mirror of
https://github.com/Richard-Sti/csiborgtools.git
synced 2024-12-22 18:28:02 +00:00
Joint kNN-CDF calculation (#36)
* Add joint kNN CDF * add jointKNN calculation * change sub script * Update readme * update sub * Small changes * comments * update nb * Update submisison script
This commit is contained in:
parent
cb67e326c4
commit
522ee709c9
5 changed files with 4569 additions and 57 deletions
|
@ -7,9 +7,10 @@
|
|||
|
||||
|
||||
## Project Clustering
|
||||
- [ ] Add uncertainty to the kNN-CDF autocorrelation.
|
||||
- [ ] Add the joint kNN-CDF calculation.
|
||||
- [ ] Make kNN-CDF more memory friendly if generating many randoms.
|
||||
- [ ] Add uncertainty to the kNN-CDF autocorrelation?
|
||||
- [ ] Add kNN-CDF differences.
|
||||
- [x] Add the joint kNN-CDF calculation.
|
||||
- [x] Make kNN-CDF more memory friendly if generating many randoms.
|
||||
|
||||
|
||||
## Project Environmental Dependence
|
||||
|
|
|
@ -124,6 +124,62 @@ class kNN_CDF:
|
|||
cdf[cdf > 0.5] = 1 - cdf[cdf > 0.5]
|
||||
return cdf
|
||||
|
||||
@staticmethod
|
||||
def clipped_cdf(cdf):
|
||||
"""
|
||||
Clip the CDF, setting values where the CDF is either 0 or after the
|
||||
first occurence of 1 to `numpy.nan`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
cdf : 2- or 3-dimensional array
|
||||
CDF to be clipped.
|
||||
|
||||
Returns
|
||||
-------
|
||||
clipped_cdf : 2- or 3-dimensional array
|
||||
The clipped CDF.
|
||||
"""
|
||||
cdf = numpy.copy(cdf)
|
||||
if cdf.ndim == 2:
|
||||
cdf = cdf.reshape(1, *cdf.shape)
|
||||
nknns, nneighbours, __ = cdf.shape
|
||||
|
||||
for i in range(nknns):
|
||||
for k in range(nneighbours):
|
||||
ns = numpy.where(cdf[i, k, :] == 1.)[0]
|
||||
if ns.size > 1:
|
||||
cdf[i, k, ns[1]:] = numpy.nan
|
||||
cdf[cdf == 0] = numpy.nan
|
||||
|
||||
cdf = cdf[0, ...] if nknns == 1 else cdf # Reshape if necessary
|
||||
return cdf
|
||||
|
||||
@staticmethod
|
||||
def joint_to_corr(cdf0, cdf1, joint_cdf):
|
||||
"""
|
||||
Calculate the correlation function from the joint kNN-CDFs.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
cdf0 : 2-dimensional array
|
||||
CDF evaluated at `rs` of the first kNN.
|
||||
cdf1 : 2-dimensional array
|
||||
CDF evaluated at `rs` of the second kNN.
|
||||
joint_cdf : 2-dimensional array
|
||||
Joint CDF evaluated at `rs`.
|
||||
|
||||
Returns
|
||||
-------
|
||||
corr : 2-dimensional array
|
||||
Correlation function evaluated at `rs`.
|
||||
"""
|
||||
assert cdf0.ndim == cdf1.ndim == joint_cdf.ndim == 2
|
||||
corr = numpy.zeros_like(joint_cdf)
|
||||
for k in range(joint_cdf.shape[0]):
|
||||
corr[k, :] = joint_cdf[k, :] - cdf0[k, :] * cdf1[k, :]
|
||||
return corr
|
||||
|
||||
def brute_cdf(self, knn, nneighbours, Rmax, nsamples, rmin, rmax, neval,
|
||||
random_state=42, dtype=numpy.float32):
|
||||
"""
|
||||
|
@ -173,9 +229,102 @@ class kNN_CDF:
|
|||
cdf = numpy.asanyarray(cdf)
|
||||
return rs, cdf
|
||||
|
||||
def joint(self, knn0, knn1, nneighbours, Rmax, nsamples, rmin, rmax,
|
||||
neval, batch_size=None, random_state=42,
|
||||
dtype=numpy.float32):
|
||||
"""
|
||||
Calculate the joint CDF for two kNNs of CSiBORG halo catalogues.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
knn0 : `sklearn.neighbors.NearestNeighbors` instance
|
||||
kNN of the first CSiBORG halo catalogue.
|
||||
knn1 : `sklearn.neighbors.NearestNeighbors` instance
|
||||
kNN of the second CSiBORG halo catalogue.
|
||||
neighbours : int
|
||||
Maximum number of neighbours to use for the kNN-CDF calculation.
