mirror of
https://github.com/Richard-Sti/csiborgtools.git
synced 2024-12-22 22:18:01 +00:00
Updates to the overlap reader. (#54)
* Flag for loading clumps_cat * Optionally load clumps catalogues * Update single pair reading * Edit reading many pairs
This commit is contained in:
parent
56e39a8b1d
commit
51b670d30b
3 changed files with 119 additions and 108 deletions
|
@ -378,16 +378,18 @@ class HaloCatalogue(BaseCatalogue):
|
||||||
Whether to return the raw data. In this case applies no cuts and
|
Whether to return the raw data. In this case applies no cuts and
|
||||||
transformations.
|
transformations.
|
||||||
"""
|
"""
|
||||||
|
_clumps_cat = None
|
||||||
|
|
||||||
def __init__(self, nsim, paths, maxdist=155.5 / 0.705, minmass=("M", 1e12),
|
def __init__(self, nsim, paths, maxdist=155.5 / 0.705, minmass=("M", 1e12),
|
||||||
with_lagpatch=True, load_fitted=True, load_initial=True,
|
with_lagpatch=True, load_fitted=True, load_initial=True,
|
||||||
rawdata=False):
|
load_clumps_cat=False, rawdata=False):
|
||||||
self.nsim = nsim
|
self.nsim = nsim
|
||||||
self.paths = paths
|
self.paths = paths
|
||||||
# Read in the mmain catalogue of summed substructure
|
# Read in the mmain catalogue of summed substructure
|
||||||
mmain = numpy.load(self.paths.mmain_path(self.nsnap, self.nsim))
|
mmain = numpy.load(self.paths.mmain_path(self.nsnap, self.nsim))
|
||||||
self._data = mmain["mmain"]
|
self._data = mmain["mmain"]
|
||||||
# We will also need the clumps catalogue
|
# We will also need the clumps catalogue
|
||||||
|
if load_clumps_cat:
|
||||||
self._clumps_cat = ClumpsCatalogue(nsim, paths, rawdata=True,
|
self._clumps_cat = ClumpsCatalogue(nsim, paths, rawdata=True,
|
||||||
load_fitted=False)
|
load_fitted=False)
|
||||||
if load_fitted:
|
if load_fitted:
|
||||||
|
@ -441,4 +443,6 @@ class HaloCatalogue(BaseCatalogue):
|
||||||
-------
|
-------
|
||||||
clumps_cat : :py:class:`csiborgtools.read.ClumpsCatalogue`
|
clumps_cat : :py:class:`csiborgtools.read.ClumpsCatalogue`
|
||||||
"""
|
"""
|
||||||
|
if self._clumps_cat is None:
|
||||||
|
raise ValueError("`clumps_cat` is not loaded.")
|
||||||
return self._clumps_cat
|
return self._clumps_cat
|
||||||
|
|
|
@ -15,12 +15,18 @@
|
||||||
"""
|
"""
|
||||||
Tools for summarising various results.
|
Tools for summarising various results.
|
||||||
"""
|
"""
|
||||||
from os.path import isfile, join
|
from functools import lru_cache
|
||||||
|
from os.path import isfile
|
||||||
|
|
||||||
import numpy
|
import numpy
|
||||||
from tqdm import tqdm
|
from tqdm import tqdm
|
||||||
|
|
||||||
|
|
||||||
|
###############################################################################
|
||||||
|
# Overlap of two simulations #
|
||||||
|
###############################################################################
|
||||||
|
|
||||||
|
|
||||||
class PairOverlap:
|
class PairOverlap:
|
||||||
r"""
|
r"""
|
||||||
A shortcut object for reading in the results of matching two simulations.
|
A shortcut object for reading in the results of matching two simulations.
|
||||||
|
@ -33,59 +39,98 @@ class PairOverlap:
|
||||||
Halo catalogue corresponding to the cross simulation.
