kNN memory batching (#35)

* Add batch sizing for less memory

* Add batch size to submission

* Update nb

* Add brute KNN

* unused variable

* Update nb
This commit is contained in:
Richard Stiskalek 2023-04-01 07:57:21 +01:00 committed by GitHub
parent 63ab3548b4
commit 513872ceb6
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
4 changed files with 188 additions and 64 deletions

View file

@ -15,9 +15,9 @@
""" """
kNN-CDF calculation kNN-CDF calculation
""" """
from gc import collect
import numpy import numpy
from scipy.interpolate import interp1d from scipy.interpolate import interp1d
from scipy.stats import binned_statistic
from tqdm import tqdm from tqdm import tqdm
@ -124,8 +124,58 @@ class kNN_CDF:
cdf[cdf > 0.5] = 1 - cdf[cdf > 0.5] cdf[cdf > 0.5] = 1 - cdf[cdf > 0.5]
return cdf return cdf
def brute_cdf(self, knn, nneighbours, Rmax, nsamples, rmin, rmax, neval,
random_state=42, dtype=numpy.float32):
"""
Calculate the CDF for a kNN of CSiBORG halo catalogues without batch
sizing. This can become memory intense for large numbers of randoms
and, therefore, is only for testing purposes.
Parameters
----------
knns : `sklearn.neighbors.NearestNeighbors`
kNN of CSiBORG halo catalogues.
neighbours : int
Maximum number of neighbours to use for the kNN-CDF calculation.
Rmax : float
Maximum radius of the sphere in which to sample random points for
the knn-CDF calculation. This should match the CSiBORG catalogues.
nsamples : int
Number of random points to sample for the knn-CDF calculation.
rmin : float
Minimum distance to evaluate the CDF.
rmax : float
Maximum distance to evaluate the CDF.
neval : int
Number of points to evaluate the CDF.
random_state : int, optional
Random state for the random number generator.
dtype : numpy dtype, optional
Calculation data type. By default `numpy.float32`.
Returns
-------
rs : 1-dimensional array
Distances at which the CDF is evaluated.
cdfs : 2-dimensional array
CDFs evaluated at `rs`.
"""
rand = self.rvs_in_sphere(nsamples, Rmax, random_state=random_state)
dist, __ = knn.kneighbors(rand, nneighbours)
dist = dist.astype(dtype)
cdf = [None] * nneighbours
for j in range(nneighbours):
rs, cdf[j] = self.cdf_from_samples(dist[:, j], rmin=rmin,
rmax=rmax, neval=neval)
cdf = numpy.asanyarray(cdf)
return rs, cdf
def __call__(self, *knns, nneighbours, Rmax, nsamples, rmin, rmax, neval, def __call__(self, *knns, nneighbours, Rmax, nsamples, rmin, rmax, neval,
verbose=True, random_state=42, dtype=numpy.float32): batch_size=None, verbose=True, random_state=42,
left_nan=True, right_nan=True, dtype=numpy.float32):
""" """
Calculate the CDF for a set of kNNs of CSiBORG halo catalogues. Calculate the CDF for a set of kNNs of CSiBORG halo catalogues.
@ -146,10 +196,20 @@ class kNN_CDF:
Maximum distance to evaluate the CDF. Maximum distance to evaluate the CDF.
neval : int neval : int
Number of points to evaluate the CDF. Number of points to evaluate the CDF.
batch_size : int, optional
Number of random points to sample in each batch. By default equal
to `nsamples`, however recommeded to be smaller to avoid requesting
too much memory,
verbose : bool, optional verbose : bool, optional
Verbosity flag. Verbosity flag.
random_state : int, optional random_state : int, optional
Random state for the random number generator. Random state for the random number generator.
left_nan : bool, optional
Whether to set values where the CDF is 0 to `numpy.nan`. By
default `True`.
right_nan : bool, optional
Whether to set values where the CDF is 1 to `numpy.nan` after its
first occurence to 1. By default `True`.
dtype : numpy dtype, optional dtype : numpy dtype, optional
Calculation data type. By default `numpy.float32`. Calculation data type. By default `numpy.float32`.
@ -160,22 +220,40 @@ class kNN_CDF:
cdfs : 2 or 3-dimensional array cdfs : 2 or 3-dimensional array
CDFs evaluated at `rs`. CDFs evaluated at `rs`.
""" """
rand = self.rvs_in_sphere(nsamples, Rmax, random_state=random_state) batch_size = nsamples if batch_size is None else batch_size
assert nsamples >= batch_size
nbatches = nsamples // batch_size # Number of batches
cdfs = [None] * len(knns) # Preallocate the bins and the CDF array
bins = numpy.logspace(numpy.log10(rmin), numpy.log10(rmax), neval)
cdfs = numpy.zeros((len(knns), nneighbours, neval - 1), dtype=dtype)
for i, knn in enumerate(tqdm(knns) if verbose else knns): for i, knn in enumerate(tqdm(knns) if verbose else knns):
dist, _indxs = knn.kneighbors(rand, nneighbours) # Loop over batches. This is to avoid generating large mocks
dist = dist.astype(dtype) # requiring a lot of memory. Add counts to the CDF array
del _indxs for j in range(nbatches):
collect() rand = self.rvs_in_sphere(batch_size, Rmax,
random_state=random_state + j)
dist, __ = knn.kneighbors(rand, nneighbours)
for k in range(nneighbours): # Count for each neighbour
_counts, __, __ = binned_statistic(
dist[:, k], dist[:, k], bins=bins, statistic="count",
range=(rmin, rmax))
cdfs[i, k, :] += _counts
rs = (bins[1:] + bins[:-1]) / 2 # Bin centers
cdfs = numpy.cumsum(cdfs, axis=-1) # Cumulative sum, i.e. the CDF
for i in range(len(knns)):
for k in range(nneighbours):
cdfs[i, k, :] /= cdfs[i, k, -1]
# Set to NaN values after the first point where the CDF is 1
if right_nan:
ns = numpy.where(cdfs[i, k, :] == 1.)[0]
if ns.size > 1:
cdfs[i, k, ns[1]:] = numpy.nan
cdf = [None] * nneighbours # Set to NaN values where the CDF is 0
for j in range(nneighbours): if left_nan:
rs, cdf[j] = self.cdf_from_samples( cdfs[cdfs == 0] = numpy.nan
dist[:, j], rmin=rmin, rmax=rmax, neval=neval)
cdfs[i] = cdf
cdfs = numpy.asanyarray(cdfs)
cdfs = cdfs[0, ...] if len(knns) == 1 else cdfs cdfs = cdfs[0, ...] if len(knns) == 1 else cdfs
return rs, cdfs return rs, cdfs

