mirror of
https://github.com/Richard-Sti/csiborgtools.git
synced 2024-12-22 17:18:02 +00:00
Control over Malmquist
This commit is contained in:
parent
42f4044796
commit
5c9a8fc5a6
1 changed files with 40 additions and 17 deletions
|
@ -356,7 +356,8 @@ def e2_distmod_TFR(e2_mag, e2_eta, eta, b, c, e_mu_intrinsic):
|
||||||
|
|
||||||
def sample_TFR(e_mu_min, e_mu_max, a_mean, a_std, b_mean, b_std,
|
def sample_TFR(e_mu_min, e_mu_max, a_mean, a_std, b_mean, b_std,
|
||||||
c_mean, c_std, alpha_min, alpha_max, sample_alpha,
|
c_mean, c_std, alpha_min, alpha_max, sample_alpha,
|
||||||
a_dipole_mean, a_dipole_std, sample_a_dipole, name):
|
a_dipole_mean, a_dipole_std, sample_a_dipole,
|
||||||
|
sample_curvature, name):
|
||||||
"""Sample Tully-Fisher calibration parameters."""
|
"""Sample Tully-Fisher calibration parameters."""
|
||||||
e_mu = sample(f"e_mu_{name}", Uniform(e_mu_min, e_mu_max))
|
e_mu = sample(f"e_mu_{name}", Uniform(e_mu_min, e_mu_max))
|
||||||
a = sample(f"a_{name}", Normal(a_mean, a_std))
|
a = sample(f"a_{name}", Normal(a_mean, a_std))
|
||||||
|
@ -367,7 +368,11 @@ def sample_TFR(e_mu_min, e_mu_max, a_mean, a_std, b_mean, b_std,
|
||||||
ax, ay, az = 0.0, 0.0, 0.0
|
ax, ay, az = 0.0, 0.0, 0.0
|
||||||
|
|
||||||
b = sample(f"b_{name}", Normal(b_mean, b_std))
|
b = sample(f"b_{name}", Normal(b_mean, b_std))
|
||||||
c = sample(f"c_{name}", Normal(c_mean, c_std))
|
|
||||||
|
if sample_curvature:
|
||||||
|
c = sample(f"c_{name}", Normal(c_mean, c_std))
|
||||||
|
else:
|
||||||
|
c = 0.
|
||||||
|
|
||||||
alpha = sample_alpha_bias(name, alpha_min, alpha_max, sample_alpha)
|
alpha = sample_alpha_bias(name, alpha_min, alpha_max, sample_alpha)
|
||||||
|
|
||||||
|
@ -513,12 +518,18 @@ class PV_LogLikelihood(BaseFlowValidationModel):
|
||||||
Whether to directly sample the distance without numerical
|
Whether to directly sample the distance without numerical
|
||||||
marginalisation. in which case the tracers can be coupled by a
|
marginalisation. in which case the tracers can be coupled by a
|
||||||
covariance matrix. By default `False`.
|
covariance matrix. By default `False`.
|
||||||
|
with_homogeneous_malmquist : bool, optional
|
||||||
|
Whether to include the homogeneous Malmquist bias. By default `True`.
|
||||||
|
with_inhomogeneous_malmquist : bool, optional
|
||||||
|
Whether to include the inhomogeneous Malmquist bias. By default `True`.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self, los_density, los_velocity, RA, dec, z_obs, e_zobs,
|
def __init__(self, los_density, los_velocity, RA, dec, z_obs, e_zobs,
|
||||||
calibration_params, abs_calibration_params, mag_selection,
|
calibration_params, abs_calibration_params, mag_selection,
|
||||||
r_xrange, Omega_m, kind, name, void_kwargs=None,
|
r_xrange, Omega_m, kind, name, void_kwargs=None,
|
||||||
wo_num_dist_marginalisation=False):
|
wo_num_dist_marginalisation=False,
|
||||||
|
with_homogeneous_malmquist=True,
|
||||||
|
with_inhomogeneous_malmquist=True):
|
||||||
if e_zobs is not None:
|
if e_zobs is not None:
|
||||||
e2_cz_obs = jnp.asarray((SPEED_OF_LIGHT * e_zobs)**2)
|
e2_cz_obs = jnp.asarray((SPEED_OF_LIGHT * e_zobs)**2)
|
||||||
else:
|
else:
|
||||||
|
@ -557,6 +568,8 @@ class PV_LogLikelihood(BaseFlowValidationModel):
|
||||||
self.name = name
|
self.name = name
|
||||||
self.Omega_m = Omega_m
|
self.Omega_m = Omega_m
|
||||||
self.wo_num_dist_marginalisation = wo_num_dist_marginalisation
|
self.wo_num_dist_marginalisation = wo_num_dist_marginalisation
|
||||||
|
self.with_homogeneous_malmquist = with_homogeneous_malmquist
|
||||||
|
self.with_inhomogeneous_malmquist = with_inhomogeneous_malmquist
|
||||||
self.norm = - self.ndata * jnp.log(self.num_sims)
|
self.norm = - self.ndata * jnp.log(self.num_sims)
|
||||||
|
|
||||||
if mag_selection is not None:
|
if mag_selection is not None:
|
||||||
|
@ -771,9 +784,14 @@ class PV_LogLikelihood(BaseFlowValidationModel):
|
||||||
"marginalising the true distance.")
