Update prior in VF (#135)

* Update priors

* Update submit

* Update README

* Relax width of calibration priors

* Relax width of calibration priors

* Update smooth scales

* Update settings

* Update README

* Update submit

* Add names

* Update nb

* Fix bug

* Update script

* Move files

* Small bug fix

* Add script

* Add script

* Add script

* Add more power

* Update script

* Quick fix

* Rm blank line

* Update nb

* Update nb

* Update nb
This commit is contained in:
Richard Stiskalek 2024-07-12 15:46:45 +01:00 committed by GitHub
parent 6e3f354e69
commit 43ebf660ee
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
18 changed files with 999 additions and 179 deletions

View file

@ -4,5 +4,15 @@ Tools for analysing constrained cosmological simulations.
## TODO ## TODO
- [ ] Remove Gaussian priors and switch to uniform. Can the beta preference be a volume effect? - [x] Remove Gaussian priors and switch to uniform. Can the beta preference be a volume effect?
- [ ] Verify the effects of resolution (compare how Carrick worsens) and what happens to the LG velocity. - [x] Relax priors on the calibration parameters as well.
- [x] Verify the effects of resolution (compare how Carrick worsens).
## To present in the next meeting
- Resolution effects on the goodness-of-fit and the LG velocity.
- CF4 peculiar velocity samples.
## To discuss in the next meeting
- Get Helene Courtois' advice on the CF4 TFR samples.

View file

@ -34,7 +34,7 @@ from jax import numpy as jnp
from jax import vmap from jax import vmap
from jax.scipy.special import logsumexp from jax.scipy.special import logsumexp
from numpyro import sample from numpyro import sample
from numpyro.distributions import LogNormal, Normal from numpyro.distributions import Normal, Uniform
from quadax import simpson from quadax import simpson
from scipy.interpolate import interp1d from scipy.interpolate import interp1d
from sklearn.model_selection import KFold from sklearn.model_selection import KFold
@ -556,10 +556,10 @@ def e2_distmod_SN(e2_mB, e2_x1, e2_c, alpha_cal, beta_cal, e_mu_intrinsic):
+ e_mu_intrinsic**2) + e_mu_intrinsic**2)
def sample_SN(e_mu_mean, e_mu_std, mag_cal_mean, mag_cal_std, alpha_cal_mean, def sample_SN(e_mu_min, e_mu_max, mag_cal_mean, mag_cal_std, alpha_cal_mean,
alpha_cal_std, beta_cal_mean, beta_cal_std): alpha_cal_std, beta_cal_mean, beta_cal_std):
"""Sample SNIe Tripp parameters.""" """Sample SNIe Tripp parameters."""
e_mu = sample("e_mu", LogNormal(*lognorm_mean_std_to_loc_scale(e_mu_mean, e_mu_std))) # noqa e_mu = sample("e_mu", Uniform(e_mu_min, e_mu_max))
mag_cal = sample("mag_cal", Normal(mag_cal_mean, mag_cal_std)) mag_cal = sample("mag_cal", Normal(mag_cal_mean, mag_cal_std))
alpha_cal = sample("alpha_cal", Normal(alpha_cal_mean, alpha_cal_std)) alpha_cal = sample("alpha_cal", Normal(alpha_cal_mean, alpha_cal_std))
@ -582,9 +582,9 @@ def e2_distmod_TFR(e2_mag, e2_eta, b, e_mu_intrinsic):
return e2_mag + b**2 * e2_eta + e_mu_intrinsic**2 return e2_mag + b**2 * e2_eta + e_mu_intrinsic**2
def sample_TFR(e_mu_mean, e_mu_std, a_mean, a_std, b_mean, b_std): def sample_TFR(e_mu_min, e_mu_max, a_mean, a_std, b_mean, b_std):
"""Sample Tully-Fisher calibration parameters.""" """Sample Tully-Fisher calibration parameters."""
e_mu = sample("e_mu", LogNormal(*lognorm_mean_std_to_loc_scale(e_mu_mean, e_mu_std))) # noqa e_mu = sample("e_mu", Uniform(e_mu_min, e_mu_max))
a = sample("a", Normal(a_mean, a_std)) a = sample("a", Normal(a_mean, a_std))
b = sample("b", Normal(b_mean, b_std)) b = sample("b", Normal(b_mean, b_std))
@ -596,19 +596,19 @@ def sample_TFR(e_mu_mean, e_mu_std, a_mean, a_std, b_mean, b_std):
############################################################################### ###############################################################################
def sample_calibration(Vext_std, alpha_mean, alpha_std, beta_mean, beta_std, def sample_calibration(Vext_std, alpha_min, alpha_max, beta_min, beta_max,
sigma_v_mean, sigma_v_std, sample_alpha, sample_beta): sigma_v_min, sigma_v_max, sample_alpha, sample_beta):
"""Sample the flow calibration.""" """Sample the flow calibration."""
Vext = sample("Vext", Normal(0, Vext_std).expand([3])) Vext = sample("Vext", Normal(0, Vext_std).expand([3]))
sigma_v = sample("sigma_v", LogNormal(*lognorm_mean_std_to_loc_scale(sigma_v_mean, sigma_v_std))) # noqa sigma_v = sample("sigma_v", Uniform(sigma_v_min, sigma_v_max))
if sample_alpha: if sample_alpha:
alpha = sample("alpha", Normal(alpha_mean, alpha_std)) alpha = sample("alpha", Uniform(alpha_min, alpha_max))
else: else:
alpha = 1.0 alpha = 1.0
if sample_beta: if sample_beta:
beta = sample("beta", Normal(beta_mean, beta_std)) beta = sample("beta", Uniform(beta_min, beta_max))
else: else:
beta = 1.0 beta = 1.0