View file

@ -2,12 +2,12 @@
"cells": [ "cells": [
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 4, "execution_count": 1,
"id": "5a38ed25", "id": "5a38ed25",
"metadata": { "metadata": {
"ExecuteTime": { "ExecuteTime": {
"end_time": "2023-03-31T17:09:12.165480Z", "end_time": "2023-04-01T06:20:33.195162Z",
"start_time": "2023-03-31T17:09:12.116708Z" "start_time": "2023-04-01T06:20:29.474122Z"
}, },
"scrolled": true "scrolled": true
}, },
@ -16,8 +16,7 @@
"name": "stdout", "name": "stdout",
"output_type": "stream", "output_type": "stream",
"text": [ "text": [
"The autoreload extension is already loaded. To reload it, use:\n", "not found\n"
" %reload_ext autoreload\n"
] ]
} }
], ],
@ -44,12 +43,12 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 5, "execution_count": 2,
"id": "4218b673", "id": "4218b673",
"metadata": { "metadata": {
"ExecuteTime": { "ExecuteTime": {
"end_time": "2023-03-31T17:09:13.943312Z", "end_time": "2023-04-01T06:20:35.273662Z",
"start_time": "2023-03-31T17:09:12.167027Z" "start_time": "2023-04-01T06:20:33.196875Z"
} }
}, },
"outputs": [], "outputs": [],
@ -59,12 +58,12 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 11, "execution_count": 24,
"id": "5ff7a1b6", "id": "5ff7a1b6",
"metadata": { "metadata": {
"ExecuteTime": { "ExecuteTime": {
"end_time": "2023-03-31T17:10:18.303240Z", "end_time": "2023-04-01T06:55:34.643955Z",
"start_time": "2023-03-31T17:10:14.674751Z" "start_time": "2023-04-01T06:55:28.334204Z"
} }
}, },
"outputs": [ "outputs": [
@ -72,38 +71,7 @@
"name": "stderr", "name": "stderr",
"output_type": "stream", "output_type": "stream",
"text": [ "text": [
"\r", "100%|██████████| 1/1 [00:02<00:00, 2.95s/it]\n"
" 0%| | 0/1 [00:00<?, ?it/s]"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"float32\n",
"float32\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|██████████| 1/1 [00:03<00:00, 3.37s/it]"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"float32\n",
"float32\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\n"
] ]
} }
], ],
@ -113,18 +81,90 @@
"\n", "\n",
"knncdf = csiborgtools.match.kNN_CDF()\n", "knncdf = csiborgtools.match.kNN_CDF()\n",
"\n", "\n",
"rs, cdfs_high = knncdf(knn, nneighbours=3, Rmax=155 / 0.705, rmin=0.05, rmax=40,\n", "rs, cdf = knncdf(knn, nneighbours=2, Rmax=155 / 0.705, rmin=0.01, rmax=100,\n",
" nsamples=int(1e6), neval=int(1e4), random_state=42)" " nsamples=int(1e6), neval=int(1e4), random_state=42, batch_size=int(1e6))"
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"id": "08321431", "id": "0d5f3d02",
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [] "source": []
}, },
{
"cell_type": "code",
"execution_count": null,
"id": "8b9a8cf0",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "a1825f00",
"metadata": {
"ExecuteTime": {
"end_time": "2023-04-01T06:01:29.388586Z",
"start_time": "2023-04-01T06:01:29.321025Z"
},
"scrolled": false
},
"outputs": [],
"source": [
"plt.figure()\n",
"plt.plot(rs, knncdf.peaked_cdf(cdf[0, :]))\n",
"\n",
"plt.yscale(\"log\" )\n",
"plt.xscale(\"log\")\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "289549a0",
"metadata": {
"ExecuteTime": {
"end_time": "2023-03-31T22:55:20.690887Z",
"start_time": "2023-03-31T22:55:20.656550Z"
}
},
"outputs": [],
"source": [
"mask"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7a8c5202",
"metadata": {
"ExecuteTime": {
"end_time": "2023-03-31T22:54:52.330633Z",
"start_time": "2023-03-31T22:54:52.299548Z"
}
},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "46f54897",
"metadata": {
"ExecuteTime": {
"end_time": "2023-03-31T22:54:25.138813Z",
"start_time": "2023-03-31T22:54:25.105044Z"
}
},
"outputs": [],
"source": [
"dist"
]
},
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,