|
||||
Rmax : float
|
||||
Maximum radius of the sphere in which to sample random points for
|
||||
the knn-CDF calculation. This should match the CSiBORG catalogues.
|
||||
nsamples : int
|
||||
Number of random points to sample for the knn-CDF calculation.
|
||||
rmin : float
|
||||
Minimum distance to evaluate the CDF.
|
||||
rmax : float
|
||||
Maximum distance to evaluate the CDF.
|
||||
neval : int
|
||||
Number of points to evaluate the CDF.
|
||||
batch_size : int, optional
|
||||
Number of random points to sample in each batch. By default equal
|
||||
to `nsamples`, however recommeded to be smaller to avoid requesting
|
||||
too much memory,
|
||||
random_state : int, optional
|
||||
Random state for the random number generator.
|
||||
dtype : numpy dtype, optional
|
||||
Calculation data type. By default `numpy.float32`.
|
||||
|
||||
Returns
|
||||
-------
|
||||
rs : 1-dimensional array
|
||||
Distances at which the CDF is evaluated.
|
||||
cdf0 : 2-dimensional array
|
||||
CDF evaluated at `rs` of the first kNN.
|
||||
cdf1 : 2-dimensional array
|
||||
CDF evaluated at `rs` of the second kNN.
|
||||
joint_cdf : 2-dimensional array
|
||||
Joint CDF evaluated at `rs`.
|
||||
"""
|
||||
batch_size = nsamples if batch_size is None else batch_size
|
||||
assert nsamples >= batch_size
|
||||
nbatches = nsamples // batch_size
|
||||
|
||||
bins = numpy.logspace(numpy.log10(rmin), numpy.log10(rmax), neval)
|
||||
joint_cdf = numpy.zeros((nneighbours, neval - 1), dtype=dtype)
|
||||
cdf0 = numpy.zeros_like(joint_cdf)
|
||||
cdf1 = numpy.zeros_like(joint_cdf)
|
||||
|
||||
jointdist = numpy.zeros((batch_size, 2), dtype=dtype)
|
||||
for j in range(nbatches):
|
||||
rand = self.rvs_in_sphere(batch_size, Rmax,
|
||||
random_state=random_state + j)
|
||||
dist0, __ = knn0.kneighbors(rand, nneighbours)
|
||||
dist1, __ = knn1.kneighbors(rand, nneighbours)
|
||||
|
||||
for k in range(nneighbours):
|
||||
jointdist[:, 0] = dist0[:, k]
|
||||
jointdist[:, 1] = dist1[:, k]
|
||||
maxdist = numpy.max(jointdist, axis=1)
|
||||
# Joint CDF
|
||||
_counts, __, __ = binned_statistic(
|
||||
maxdist, maxdist, bins=bins, statistic="count",
|
||||
range=(rmin, rmax))
|
||||
joint_cdf[k, :] += _counts
|
||||
# First CDF
|
||||
_counts, __, __ = binned_statistic(
|
||||
dist0[:, k], dist0[:, k], bins=bins, statistic="count",
|
||||
range=(rmin, rmax))
|
||||
cdf0[k, :] += _counts
|
||||
# Second CDF
|
||||
_counts, __, __ = binned_statistic(
|
||||
dist1[:, k], dist1[:, k], bins=bins, statistic="count",
|
||||
range=(rmin, rmax))
|
||||
cdf1[k, :] += _counts
|
||||
|
||||
|
||||
joint_cdf = numpy.cumsum(joint_cdf, axis=-1)
|
||||
cdf0 = numpy.cumsum(cdf0, axis=-1)
|
||||
cdf1 = numpy.cumsum(cdf1, axis=-1)
|
||||
for k in range(nneighbours):
|
||||
joint_cdf[k, :] /= joint_cdf[k, -1]
|
||||
cdf0[k, :] /= cdf0[k, -1]
|
||||
cdf1[k, :] /= cdf1[k, -1]
|
||||
|
||||
rs = (bins[1:] + bins[:-1]) / 2 # Bin centers
|
||||
return rs, cdf0, cdf1, joint_cdf
|
||||
|
||||
def __call__(self, *knns, nneighbours, Rmax, nsamples, rmin, rmax, neval,
|
||||
batch_size=None, verbose=True, random_state=42,
|
||||
left_nan=True, right_nan=True, dtype=numpy.float32):
|
||||
dtype=numpy.float32):
|
||||
"""
|
||||
Calculate the CDF for a set of kNNs of CSiBORG halo catalogues.
|
||||
|
||||
|
@ -204,12 +353,6 @@ class kNN_CDF:
|
|||
Verbosity flag.