View file

@ -21,7 +21,6 @@ from abc import ABC, abstractmethod
from collections import OrderedDict from collections import OrderedDict
from functools import lru_cache from functools import lru_cache
from gc import collect from gc import collect
from itertools import product
from math import floor from math import floor
from astropy.cosmology import FlatLambdaCDM from astropy.cosmology import FlatLambdaCDM
@ -1342,5 +1341,14 @@ def fiducial_observers(boxwidth, radius):
Positions of the observers, with each position as a len-3 list. Positions of the observers, with each position as a len-3 list.
""" """
nobs = floor(boxwidth / (2 * radius)) nobs = floor(boxwidth / (2 * radius))
return [[val * radius for val in position]
for position in product([1, 3, 5], repeat=nobs)] obs = []
for i in range(nobs):
x = (2 * i + 1) * radius
for j in range(nobs):
y = (2 * j + 1) * radius
for k in range(nobs):
z = (2 * k + 1) * radius
obs.append([x, y, z])
return obs

View file

@ -637,7 +637,8 @@ class CSiBORG1Field(BaseField):
self._simname = "csiborg1" self._simname = "csiborg1"
def density_field(self, MAS, grid): def density_field(self, MAS, grid):
fpath = self.paths.field("density", MAS, grid, self.nsim, "csiborg1") fpath = self.paths.field(
"density", MAS, grid, self.nsim, self._simname)
if MAS == "SPH": if MAS == "SPH":
with File(fpath, "r") as f: with File(fpath, "r") as f:
@ -652,7 +653,8 @@ class CSiBORG1Field(BaseField):
return field return field
def velocity_field(self, MAS, grid): def velocity_field(self, MAS, grid):
fpath = self.paths.field("velocity", MAS, grid, self.nsim, "csiborg1") fpath = self.paths.field(
"velocity", MAS, grid, self.nsim, self._simname)
if MAS == "SPH": if MAS == "SPH":
with File(fpath, "r") as f: with File(fpath, "r") as f:
@ -677,7 +679,7 @@ class CSiBORG1Field(BaseField):
raise ValueError("The radial velocity field is only implemented " raise ValueError("The radial velocity field is only implemented "
"for the flipped x- and z-axes.") "for the flipped x- and z-axes.")
fpath = self.paths.field("radvel", MAS, grid, self.nsim, "csiborg1") fpath = self.paths.field("radvel", MAS, grid, self.nsim, self._simname)
return np.load(fpath) return np.load(fpath)