|
"marginalising the true distance.")
|
||||||
|
|
||||||
# Calculate p(r) (Malmquist bias). Shape is (ndata, nxrange)
|
# Calculate p(r) (Malmquist bias). Shape is (ndata, nxrange)
|
||||||
log_ptilde = log_ptilde_wo_bias(
|
if self.with_homogeneous_malmquist:
|
||||||
self.mu_xrange[None, :], mu[:, None], e2_mu[:, None],
|
log_ptilde = log_ptilde_wo_bias(
|
||||||
self.log_r2_xrange[None, :])
|
self.mu_xrange[None, :], mu[:, None], e2_mu[:, None],
|
||||||
|
self.log_r2_xrange[None, :])
|
||||||
|
else:
|
||||||
|
log_ptilde = log_ptilde_wo_bias(
|
||||||
|
self.mu_xrange[None, :], mu[:, None], e2_mu[:, None],
|
||||||
|
0.)
|
||||||
|
|
||||||
if self.is_void_data:
|
if self.is_void_data:
|
||||||
rLG = field_calibration_params["rLG"]
|
rLG = field_calibration_params["rLG"]
|
||||||
|
@ -785,7 +803,9 @@ class PV_LogLikelihood(BaseFlowValidationModel):
|
||||||
|
|
||||||
# Inhomogeneous Malmquist bias. Shape: (nsims, ndata, nxrange)
|
# Inhomogeneous Malmquist bias. Shape: (nsims, ndata, nxrange)
|
||||||
alpha = distmod_params["alpha"]
|
alpha = distmod_params["alpha"]
|
||||||
log_ptilde = log_ptilde[None, ...] + alpha * log_los_density
|
log_ptilde = log_ptilde[None, ...]
|
||||||
|
if self.with_inhomogeneous_malmquist:
|
||||||
|
log_ptilde += alpha * log_los_density
|
||||||
|
|
||||||
ptilde = jnp.exp(log_ptilde)
|
ptilde = jnp.exp(log_ptilde)
|
||||||
# Normalization of p(r). Shape: (nsims, ndata)
|
# Normalization of p(r). Shape: (nsims, ndata)
|
||||||
|
@ -840,11 +860,13 @@ class PV_LogLikelihood(BaseFlowValidationModel):
|
||||||
alpha = distmod_params["alpha"]
|
alpha = distmod_params["alpha"]
|
||||||
|
|
||||||
# Normalisation of p(mu), shape is `(n_sims, n_data, n_rad)`
|
# Normalisation of p(mu), shape is `(n_sims, n_data, n_rad)`
|
||||||
pnorm = (
|
pnorm = normal_logpdf(
|
||||||
+ self.log_r2_xrange[None, None, :]
|
self.mu_xrange[None, :], mu[:, None], e_mu[:, None])[None, ...]
|
||||||
+ alpha * log_los_density_grid
|
if self.with_homogeneous_malmquist:
|
||||||
+ normal_logpdf(
|
pnorm += self.log_r2_xrange[None, None, :]
|
||||||
self.mu_xrange[None, :], mu[:, None], e_mu[:, None])[None, ...]) # noqa
|
if self.with_inhomogeneous_malmquist:
|
||||||
|
pnorm += alpha * log_los_density_grid
|
||||||
|
|
||||||
pnorm = jnp.exp(pnorm)
|
pnorm = jnp.exp(pnorm)
|
||||||
# Now integrate over the radial steps. Shape is `(nsims, ndata)`.
|
# Now integrate over the radial steps. Shape is `(nsims, ndata)`.
|
||||||
# No Jacobian here because I integrate over distance, not the
|
# No Jacobian here because I integrate over distance, not the
|
||||||
|
@ -855,11 +877,12 @@ class PV_LogLikelihood(BaseFlowValidationModel):
|
||||||
jac = jnp.abs(distmod2dist_gradient(mu_true, self.Omega_m))
|
jac = jnp.abs(distmod2dist_gradient(mu_true, self.Omega_m))
|
||||||
|
|
||||||
# Calculate unnormalized log p(mu). Shape is (nsims, ndata)
|
# Calculate unnormalized log p(mu). Shape is (nsims, ndata)
|
||||||
ll = (
|
ll = 0.
|
||||||
+ jnp.log(jac)[None, :]
|
if self.with_homogeneous_malmquist:
|
||||||
+ (2 * jnp.log(r_true) - self.log_r2_xrange_mean)[None, :]
|
ll = (+ jnp.log(jac)
|
||||||
+ alpha * log_density
|
+ (2 * jnp.log(r_true) - self.log_r2_xrange_mean))
|
||||||
)
|
if self.with_inhomogeneous_malmquist:
|
||||||
|
ll += alpha * log_density
|
||||||
|
|
||||||
# Subtract the normalization. Shape remains (nsims, ndata)
|
# Subtract the normalization. Shape remains (nsims, ndata)
|
||||||
ll -= jnp.log(pnorm)
|
ll -= jnp.log(pnorm)
|
||||||
|
|
Loading…
Reference in a new issue