|
Halo catalogue corresponding to the cross simulation.
|
||||||
paths : py:class`csiborgtools.read.CSiBORGPaths`
|
paths : py:class`csiborgtools.read.CSiBORGPaths`
|
||||||
CSiBORG paths object.
|
CSiBORG paths object.
|
||||||
min_mass : float, optional
|
|
||||||
Minimum :math:`M_{\rm tot} / M_\odot` mass in the reference catalogue.
|
|
||||||
By default no threshold.
|
|
||||||
max_dist : float, optional
|
|
||||||
Maximum comoving distance in the reference catalogue. By default upper
|
|
||||||
limit.
|
|
||||||
"""
|
"""
|
||||||
_cat0 = None
|
_cat0 = None
|
||||||
_catx = None
|
_catx = None
|
||||||
_data = None
|
_data = None
|
||||||
|
|
||||||
def __init__(self, cat0, catx, paths, min_mass=None, max_dist=None):
|
def __init__(self, cat0, catx, paths):
|
||||||
self._cat0 = cat0
|
self._cat0 = cat0
|
||||||
self._catx = catx
|
self._catx = catx
|
||||||
|
self.load(cat0, catx, paths)
|
||||||
|
|
||||||
if fskel is None:
|
def load(self, cat0, catx, paths):
|
||||||
fskel = join("/mnt/extraspace/rstiskalek/csiborg/overlap",
|
"""
|
||||||
"cross_{}_{}.npz")
|
Load overlap calculation results. Matches the results back to the two
|
||||||
|
catalogues in question.
|
||||||
|
|
||||||
fpath = fskel.format(cat0.n_sim, catx.n_sim)
|
Parameters
|
||||||
fpath_inv = fskel.format(catx.n_sim, cat0.n_sim)
|
----------
|
||||||
if isfile(fpath):
|
cat0 : :py:class:`csiborgtools.read.HaloCatalogue`
|
||||||
is_inverted = False
|
Halo catalogue corresponding to the reference simulation.
|
||||||
elif isfile(fpath_inv):
|
catx : :py:class:`csiborgtools.read.HaloCatalogue`
|
||||||
fpath = fpath_inv
|
Halo catalogue corresponding to the cross simulation.
|
||||||
is_inverted = True
|
paths : py:class`csiborgtools.read.CSiBORGPaths`
|
||||||
|
CSiBORG paths object.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
None
|
||||||
|
"""
|
||||||
|
nsim0 = cat0.nsim
|
||||||
|
nsimx = catx.nsim
|
||||||
|
|
||||||
|
# We first load in the output files. We need to find the right
|
||||||
|
# combination of the reference and cross simulation.
|
||||||
|
fname = paths.overlap_path(nsim0, nsimx, smoothed=False)
|
||||||
|
fname_inv = paths.overlap_path(nsimx, nsim0, smoothed=False)
|
||||||
|
if isfile(fname):
|
||||||
|
data_ngp = numpy.load(fname, allow_pickle=True)
|
||||||
|
to_invert = False
|
||||||
|
elif isfile(fname_inv):
|
||||||
|
data_ngp = numpy.load(fname_inv, allow_pickle=True)
|
||||||
|
to_invert = True
|
||||||
|
cat0, catx = catx, cat0
|
||||||
else:
|
else:
|
||||||
raise FileNotFoundError(
|
raise FileNotFoundError(f"No file found for {nsim0} and {nsimx}.")
|
||||||
"No overlap file found for combination `{}` and `{}`."
