Add redshift space position ()

* Add docs

* Delete blank

* Add real to redshift space function

* RSD move back observer

* Convert velocoties to km/s

* Add units to RSP calculation

* Add RSP to catalogues

* Add RSD to angular neighbour search
This commit is contained in:
Richard Stiskalek 2023-05-07 19:07:35 +01:00 committed by GitHub
parent 3df771f1ee
commit 65564849f4
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
6 changed files with 2364 additions and 29 deletions

View file

@ -25,4 +25,4 @@ from .readsim import (MmainReader, ParticleReader, halfwidth_select, # noqa
load_clump_particles, load_parent_particles, read_initcm)
from .tpcf_summary import TPCFReader # noqa
from .utils import (cartesian_to_radec, cols_to_structured, # noqa
radec_to_cartesian, read_h5)
radec_to_cartesian, read_h5, real2redshift)

View file

@ -27,6 +27,7 @@ CONV_NAME = {
"length": ["x", "y", "z", "peak_x", "peak_y", "peak_z", "Rs", "rmin",
"rmax", "r200c", "r500c", "r200m", "x0", "y0", "z0",
"lagpatch"],
"velocity": ["vx", "vy", "vz"],
"mass": ["mass_cl", "totpartmass", "m200c", "m500c", "mass_mmain", "M",
"m200m"],
"density": ["rho0"]}
@ -93,8 +94,8 @@ class BoxUnits:
@property
def H0(self):
r"""
The Hubble parameter at the time of the snapshot
in :math:`\mathrm{Mpc} / \mathrm{km} / \mathrm{s}`.
The Hubble parameter at the time of the snapshot in units of
:math:`\mathrm{km} \mathrm{s}^{-1} \mathrm{Mpc}^{-1}`.
Returns
-------
@ -229,7 +230,7 @@ class BoxUnits:
def box2vel(self, vel):
r"""
Convert velocity from box units to :math:`\mathrm{m} / \mathrm{s}^2`.
Convert velocity from box units to :math:`\mathrm{km} \mathrm{s}^{-1}`.
Parameters
----------
@ -239,9 +240,9 @@ class BoxUnits:
Returns
-------
vel : float
Velocity in :math:`\mathrm{m} / \mathrm{s}^2`
Velocity in :math:`\mathrm{km} \mathrm{s}^{-1}`.
"""
return vel * (1e-2 * self._unit_l / self._unit_t / self._aexp)
return vel * (1e-2 * self._unit_l / self._unit_t / self._aexp) * 1e-3
def box2cosmoredshift(self, dist):
r"""
@ -396,6 +397,7 @@ class BoxUnits:
physical units, such that
- length -> :math:`Mpc`,
- mass -> :math:`M_\odot`,
- velocity -> :math:`\mathrm{km} / \mathrm{s}`,
- density -> :math:`M_\odot / \mathrm{Mpc}^3`.
Any other conversions are currently not implemented. Note that the
@ -418,6 +420,7 @@ class BoxUnits:
names = [names] if isinstance(names, str) else names
transforms = {"length": self.box2mpc,
"mass": self.box2solarmass,
"velocity": self.box2vel,
"density": self.box2dens,
}