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View file

@ -108,6 +108,8 @@ def simname_to_pretty(simname):
"csiborg1": "CB1", "csiborg1": "CB1",
"csiborg2_main": "CB2", "csiborg2_main": "CB2",
"csiborg2X": "Manticore", "csiborg2X": "Manticore",
"CF4": "CF4",
"CF4gp": "CF4group",
} }
if isinstance(simname, list): if isinstance(simname, list):

View file

@ -340,8 +340,8 @@ if __name__ == "__main__":
args = parser.parse_args() args = parser.parse_args()
rmax = 200 rmax = 200
dr = 0.5 dr = 0.25
smooth_scales = [0, 2, 4] smooth_scales = [0]
comm = MPI.COMM_WORLD comm = MPI.COMM_WORLD
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring) paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)

View file

@ -11,7 +11,8 @@ MAS="SPH"
grid=1024 grid=1024
for catalogue in "LOSS" "Foundation" "Pantheon+" "2MTF" "SFI_gals"; do # for catalogue in "LOSS" "Foundation" "Pantheon+" "2MTF" "SFI_gals"; do
for catalogue in "LOSS"; do
# for catalogue in "Foundation"; do # for catalogue in "Foundation"; do
pythoncm="$env $file --catalogue $catalogue --nsims $nsims --simname $simname --MAS $MAS --grid $grid" pythoncm="$env $file --catalogue $catalogue --nsims $nsims --simname $simname --MAS $MAS --grid $grid"
if [ $on_login -eq 1 ]; then if [ $on_login -eq 1 ]; then

View file

@ -1,14 +1,14 @@
nthreads=1 nthreads=10
memory=64 memory=12
on_login=${1} on_login=${1}
queue="berg" queue="berg"
env="/mnt/zfsusers/rstiskalek/csiborgtools/venv_csiborg/bin/python" env="/mnt/zfsusers/rstiskalek/csiborgtools/venv_csiborg/bin/python"
file="field_prop.py" file="field_prop.py"
kind="density" kind="velocity"
simname="csiborg1" simname="quijote"
nsims="9844" nsims="-1"
MAS="PCS" MAS="PCS"
grid=1024 grid=256
pythoncm="$env $file --nsims $nsims --simname $simname --kind $kind --MAS $MAS --grid $grid" pythoncm="$env $file --nsims $nsims --simname $simname --kind $kind --MAS $MAS --grid $grid"

View file

@ -243,10 +243,10 @@ if __name__ == "__main__":
"num_epochs": num_epochs} "num_epochs": num_epochs}
print_variables(main_params.keys(), main_params.values()) print_variables(main_params.keys(), main_params.values())
calibration_hyperparams = {"Vext_std": 250, calibration_hyperparams = {"Vext_std": 500,
"alpha_mean": 1.0, "alpha_std": 0.5, "alpha_min": -1.0, "alpha_max": 3.0,
"beta_mean": 1.0, "beta_std": 0.5, "beta_min": -1.0, "beta_max": 3.0,
"sigma_v_mean": 200., "sigma_v_std": 100., "sigma_v_min": 5.0, "sigma_v_max": 750.,
"sample_alpha": sample_alpha, "sample_alpha": sample_alpha,
"sample_beta": sample_beta, "sample_beta": sample_beta,
} }
@ -254,15 +254,15 @@ if __name__ == "__main__":
calibration_hyperparams.keys(), calibration_hyperparams.values()) calibration_hyperparams.keys(), calibration_hyperparams.values())
if ARGS.catalogue in ["LOSS", "Foundation", "Pantheon+", "Pantheon+_groups", "Pantheon+_zSN"]: # noqa if ARGS.catalogue in ["LOSS", "Foundation", "Pantheon+", "Pantheon+_groups", "Pantheon+_zSN"]: # noqa
distmod_hyperparams = {"e_mu_mean": 0.1, "e_mu_std": 0.05, distmod_hyperparams = {"e_mu_min": 0.001, "e_mu_max": 1.0,
"mag_cal_mean": -18.25, "mag_cal_std": 0.5, "mag_cal_mean": -18.25, "mag_cal_std": 2.0,
"alpha_cal_mean": 0.148, "alpha_cal_std": 0.05, "alpha_cal_mean": 0.148, "alpha_cal_std": 1.0,
"beta_cal_mean": 3.112, "beta_cal_std": 1.0, "beta_cal_mean": 3.112, "beta_cal_std": 2.0,
} }
elif ARGS.catalogue in ["SFI_gals", "2MTF"]: elif ARGS.catalogue in ["SFI_gals", "2MTF"]:
distmod_hyperparams = {"e_mu_mean": 0.3, "e_mu_std": 0.15, distmod_hyperparams = {"e_mu_min": 0.001, "e_mu_max": 1.0,
"a_mean": -21., "a_std": 0.5, "a_mean": -21., "a_std": 5.0,
"b_mean": -5.95, "b_std": 0.25, "b_mean": -5.95, "b_std": 3.0,
} }
else: else:
raise ValueError(f"Unsupported catalogue: `{ARGS.catalogue}`.") raise ValueError(f"Unsupported catalogue: `{ARGS.catalogue}`.")