|
|
||||||
.format(cat0.n_sim, catx.n_sim))
|
|
||||||
|
|
||||||
# We can set catalogues already now even if inverted
|
fname_smooth = paths.overlap_path(cat0.nsim, catx.nsim, smoothed=True)
|
||||||
d = numpy.load(fpath, allow_pickle=True)
|
data_smooth = numpy.load(fname_smooth, allow_pickle=True)
|
||||||
ngp_overlap = d["ngp_overlap"]
|
|
||||||
smoothed_overlap = d["smoothed_overlap"]
|
# Create mapping from halo indices to array positions in the catalogue.
|
||||||
match_indxs = d["match_indxs"]
|
# In case of the cross simulation use caching for speed.
|
||||||
if is_inverted:
|
hid2ind0 = {hid: i for i, hid in enumerate(cat0["index"])}
|
||||||
indxs = d["cross_indxs"]
|
_hid2indx = {hid: i for i, hid in enumerate(catx["index"])}
|
||||||
# Invert the matches
|
|
||||||
|
@lru_cache(maxsize=8192)
|
||||||
|
def hid2indx(hid):
|
||||||
|
return _hid2indx[hid]
|
||||||
|
|
||||||
|
# Unpack the overlaps, making sure that their ordering matches the
|
||||||
|
# catalogue
|
||||||
|
ref_hids = data_ngp["ref_hids"]
|
||||||
|
match_hids = data_ngp["match_hids"]
|
||||||
|
raw_ngp_overlap = data_ngp["ngp_overlap"]
|
||||||
|
raw_smoothed_overlap = data_smooth["smoothed_overlap"]
|
||||||
|
|
||||||
|
match_indxs = [[] for __ in range(len(cat0))]
|
||||||
|
ngp_overlap = [[] for __ in range(len(cat0))]
|
||||||
|
smoothed_overlap = [[] for __ in range(len(cat0))]
|
||||||
|
for i in range(ref_hids.size):
|
||||||
|
_matches = numpy.copy(match_hids[i])
|
||||||
|
# Read off the orderings from the reference catalogue
|
||||||
|
for j, match_hid in enumerate(match_hids[i]):
|
||||||
|
_matches[j] = hid2indx(match_hid)
|
||||||
|
|
||||||
|
k = hid2ind0[ref_hids[i]]
|
||||||
|
match_indxs[k] = _matches
|
||||||
|
ngp_overlap[k] = raw_ngp_overlap[i]
|
||||||
|
smoothed_overlap[k] = raw_smoothed_overlap[i]
|
||||||
|
|
||||||
|
match_indxs = numpy.asanyarray(match_indxs, dtype=object)
|
||||||
|
ngp_overlap = numpy.asanyarray(ngp_overlap, dtype=object)
|
||||||
|
smoothed_overlap = numpy.asanyarray(smoothed_overlap, dtype=object)
|
||||||
|
|
||||||
|
# If needed, we now invert the matches.
|
||||||
|
if to_invert:
|
||||||
match_indxs, ngp_overlap, smoothed_overlap = self._invert_match(
|
match_indxs, ngp_overlap, smoothed_overlap = self._invert_match(
|
||||||
match_indxs, ngp_overlap, smoothed_overlap, indxs.size,)
|
match_indxs, ngp_overlap, smoothed_overlap, len(catx),)
|
||||||
else:
|
|
||||||
indxs = d["ref_indxs"]
|
|
||||||
|
|
||||||
self._data = {
|
self._data = {"match_indxs": match_indxs,
|
||||||
"index": indxs,
|
|
||||||
"match_indxs": match_indxs,
|
|
||||||
"ngp_overlap": ngp_overlap,
|
"ngp_overlap": ngp_overlap,
|
||||||
"smoothed_overlap": smoothed_overlap,
|
"smoothed_overlap": smoothed_overlap,
|
||||||
}
|
}
|
||||||
|
|
||||||
self._make_refmask(min_mass, max_dist)
|
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def _invert_match(match_indxs, ngp_overlap, smoothed_overlap, cross_size):
|
def _invert_match(match_indxs, ngp_overlap, smoothed_overlap, cross_size):
|
||||||
"""
|
"""
|
||||||
|
@ -104,16 +149,16 @@ class PairOverlap:
|
||||||
Smoothed pair overlap of halos between the original reference and
|
Smoothed pair overlap of halos between the original reference and
|
||||||
cross simulations.
