the implied warranty of\n",
|
||||
"# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General\n",
|
||||
"# Public License for more details.\n",
|
||||
"#\n",
|
||||
"# You should have received a copy of the GNU General Public License along\n",
|
||||
"# with this program; if not, write to the Free Software Foundation, Inc.,\n",
|
||||
"# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.\n",
|
||||
"from os.path import exists\n",
|
||||
"import numpy as np\n",
|
||||
"import matplotlib.pyplot as plt\n",
|
||||
"from corner import corner\n",
|
||||
"from getdist import plots\n",
|
||||
"import scienceplots\n",
|
||||
"from os.path import exists\n",
|
||||
"import seaborn as sns\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"from reconstruction_comparison import *\n",
|
||||
"\n",
|
||||
"%load_ext autoreload\n",
|
||||
"%autoreload 2\n",
|
||||
"%matplotlib inline\n",
|
||||
"\n",
|
||||
"paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)\n",
|
||||
"fdir = \"/mnt/extraspace/rstiskalek/csiborg_postprocessing/peculiar_velocity\""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Quick checks"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"catalogue = \"CF4_TFR_i\"\n",
|
||||
"simname = \"IndranilVoid_exp\"\n",
|
||||
"zcmb_max=0.05\n",
|
||||
"sample_beta = None\n",
|
||||
"no_Vext = True\n",
|
||||
"\n",
|
||||
"fname = paths.flow_validation(\n",
|
||||
" fdir, simname, catalogue, inference_method=\"bayes\",\n",
|
||||
" sample_alpha=False, sample_beta=sample_beta,\n",
|
||||
" no_Vext=no_Vext, zcmb_max=zcmb_max)\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"X = samples_to_getdist(get_samples(fname, False), \"Test\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"params = [\"rLG\", \"sigma_v\"]\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"# params = [\"beta\", f\"a_{catalogue}\", f\"b_{catalogue}\", f\"e_mu_{catalogue}\"]\n",
|
||||
"# params = [\"Vmag\", \"l\", \"b\", \"sigma_v\", \"beta\", f\"mag_cal_{catalogue}\", f\"alpha_cal_{catalogue}\", f\"beta_cal_{catalogue}\", f\"e_mu_{catalogue}\"]\n",
|
||||
"\n",
|
||||
"with plt.style.context(\"science\"):\n",
|
||||
" g = plots.get_subplot_plotter()\n",
|
||||
" g.settings.figure_legend_frame = False\n",
|
||||
" g.settings.alpha_filled_add = 0.75\n",
|
||||
" \n",
|
||||
" g.triangle_plot(X, params=params, filled=True, legend_loc='upper right')\n",
|
||||
" plt.gcf().suptitle(catalogue_to_pretty(catalogue), y=1.025)\n",
|
||||
" plt.gcf().tight_layout()\n",
|
||||
" plt.gcf().show()\n",
|
||||
" # plt.gcf().savefig(f\"../../plots/method_comparison_{simname}_{catalogue}.png\", dpi=500, bbox_inches='tight')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# catalogue = [\"LOSS\", \"Foundation\"]\n",
|
||||
"catalogue = \"CF4_TFR_i\"\n",
|
||||
"simname = \"IndranilVoid_exp\"\n",
|
||||
"zcmb_max = 0.05\n",
|
||||
"sample_alpha = False\n",
|
||||
"\n",
|
||||
"fname = paths.flow_validation(\n",
|
||||
" fdir, simname, catalogue, inference_method=\"mike\",\n",
|
||||
" sample_mag_dipole=True,\n",
|
||||
" sample_beta=False,\n",
|
||||
" sample_alpha=sample_alpha, zcmb_max=zcmb_max)\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"samples = get_samples(fname, convert_Vext_to_galactic=True)\n",
|
||||
"\n",
|
||||
"samples, labels, keys = samples_for_corner(samples)\n",
|
||||
"fig = corner(samples, labels=labels, show_titles=True,\n",
|
||||
" title_kwargs={\"fontsize\": 12}, smooth=1)\n",
|
||||
"# fig.savefig(\"../../plots/test.png\", dpi=250)\n",
|
||||
"fig.show()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Paper plots"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### 1. No $V_{\\rm ext}$ and no $\\beta$"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"for simname in [\"IndranilVoid_exp\", \"IndranilVoid_gauss\", \"IndranilVoid_mb\"]:\n",
|
||||
" X = []\n",
|
||||
" for catalogue in [\"2MTF\", \"SFI_gals\", \"CF4_TFR_i\", \"CF4_TFR_w1\"]:\n",
|
||||
"\n",
|
||||
" fname = paths.flow_validation(\n",
|
||||
" fdir, simname, catalogue, inference_method=\"bayes\",\n",
|
||||
" sample_alpha=False, sample_beta=None,\n",
|
||||
" no_Vext=True, zcmb_max=0.05)\n",
|
||||
"\n",
|
||||
" X_i = samples_to_getdist(get_samples(fname, False), catalogue_to_pretty(catalogue))\n",
|
||||
" X.append(X_i)\n",
|
||||
"\n",
|
||||
" params = [\"rLG\", \"sigma_v\"]\n",
|
||||
" with plt.style.context(\"science\"):\n",
|
||||
" g = plots.get_subplot_plotter()\n",
|
||||
" g.settings.figure_legend_frame = False\n",
|
||||