View file

@ -17,39 +17,16 @@ if [ "$on_login" != "1" ] && [ "$on_login" != "0" ]; then
fi fi
: << 'COMMENT'
Finished running:
- Carrick2015 with all catalogues
- Lilow2024 wbeta with all catalogues
- Lilow2024 wobeta with all catalogues
- CF4 wbeta with all catalogues
- CF4 wobeta with all catalogues
- CF4gp wbeta with all catalogues
- CF4gp wobeta with all catalogues
- csiborg1 wbeta with all catalogues
- csiborg1 wobeta with all catalogues
- csiborg2_main wbeta with all catalogues
- csiborg2_main wobeta with all catalogues
- csiborg2X wbeta with all catalogues
- csiborg2X wobeta with all catalogues
- csiborg2_main/csiborg2X 2MTF & Pantheon+ boxes individually.
Remaining to do:
- Lilow, CF4, and csiborgs with beta fixed.
COMMENT
# Submit a job for each combination of simname, catalogue, ksim # Submit a job for each combination of simname, catalogue, ksim
for simname in "Lilow2024" "CF4" "CF4gp" "csiborg1" "csiborg2_main" "csiborg2X"; do # for simname in "Lilow2024" "CF4" "CF4gp" "csiborg1" "csiborg2_main" "csiborg2X"; do
for ksmooth in 0 1 2 3 4; do
for simname in "Carrick2015"; do
# for simname in "csiborg1" "csiborg2_main" "csiborg2X"; do # for simname in "csiborg1" "csiborg2_main" "csiborg2X"; do
for catalogue in "LOSS" "Foundation" "2MTF" "Pantheon+" "SFI_gals"; do for catalogue in "Pantheon+"; do
# for catalogue in "2MTF"; do # for catalogue in "2MTF"; do
# for ksim in 0 1 2; do # for ksim in 0 1 2; do
# for ksim in 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20; do # for ksim in 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20; do
for ksim in 0; do for ksim in "none"; do
pythoncm="$env $file --catalogue $catalogue --simname $simname --ksim $ksim --ksmooth $ksmooth --ndevice $ndevice --device $device" pythoncm="$env $file --catalogue $catalogue --simname $simname --ksim $ksim --ksmooth $ksmooth --ndevice $ndevice --device $device"
if [ $on_login -eq 1 ]; then if [ $on_login -eq 1 ]; then
@ -66,3 +43,5 @@ for simname in "Lilow2024" "CF4" "CF4gp" "csiborg1" "csiborg2_main" "csiborg2X";
done done
done done
done done
done