|
cross simulations.
|
||||||
cross_size : int
|
cross_size : int
|
||||||
The size of the cross catalogue.
|
Size of the cross catalogue.
|
||||||
|
|
||||||
Returns
|
Returns
|
||||||
-------
|
-------
|
||||||
inv_match_indxs : array of 1-dimensional arrays
|
inv_match_indxs : array of 1-dimensional arrays
|
||||||
The inverted match indices.
|
Inverted match indices.
|
||||||
ind_ngp_overlap : array of 1-dimensional arrays
|
ind_ngp_overlap : array of 1-dimensional arrays
|
||||||
The corresponding NGP overlaps to `inv_match_indxs`.
|
The NGP overlaps corresponding to `inv_match_indxs`.
|
||||||
ind_smoothed_overlap : array of 1-dimensional arrays
|
ind_smoothed_overlap : array of 1-dimensional arrays
|
||||||
The corresponding smoothed overlaps to `inv_match_indxs`.
|
The smoothed overlaps corresponding to `inv_match_indxs`.
|
||||||
"""
|
"""
|
||||||
# 1. Invert the match. Each reference halo has a list of counterparts
|
# 1. Invert the match. Each reference halo has a list of counterparts
|
||||||
# so loop over those to each counterpart assign a reference halo
|
# so loop over those to each counterpart assign a reference halo
|
||||||
|
@ -123,7 +168,7 @@ class PairOverlap:
|
||||||
inv_smoothed_overlap = [[] for __ in range(cross_size)]
|
inv_smoothed_overlap = [[] for __ in range(cross_size)]
|
||||||
for ref_id in range(match_indxs.size):
|
for ref_id in range(match_indxs.size):
|
||||||
iters = zip(match_indxs[ref_id], ngp_overlap[ref_id],
|
iters = zip(match_indxs[ref_id], ngp_overlap[ref_id],
|
||||||
smoothed_overlap[ref_id], strict=True)
|
smoothed_overlap[ref_id])
|
||||||
for cross_id, ngp_cross, smoothed_cross in iters:
|
for cross_id, ngp_cross, smoothed_cross in iters:
|
||||||
inv_match_indxs[cross_id].append(ref_id)
|
inv_match_indxs[cross_id].append(ref_id)
|
||||||
inv_ngp_overlap[cross_id].append(ngp_cross)
|
inv_ngp_overlap[cross_id].append(ngp_cross)
|
||||||
|
@ -151,34 +196,6 @@ class PairOverlap:
|
||||||
|
|
||||||
return inv_match_indxs, inv_ngp_overlap, inv_smoothed_overlap
|
return inv_match_indxs, inv_ngp_overlap, inv_smoothed_overlap
|
||||||
|
|
||||||
def _make_refmask(self, min_mass, max_dist):
|
|
||||||
r"""
|
|
||||||
Create a mask for the reference catalogue that accounts for the mass
|
|
||||||
and distance cuts. Note that *no* masking is applied to the cross
|
|
||||||
catalogue.
|
|
||||||
|
|
||||||
Parameters
|
|
||||||
----------
|
|
||||||
min_mass : float, optional
|
|
||||||
The minimum :math:`M_{rm tot} / M_\odot` mass.
|
|
||||||
max_dist : float, optional
|
|
||||||
The maximum comoving distance of a halo.