" g.settings.alpha_filled_add = 0.75\n",
|
||||
"\n",
|
||||
" g.triangle_plot(X, params=params, filled=True, legend_loc='upper right')\n",
|
||||
" plt.gcf().suptitle(simname_to_pretty(simname), y=1.025)\n",
|
||||
" plt.gcf().tight_layout()\n",
|
||||
" plt.gcf().show()\n",
|
||||
" plt.gcf().savefig(f\"../../plots/void_{simname}_noVext_nobeta.png\", dpi=500, bbox_inches='tight')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### 2. No $V_{\\rm ext}$ but sampling $\\beta$"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"for simname in [\"IndranilVoid_exp\", \"IndranilVoid_gauss\", \"IndranilVoid_mb\"]:\n",
|
||||
" X = []\n",
|
||||
" for catalogue in [\"2MTF\", \"SFI_gals\", \"CF4_TFR_i\", \"CF4_TFR_w1\"]:\n",
|
||||
"\n",
|
||||
" fname = paths.flow_validation(\n",
|
||||
" fdir, simname, catalogue, inference_method=\"bayes\",\n",
|
||||
" sample_alpha=False, sample_beta=True,\n",
|
||||
" no_Vext=True, zcmb_max=0.05)\n",
|
||||
"\n",
|
||||
" X_i = samples_to_getdist(get_samples(fname, False), catalogue_to_pretty(catalogue))\n",
|
||||
" X.append(X_i)\n",
|
||||
"\n",
|
||||
" params = [\"rLG\", \"sigma_v\", \"beta\"]\n",
|
||||
" with plt.style.context(\"science\"):\n",
|
||||
" g = plots.get_subplot_plotter()\n",
|
||||
" g.settings.figure_legend_frame = False\n",
|
||||
" g.settings.alpha_filled_add = 0.75\n",
|
||||
"\n",
|
||||
" g.triangle_plot(X, params=params, filled=True, legend_loc='upper right')\n",
|
||||
" plt.gcf().suptitle(simname_to_pretty(simname), y=1.025)\n",
|
||||
" plt.gcf().tight_layout()\n",
|
||||
" plt.gcf().show()\n",
|
||||
" plt.gcf().savefig(f\"../../plots/void_{simname}_noVext_beta.png\", dpi=500, bbox_inches='tight')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### 3. Yes $V_{\\rm ext}$ and no $\\beta$ "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"for simname in [\"IndranilVoid_exp\", \"IndranilVoid_gauss\", \"IndranilVoid_mb\"]:\n",
|
||||
" X = []\n",
|
||||
" for catalogue in [\"2MTF\", \"SFI_gals\", \"CF4_TFR_i\", \"CF4_TFR_w1\"]:\n",
|
||||
"\n",
|
||||
" fname = paths.flow_validation(\n",
|
||||
" fdir, simname, catalogue, inference_method=\"bayes\",\n",
|
||||
" sample_alpha=False, sample_beta=False,\n",
|
||||
" no_Vext=None, zcmb_max=0.05)\n",
|
||||
"\n",
|
||||
" X_i = samples_to_getdist(get_samples(fname, False), catalogue_to_pretty(catalogue))\n",
|
||||
" X.append(X_i)\n",
|
||||
"\n",
|
||||
" params = [\"rLG\", \"sigma_v\", \"Vx\", \"Vy\", \"Vz\"]\n",
|
||||
" with plt.style.context(\"science\"):\n",
|
||||
" g = plots.get_subplot_plotter()\n",
|
||||
" g.settings.figure_legend_frame = False\n",
|
||||
" g.settings.alpha_filled_add = 0.75\n",
|
||||
"\n",
|
||||
" g.triangle_plot(X, params=params, filled=True, legend_loc='upper right')\n",
|
||||
" plt.gcf().suptitle(simname_to_pretty(simname), y=1.025)\n",
|
||||
" plt.gcf().tight_layout()\n",
|
||||
" plt.gcf().show()\n",
|
||||
" plt.gcf().savefig(f\"../../plots/void_{simname}_Vext_nobeta.png\", dpi=500, bbox_inches='tight')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### 4. Yes $V_{\\rm ext}$ and yes $\\beta$"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"for simname in [\"IndranilVoid_exp\", \"IndranilVoid_gauss\", \"IndranilVoid_mb\"]:\n",
|
||||
" X = []\n",
|
||||
" for catalogue in [\"2MTF\", \"SFI_gals\", \"CF4_TFR_i\", \"CF4_TFR_w1\"]:\n",
|
||||
"\n",
|
||||
" fname = paths.flow_validation(\n",
|
||||
" fdir, simname, catalogue, inference_method=\"bayes\",\n",
|
||||
" sample_alpha=False, sample_beta=True,\n",
|
||||
" no_Vext=None, zcmb_max=0.05)\n",
|
||||
"\n",
|
||||
" X_i = samples_to_getdist(get_samples(fname, False), catalogue_to_pretty(catalogue))\n",
|
||||
" X.append(X_i)\n",
|
||||
"\n",
|
||||
" params = [\"rLG\", \"sigma_v\", \"beta\", \"Vx\", \"Vy\", \"Vz\"]\n",
|
||||
" with plt.style.context(\"science\"):\n",
|
||||
" g = plots.get_subplot_plotter()\n",
|
||||
" g.settings.figure_legend_frame = False\n",
|
||||
" g.settings.alpha_filled_add = 0.75\n",
|
||||
"\n",
|
||||
" g.triangle_plot(X, params=params, filled=True, legend_loc='upper right')\n",
|
||||
" plt.gcf().suptitle(simname_to_pretty(simname), y=1.025)\n",
|
||||
" plt.gcf().tight_layout()\n",
|
||||
" plt.gcf().show()\n",
|
||||
" plt.gcf().savefig(f\"../../plots/void_{simname}_Vext_beta.png\", dpi=500, bbox_inches='tight')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "venv_csiborg",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.4"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
Loading…
Reference in a new issue