View file

@ -0,0 +1,173 @@
# Copyright (C) 2023 Richard Stiskalek
# This program is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3 of the License, or (at your
# option) any later version.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
# Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
"""Quick script to write halo catalogues as a HDF5 file."""
from os import remove
from os.path import exists, join
import numpy as np
from h5py import File
import csiborgtools
from csiborgtools import fprint
###############################################################################
# Evaluating fields at a fixed radius. #
###############################################################################
def load_fields(nsim, MAS, grid, paths):
# reader = csiborgtools.read.QuijoteField(nsim, paths)
# velocity_field = reader.velocity_field(MAS, grid)
# reader = csiborgtools.read.CSiBORG2Field(nsim, "random", paths)
# velocity_field = reader.velocity_field(MAS, grid)
folder = "/mnt/extraspace/rstiskalek/catalogs"
fpath = join(folder, "twompp_velocity_carrick2015.npy")
field = np.load(fpath).astype(np.float32)
field[0] -= 89
field[1] -= -131
field[2] -= 17
# field /= 0.43
return field
# return velocity_field
def uniform_points_at_radius(R, npoints, seed):
gen = np.random.RandomState(seed)
phi = gen.uniform(0, 2*np.pi, npoints)
theta = np.arccos(gen.uniform(-1, 1, npoints))
return R * np.vstack([
np.sin(theta) * np.cos(phi),
np.sin(theta) * np.sin(phi),
np.cos(theta)]).T
def main_field(velocity_field, radius, observers, npoints, fname, boxsize):
if exists(fname):
print(f"Removing existing file `{fname}`.", flush=True)
remove(fname)
points = uniform_points_at_radius(radius, npoints, 42)
for i, observer in enumerate(observers):
current_points = (points + observer)
current_points_box_units = current_points / boxsize
vel = np.vstack([csiborgtools.field.evaluate_cartesian_cic(
velocity_field[i], pos=current_points_box_units,
smooth_scales=None,) for i in range(3)]).T
vel_observer = np.vstack([csiborgtools.field.evaluate_cartesian_cic(
velocity_field[i],
pos=np.asarray(observer).reshape(1, 3) / boxsize,
smooth_scales=None) for i in range(3)]).T[0]
with File(fname, 'a') as f:
grp = f.create_group(f"obs_{i}")
grp.create_dataset("pos", data=current_points)
grp.create_dataset("vel", data=vel)
grp.create_dataset("observer", data=observer)
grp.create_dataset("vel_observer", data=vel_observer)
print(f"Written to `{fname}`.", flush=True)
###############################################################################
# Selecting particles in a thin radial shell. #
###############################################################################
def load_particles(nsim, paths):
reader = csiborgtools.read.QuijoteSnapshot(nsim, 4, paths)
fprint("reading particles positions...")
pos = reader.coordinates()
fprint("reading particles velocities...")
vel = reader.velocities()
fprint("finished reading the snapshot.")
return pos, vel
def main_particles(pos, vel, rmin, rmax, observers, fname):
if exists(fname):
print(f"Removing existing file `{fname}`.", flush=True)
remove(fname)
for i, observer in enumerate(observers):
r = np.linalg.norm(pos - observer, axis=1)
mask = (r > rmin) & (r < rmax)
print(f"Observer {i}: {mask.sum()} particles in the shell.")
with File(fname, 'a') as f:
grp = f.create_group(f"obs_{i}")
grp.create_dataset("pos", data=pos[mask])
grp.create_dataset("vel", data=vel[mask])
grp.create_dataset("observer", data=observer)
print(f"Written to `{fname}`.", flush=True)
###############################################################################
# Interface #
###############################################################################
if __name__ == "__main__":
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
fdir = "/mnt/extraspace/rstiskalek/BBF/Quijote_field_points"
# grid = 512
# MAS = "PCS"
# boxsize = csiborgtools.simname2boxsize("quijote")
# rmax = 200
# radius_evaluate = 150
# npoints = 1000
# fiducial_observers = csiborgtools.read.fiducial_observers(boxsize, rmax)
# print(f"There are {len(fiducial_observers)} observers.")
# # fiducial_observers = [[boxsize/2, boxsize/2, boxsize/2]]
# nsims = [0]
# for nsim in nsims:
# fname = join(fdir, f"field_points_{nsim}.h5")
# velocity_field = load_fields(nsim, MAS, grid, paths)
# main_field(velocity_field, radius_evaluate, fiducial_observers,
# npoints, fname, boxsize)
rmin = 100
rmax = 100.5
boxsize = csiborgtools.simname2boxsize("quijote")
fiducial_observers = csiborgtools.read.fiducial_observers(boxsize, 200)
print(f"There are {len(fiducial_observers)} observers.")
nsims = [0]
for nsim in nsims:
fname = join(fdir, f"particles_points_{nsim}.h5")
pos, vel = load_particles(nsim, paths)
main_particles(pos, vel, rmin, rmax, fiducial_observers, fname)
# grid = None
# MAS = None
# boxsize = csiborgtools.simname2boxsize("Carrick2015")
# radius_evaluate = 75
# npoints = 1000
# fiducial_observers = [[boxsize/2, boxsize/2, boxsize/2]]
# nsims = [0]
# for nsim in nsims:
# fname = join(fdir, f"Carrick2015_field_points_{nsim}.h5")
# velocity_field = load_fields(nsim, MAS, grid, paths)
# main_field(velocity_field, radius_evaluate, fiducial_observers,
# npoints, fname, boxsize)