|
|
||||||
|
|
||||||
Returns
|
|
||||||
-------
|
|
||||||
None
|
|
||||||
"""
|
|
||||||
# Enforce a cut on the reference catalogue
|
|
||||||
min_mass = 0 if min_mass is None else min_mass
|
|
||||||
max_dist = numpy.infty if max_dist is None else max_dist
|
|
||||||
m = ((self.cat0()["totpartmass"] > min_mass)
|
|
||||||
& (self.cat0()["dist"] < max_dist))
|
|
||||||
# Now remove indices that are below this cut
|
|
||||||
for p in ("index", "match_indxs", "ngp_overlap", "smoothed_overlap"):
|
|
||||||
self._data[p] = self._data[p][m]
|
|
||||||
|
|
||||||
self._data["refmask"] = m
|
|
||||||
|
|
||||||
def overlap(self, from_smoothed):
|
def overlap(self, from_smoothed):
|
||||||
"""
|
"""
|
||||||
Pair overlap of matched halos between the reference and cross
|
Pair overlap of matched halos between the reference and cross
|
||||||
|
@ -252,11 +269,8 @@ class PairOverlap:
|
||||||
assert (norm_kind is None
|
assert (norm_kind is None
|
||||||
or norm_kind in ("r200", "ref_patch", "sum_patch"))
|
or norm_kind in ("r200", "ref_patch", "sum_patch"))
|
||||||
# Get positions either in the initial or final snapshot
|
# Get positions either in the initial or final snapshot
|
||||||
if in_initial:
|
pos0 = self.cat0().position(in_initial)
|
||||||
pos0, posx = self.cat0().positions0, self.catx().positions0
|
posx = self.catx().position(in_initial)
|
||||||
else:
|
|
||||||
pos0, posx = self.cat0().positions, self.catx().positions
|
|
||||||
pos0 = pos0[self["refmask"], :] # Apply the reference catalogue mask
|
|
||||||
|
|
||||||
# Get the normalisation array if applicable
|
# Get the normalisation array if applicable
|
||||||
if norm_kind == "r200":
|
if norm_kind == "r200":
|
||||||
|
@ -398,7 +412,7 @@ class PairOverlap:
|
||||||
def cat0(self, key=None, index=None):
|
def cat0(self, key=None, index=None):
|
||||||
"""
|
"""
|
||||||
Return the reference halo catalogue if `key` is `None`, otherwise
|
Return the reference halo catalogue if `key` is `None`, otherwise
|
||||||
return values from the reference catalogue and apply `refmask`.
|
return values from the reference catalogue.
|
||||||
|
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
|
@ -413,13 +427,13 @@ class PairOverlap:
|
||||||
"""
|
"""
|
||||||
if key is None:
|
if key is None:
|
||||||
return self._cat0
|
return self._cat0
|
||||||
out = self._cat0[key][self["refmask"]]
|
out = self._cat0[key]
|
||||||
return out if index is None else out[index]
|
return out if index is None else out[index]
|
||||||
|
|
||||||
def catx(self, key=None, index=None):
|
def catx(self, key=None, index=None):
|
||||||
"""
|
"""
|
||||||
Return the cross halo catalogue if `key` is `None`, otherwise
|
Return the cross halo catalogue if `key` is `None`, otherwise
|
||||||
return values from the reference catalogue.
|
return values from the cross catalogue.
|
||||||
|
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
|
@ -438,16 +452,15 @@ class PairOverlap:
|
||||||
return out if index is None else out[index]
|
return out if index is None else out[index]
|
||||||
|
|
||||||
def __getitem__(self, key):
|
def __getitem__(self, key):
|
||||||
"""
|
assert key in ["match_indxs", "ngp_overlap", "smoothed_overlap"]
|
||||||
Must be one of `index`, `match_indxs`, `ngp_overlap`,
|
|
||||||
`smoothed_overlap` or `refmask`.