|
||||
random_state : int, optional
|
||||
Random state for the random number generator.
|
||||
left_nan : bool, optional
|
||||
Whether to set values where the CDF is 0 to `numpy.nan`. By
|
||||
default `True`.
|
||||
right_nan : bool, optional
|
||||
Whether to set values where the CDF is 1 to `numpy.nan` after its
|
||||
first occurence to 1. By default `True`.
|
||||
dtype : numpy dtype, optional
|
||||
Calculation data type. By default `numpy.float32`.
|
||||
|
||||
|
@ -222,38 +365,28 @@ class kNN_CDF:
|
|||
"""
|
||||
batch_size = nsamples if batch_size is None else batch_size
|
||||
assert nsamples >= batch_size
|
||||
nbatches = nsamples // batch_size # Number of batches
|
||||
nbatches = nsamples // batch_size
|
||||
|
||||
# Preallocate the bins and the CDF array
|
||||
bins = numpy.logspace(numpy.log10(rmin), numpy.log10(rmax), neval)
|
||||
cdfs = numpy.zeros((len(knns), nneighbours, neval - 1), dtype=dtype)
|
||||
for i, knn in enumerate(tqdm(knns) if verbose else knns):
|
||||
# Loop over batches. This is to avoid generating large mocks
|
||||
# requiring a lot of memory. Add counts to the CDF array
|
||||
for j in range(nbatches):
|
||||
rand = self.rvs_in_sphere(batch_size, Rmax,
|
||||
random_state=random_state + j)
|
||||
dist, __ = knn.kneighbors(rand, nneighbours)
|
||||
|
||||
for k in range(nneighbours): # Count for each neighbour
|
||||
_counts, __, __ = binned_statistic(
|
||||
dist[:, k], dist[:, k], bins=bins, statistic="count",
|
||||
range=(rmin, rmax))
|
||||
cdfs[i, k, :] += _counts
|
||||
|
||||
rs = (bins[1:] + bins[:-1]) / 2 # Bin centers
|
||||
cdfs = numpy.cumsum(cdfs, axis=-1) # Cumulative sum, i.e. the CDF
|
||||
for i in range(len(knns)):
|
||||
for k in range(nneighbours):
|
||||
cdfs[i, k, :] /= cdfs[i, k, -1]
|
||||
# Set to NaN values after the first point where the CDF is 1
|
||||
if right_nan:
|
||||
ns = numpy.where(cdfs[i, k, :] == 1.)[0]
|
||||
if ns.size > 1:
|
||||
cdfs[i, k, ns[1]:] = numpy.nan
|
||||
|
||||
# Set to NaN values where the CDF is 0
|
||||
if left_nan:
|
||||
cdfs[cdfs == 0] = numpy.nan
|
||||
|
||||
rs = (bins[1:] + bins[:-1]) / 2 # Bin centers
|
||||
cdfs = cdfs[0, ...] if len(knns) == 1 else cdfs
|
||||
return rs, cdfs
|
||||
|
|
4359
notebooks/knn.ipynb
4359
notebooks/knn.ipynb
File diff suppressed because one or more lines are too long
|
@ -17,6 +17,7 @@ from os.path import join
|
|||
from argparse import ArgumentParser
|
||||
from copy import deepcopy
|
||||
from datetime import datetime
|
||||
from itertools import combinations
|
||||
from mpi4py import MPI
|
||||
from TaskmasterMPI import master_process, worker_process
|
||||
from sklearn.neighbors import NearestNeighbors
|
||||
|
@ -59,7 +60,8 @@ ics = [7444, 7468, 7492, 7516, 7540, 7564, 7588, 7612, 7636, 7660, 7684,
|
|||
9556, 9580, 9604, 9628, 9652, 9676, 9700, 9724, 9748, 9772, 9796,
|
||||
9820, 9844]
|
||||
dumpdir = "/mnt/extraspace/rstiskalek/csiborg/knn"
|
||||
fout = join(dumpdir, "knncdf_{}.p")
|
||||
fout_auto = join(dumpdir, "auto", "knncdf_{}.p")
|
||||
fout_cross = join(dumpdir, "cross", "knncdf_{}_{}.p")
|
||||
|
||||
|
||||
###############################################################################
|
||||
|
@ -68,7 +70,7 @@ fout = join(dumpdir, "knncdf_{}.p")
|
|||
knncdf = csiborgtools.match.kNN_CDF()
|
||||
|
||||
|
||||
def do_task(ic):
|
||||
def do_auto(ic):
|
||||
out = {}
|
||||
cat = csiborgtools.read.HaloCatalogue(ic, max_dist=Rmax)
|
||||
|
||||
|
@ -83,7 +85,39 @@ def do_task(ic):
|
|||
out.update({"cdf_{}".format(i): cdf})
|
||||
|
||||
out.update({"rs": rs, "mass_threshold": mass_threshold})
|
||||
joblib.dump(out, fout.format(ic))
|
||||
joblib.dump(out, fout_auto.format(ic))
|
||||
|
||||
|
||||
def do_cross(ics):
|
||||
out = {}
|
||||
cat1 = csiborgtools.read.HaloCatalogue(ics[0], max_dist=Rmax)
|
||||
cat2 = csiborgtools.read.HaloCatalogue(ics[1], max_dist=Rmax)
|
||||
|
||||
for i, mmin in enumerate(mass_threshold):
|
||||
knn1 = NearestNeighbors()
|
||||
knn1.fit(cat1.positions[cat1["totpartmass"] > mmin, ...])