View file

@ -22,7 +22,7 @@ from .box_units import BoxUnits
from .paths import CSiBORGPaths
from .readsim import ParticleReader
from .utils import (add_columns, cartesian_to_radec, flip_cols,
radec_to_cartesian)
radec_to_cartesian, real2redshift)
class BaseCatalogue(ABC):
@ -152,6 +152,33 @@ class BaseCatalogue(ABC):
"""
return numpy.vstack([self["v{}".format(p)] for p in ("x", "y", "z")]).T
def redshift_space_position(self, cartesian=True):
r"""
Redshift space position components. If Cartesian, then in
:math:`\mathrm{cMpc}`. If spherical, then radius is in
:math:`\mathrm{cMpc}`, RA in :math:`[0, 360)` degrees and DEC in
:math:`[-90, 90]` degrees. Note that the position is defined as the
minimum of the gravitationl potential.
Parameters
----------
cartesian : bool, optional
Whether to return the Cartesian or spherical position components.
By default Cartesian.
Returns
-------
pos : 2-dimensional array of shape `(nobjects, 3)`
"""
pos = self.position(cartesian=True)
vel = self.velocity()
origin = [0., 0., 0.]
rsp = real2redshift(pos, vel, origin, self.box, in_box_units=False,
make_copy=False)
if not cartesian:
rsp = cartesian_to_radec(rsp)
return rsp
def angmomentum(self):
"""
Cartesian angular momentum components of halos in the box coordinate
@ -207,7 +234,7 @@ class BaseCatalogue(ABC):
knn = self.knn(in_initial)
return knn.radius_neighbors(X, radius, sort_results=True)
def angular_neighbours(self, X, ang_radius, rad_tolerance=None):
def angular_neighbours(self, X, ang_radius, in_rsp, rad_tolerance=None):
r"""
Find nearest neighbours within `ang_radius` of query points `X`.
Optionally applies radial tolerance, which is expected to be in
@ -219,6 +246,8 @@ class BaseCatalogue(ABC):
Query positions. If 2-dimensional, then RA and DEC in degrees.
If 3-dimensional, then radial distance in :math:`\mathrm{cMpc}`,
RA and DEC in degrees.
in_rsp : bool
Whether to use redshift space positions of haloes.
ang_radius : float
Angular radius in degrees.
rad_tolerance : float, optional
@ -234,7 +263,10 @@ class BaseCatalogue(ABC):
assert X.ndim == 2
# We first get positions of haloes in this catalogue, store their
# radial distance and normalise them to unit vectors.
pos = self.position(in_initial=False, cartesian=True)
if in_rsp:
pos = self.redshift_space_position(cartesian=True)
else:
pos = self.position(in_initial=False, cartesian=True)
raddist = numpy.linalg.norm(pos, axis=1)
pos /= raddist.reshape(-1, 1)
# We convert RAdec query positions to unit vectors. If no radial
@ -329,7 +361,8 @@ class ClumpsCatalogue(BaseCatalogue):
for p in ("x", "y", "z"):
self._data[p] -= 0.5
names = ["x", "y", "z", "mass_cl", "totpartmass", "rho0", "r200c",
"r500c", "m200c", "m500c", "r200m", "m200m"]
"r500c", "m200c", "m500c", "r200m", "m200m",
"vx", "vy", "vz"]
self._data = self.box.convert_from_boxunits(self._data, names)
if maxdist is not None:
dist = numpy.sqrt(self._data["x"]**2 + self._data["y"]**2
@ -420,7 +453,8 @@ class HaloCatalogue(BaseCatalogue):
for p in ("x", "y", "z"):
self._data[p] -= 0.5
names = ["x", "y", "z", "M", "totpartmass", "rho0", "r200c",
"r500c", "m200c", "m500c", "r200m", "m200m"]
"r500c", "m200c", "m500c", "r200m", "m200m",
"vx", "vy", "vz"]
self._data = self.box.convert_from_boxunits(self._data, names)
if load_initial:

View file

@ -21,7 +21,6 @@ from os.path import isfile
import numpy
from tqdm import tqdm
###############################################################################
# Overlap of two simulations #
###############################################################################
@ -602,6 +601,11 @@ class NPairsOverlap:
return len(self.pairs)
###############################################################################
# Various support functions. #
###############################################################################
def binned_resample_mean(x, y, prob, bins, nresample=50, seed=42):
"""
Calculate binned average of `y` by MC resampling. Each point is kept with

View file

@ -80,6 +80,51 @@ def radec_to_cartesian(X, isdeg=True):
return dist * numpy.vstack([x, y, z]).T
def real2redshift(pos, vel, origin, box, in_box_units, make_copy=True):
r"""
Convert real-space position to redshift space position.
Parameters
----------
pos : 2-dimensional array `(nsamples, 3)`
Real-space Cartesian position components.
vel : 2-dimensional array `(nsamples, 3)`
Cartesian velocity components.
origin : 1-dimensional array `(3,)`
Origin of the coordinate system in the `pos` reference frame.
box : py:class:`csiborg.read.BoxUnits`
Box units.
in_box_units: bool
Whether `pos` and `vel` are in box units. If not, position is assumed
to be in :math:`\mathrm{Mpc}`, velocity in
:math:`\mathrm{km} \mathrm{s}^{-1}` and math:`h=0.705`, or otherwise
matching the box.
make_copy : bool, optional
Whether to make a copy of `pos` before modifying it.
Returns
-------
pos : 2-dimensional array `(nsamples, 3)`
Redshift-space Cartesian position components, with an observer assumed
at the `origin`.
"""
a = box._aexp
H0 = box.box_H0 if in_box_units else box.H0
if make_copy:
pos = numpy.copy(pos)
for i in range(3):
pos[:, i] -= origin[i]
norm2 = numpy.sum(pos**2, axis=1)
dot = numpy.einsum("ij,ij->i", pos, vel)
pos *= (1 + a / H0 * dot / norm2).reshape(-1, 1)
for i in range(3):
pos[:, i] += origin[i]
return pos
###############################################################################
# Array manipulation #
###############################################################################

File diff suppressed because one or more lines are too long