|
|
||||||
"""
|
|
||||||
assert key in ("index", "match_indxs", "ngp_overlap",
|
|
||||||
"smoothed_overlap", "refmask")
|
|
||||||
return self._data[key]
|
return self._data[key]
|
||||||
|
|
||||||
def __len__(self):
|
def __len__(self):
|
||||||
return self["index"].size
|
return self["match_indxs"].size
|
||||||
|
|
||||||
|
###############################################################################
|
||||||
|
# Overlap of many pairs of simulations. #
|
||||||
|
###############################################################################
|
||||||
|
|
||||||
|
|
||||||
class NPairsOverlap:
|
class NPairsOverlap:
|
||||||
|
@ -457,25 +470,17 @@ class NPairsOverlap:
|
||||||
|
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
cat0 : :py:class:`csiborgtools.read.ClumpsCatalogue`
|
cat0 : :py:class:`csiborgtools.read.HaloCatalogue`
|
||||||
Reference simulation halo catalogue.
|
Single reference simulation halo catalogue.
|
||||||
catxs : list of :py:class:`csiborgtools.read.ClumpsCatalogue`
|
catxs : list of :py:class:`csiborgtools.read.HaloCatalogue`
|
||||||
List of cross simulation halo catalogues.
|
List of cross simulation halo catalogues.
|
||||||
fskel : str, optional
|
paths : py:class`csiborgtools.read.CSiBORGPaths`
|
||||||
Path to the overlap. By default `None`, i.e.
|
CSiBORG paths object.
|
||||||
`/mnt/extraspace/rstiskalek/csiborg/overlap/cross_{}_{}.npz`.
|
|
||||||
min_mass : float, optional
|
|
||||||
Minimum :math:`M_{\rm tot} / M_\odot` mass in the reference catalogue.
|
|
||||||
By default no threshold.
|
|
||||||
max_dist : float, optional
|
|
||||||
Maximum comoving distance in the reference catalogue. By default upper
|
|
||||||
limit.
|
|
||||||
"""
|
"""
|
||||||
_pairs = None
|
_pairs = None
|
||||||
|
|
||||||
def __init__(self, cat0, catxs, fskel=None, min_mass=None, max_dist=None):
|
def __init__(self, cat0, catxs, paths):
|
||||||
self._pairs = [PairOverlap(cat0, catx, fskel=fskel, min_mass=min_mass,
|
self._pairs = [PairOverlap(cat0, catx, paths) for catx in catxs]
|
||||||
max_dist=max_dist) for catx in catxs]
|
|
||||||
|
|
||||||
def summed_overlap(self, from_smoothed, verbose=False):
|
def summed_overlap(self, from_smoothed, verbose=False):
|
||||||
"""
|
"""
|
||||||
|
|
|
@ -48,9 +48,11 @@ matcher = csiborgtools.match.RealisationsMatcher()
|
||||||
# Load the raw catalogues (i.e. no selection) including the initial CM
|
# Load the raw catalogues (i.e. no selection) including the initial CM
|
||||||
# positions and the particle archives.
|
# positions and the particle archives.
|
||||||
cat0 = HaloCatalogue(args.nsim0, paths, load_initial=True,
|
cat0 = HaloCatalogue(args.nsim0, paths, load_initial=True,
|
||||||
minmass=("totpartmass", 1e12), with_lagpatch=True)
|
minmass=("totpartmass", 1e12), with_lagpatch=True,
|
||||||
|
load_clumps_cat=True)
|
||||||
catx = HaloCatalogue(args.nsimx, paths, load_initial=True,
|
catx = HaloCatalogue(args.nsimx, paths, load_initial=True,
|
||||||
minmass=("totpartmass", 1e12), with_lagpatch=True)
|
minmass=("totpartmass", 1e12), with_lagpatch=True,
|
||||||
|
load_clumps_cat=True)
|
||||||
|
|
||||||
clumpmap0 = read_h5(paths.particles_path(args.nsim0))["clumpmap"]
|
clumpmap0 = read_h5(paths.particles_path(args.nsim0))["clumpmap"]
|
||||||
parts0 = read_h5(paths.initmatch_path(args.nsim0, "particles"))["particles"]
|
parts0 = read_h5(paths.initmatch_path(args.nsim0, "particles"))["particles"]
|
||||||
|
|
Loading…
Reference in a new issue