|
||||
|
||||
knn2 = NearestNeighbors()
|
||||
knn2.fit(cat2.positions[cat2["totpartmass"] > mmin, ...])
|
||||
|
||||
rs, cdf0, cdf1, joint_cdf = knncdf.joint(
|
||||
knn1, knn2, nneighbours=args.nneighbours, Rmax=Rmax,
|
||||
rmin=args.rmin, rmax=args.rmax, nsamples=args.nsamples,
|
||||
neval=args.neval, batch_size=args.batch_size,
|
||||
random_state=args.seed)
|
||||
|
||||
corr = knncdf.joint_to_corr(cdf0, cdf1, joint_cdf)
|
||||
|
||||
out.update({"corr_{}".format(i): corr})
|
||||
|
||||
out.update({"rs": rs, "mass_threshold": mass_threshold})
|
||||
joblib.dump(out, fout_cross.format(*ics))
|
||||
|
||||
|
||||
|
||||
###############################################################################
|
||||
# Autocorrelation calculation #
|
||||
###############################################################################
|
||||
|
||||
|
||||
if nproc > 1:
|
||||
|
@ -91,15 +125,34 @@ if nproc > 1:
|
|||
tasks = deepcopy(ics)
|
||||
master_process(tasks, comm, verbose=True)
|
||||
else:
|
||||
worker_process(do_task, comm, verbose=False)
|
||||
worker_process(do_auto, comm, verbose=False)
|
||||
else:
|
||||
tasks = deepcopy(ics)
|
||||
for task in tasks:
|
||||
print("{}: completing task `{}`.".format(datetime.now(), task))
|
||||
do_task(task)
|
||||
|
||||
|
||||
do_auto(task)
|
||||
comm.Barrier()
|
||||
|
||||
|
||||
###############################################################################
|
||||
# Crosscorrelation calculation #
|
||||
###############################################################################
|
||||
|
||||
|
||||
if nproc > 1:
|
||||
if rank == 0:
|
||||
tasks = list(combinations(ics, 2))
|
||||
master_process(tasks, comm, verbose=True)
|
||||
else:
|
||||
worker_process(do_cross, comm, verbose=False)
|
||||
else:
|
||||
tasks = deepcopy(ics)
|
||||
for task in tasks:
|
||||
print("{}: completing task `{}`.".format(datetime.now(), task))
|
||||
do_cross(task)
|
||||
comm.Barrier()
|
||||
|
||||
|
||||
if rank == 0:
|
||||
print("{}: all finished.".format(datetime.now()))
|
||||
quit() # Force quit the script
|
|
@ -1,21 +1,17 @@
|
|||
nthreads=30
|
||||
memory=7
|
||||
queue="berg"
|
||||
nthreads=151
|
||||
memory=4
|
||||
queue="cmb"
|
||||
env="/mnt/zfsusers/rstiskalek/csiborgtools/venv_galomatch/bin/python"
|
||||
file="run_knn.py"
|
||||
|
||||
rmin=0.01
|
||||
rmax=100
|
||||
nneighbours=16
|
||||
nsamples=1000000000
|
||||
batch_size=10000000
|
||||
nneighbours=8
|
||||
nsamples=100000000
|
||||
batch_size=1000000
|
||||
neval=10000
|
||||
|
||||
# 1000,000,0
|
||||
# 10000000 # 1e7
|
||||
# 1000000000
|
||||
|
||||
pythoncm="$env $file --rmin $rmin --rmax $rmax --nneighbours $nneighbours --nsamples $nsamples --neval $neval"
|
||||
pythoncm="$env $file --rmin $rmin --rmax $rmax --nneighbours $nneighbours --nsamples $nsamples --batch_size $batch_size --neval $neval"
|
||||
|
||||
# echo $pythoncm
|
||||
# $pythoncm
|
||||
|
|
Loading…
Reference in a new issue