View file

@ -42,6 +42,7 @@ parser.add_argument("--rmax", type=float)
parser.add_argument("--nneighbours", type=int) parser.add_argument("--nneighbours", type=int)
parser.add_argument("--nsamples", type=int) parser.add_argument("--nsamples", type=int)
parser.add_argument("--neval", type=int) parser.add_argument("--neval", type=int)
parser.add_argument("--batch_size", type=int)
parser.add_argument("--seed", type=int, default=42) parser.add_argument("--seed", type=int, default=42)
args = parser.parse_args() args = parser.parse_args()
@ -77,8 +78,8 @@ def do_task(ic):
rs, cdf = knncdf(knn, nneighbours=args.nneighbours, Rmax=Rmax, rs, cdf = knncdf(knn, nneighbours=args.nneighbours, Rmax=Rmax,
rmin=args.rmin, rmax=args.rmax, nsamples=args.nsamples, rmin=args.rmin, rmax=args.rmax, nsamples=args.nsamples,
neval=args.neval, random_state=args.seed, neval=args.neval, batch_size=args.batch_size,
verbose=False) random_state=args.seed, verbose=False)
out.update({"cdf_{}".format(i): cdf}) out.update({"cdf_{}".format(i): cdf})
out.update({"rs": rs, "mass_threshold": mass_threshold}) out.update({"rs": rs, "mass_threshold": mass_threshold})

View file

@ -1,4 +1,4 @@
nthreads=140 nthreads=30
memory=7 memory=7
queue="berg" queue="berg"
env="/mnt/zfsusers/rstiskalek/csiborgtools/venv_galomatch/bin/python" env="/mnt/zfsusers/rstiskalek/csiborgtools/venv_galomatch/bin/python"
@ -7,9 +7,14 @@ file="run_knn.py"
rmin=0.01 rmin=0.01
rmax=100 rmax=100
nneighbours=16 nneighbours=16
nsamples=10000000 nsamples=1000000000
batch_size=10000000
neval=10000 neval=10000
# 1000,000,0
# 10000000 # 1e7
# 1000000000
pythoncm="$env $file --rmin $rmin --rmax $rmax --nneighbours $nneighbours --nsamples $nsamples --neval $neval" pythoncm="$env $file --rmin $rmin --rmax $rmax --nneighbours $nneighbours --nsamples $nsamples --neval $neval"
# echo $pythoncm # echo $pythoncm