View file

@ -1,112 +0,0 @@
# Copyright (C) 2023 Richard Stiskalek
# This program is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3 of the License, or (at your
# option) any later version.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
# Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
"""
Quick script to output either halo positions and masses or positions of
galaxies in a survey as an ASCII file.
"""
from os.path import join
import csiborgtools
import numpy as np
from tqdm import tqdm
DIR_OUT = "/mnt/extraspace/rstiskalek/csiborg_postprocessing/ascii_positions"
def write_simulation(simname, high_resolution_only=True):
""""
Write the positions, velocities and IDs of the particles in a simulation
to an ASCII file. The output is `X Y Z VX VY VZ ID`.
"""
if not high_resolution_only:
raise RuntimeError("Writing low-res particles is not implemented.")
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
if "csiborg2" in simname:
nsims = paths.get_ics(simname)
kind = simname.split("_")[-1]
for nsim in tqdm(nsims, desc="Simulations"):
reader = csiborgtools.read.CSiBORG2Snapshot(nsim, 99, kind, paths,
flip_xz=False)
x = np.hstack(
[reader.coordinates(high_resolution_only=True),
reader.velocities(high_resolution_only=True),
reader.particle_ids(high_resolution_only=True).reshape(-1, 1)]
)
# Store positions and velocities with 6 decimal places and IDs as
# integers.
fmt_string = "%1.6f %1.6f %1.6f %1.6f %1.6f %1.6f %d"
fname = join(DIR_OUT, f"high_res_particles_{simname}_{nsim}.txt")
np.savetxt(fname, x, fmt=fmt_string)
else:
raise RuntimeError("Simulation not implemented..")
def write_halos(simname):
"""
Watch out about the distinction between real and redshift space. The output
is `X Y Z MASS`.
"""
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
if "csiborg2" in simname:
nsims = paths.get_ics(simname)
kind = simname.split("_")[-1]
for nsim in tqdm(nsims, desc="Looping over simulations"):
cat = csiborgtools.read.CSiBORG2Catalogue(nsim, 99, kind, paths)
pos = cat["cartesian_pos"]
mass = cat["totmass"]
# Stack positions and masses
x = np.hstack([pos, mass.reshape(-1, 1)])
# Save to a file
fname = join(DIR_OUT, f"halos_real_{simname}_{nsim}.txt")
np.savetxt(fname, x)
else:
raise RuntimeError("Simulation not implemented..")
def write_survey(survey_name, boxsize):
"""Watch out about the distance definition."""
if survey_name == "SDSS":
survey = csiborgtools.SDSS()()
dist, ra, dec = survey["DIST"], survey["RA"], survey["DEC"]
elif survey_name == "SDSSxALFALFA":
survey = csiborgtools.SDSSxALFALFA()()
dist, ra, dec = survey["DIST"], survey["RA_1"], survey["DEC_1"]
else:
raise RuntimeError("Survey not implemented..")
# Convert to Cartesian coordinates
X = np.vstack([dist, ra, dec]).T
X = csiborgtools.radec_to_cartesian(X)
# Center the coordinates in the box
X += boxsize / 2
fname = join(DIR_OUT, f"survey_{survey_name}.txt")
np.savetxt(fname, X)
if __name__ == "__main__":
write_simulation("csiborg2_main")
# write_halos("csiborg2_main")
# boxsize = 676.6
# for survey in ["SDSS", "SDSSxALFALFA"]:
# write_survey(survey, boxsize)

View file

@ -0,0 +1,126 @@
# Copyright (C) 2024 Richard Stiskalek
# This program is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3 of the License, or (at your
# option) any later version.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
# Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
"""
A script to calculate the bulk flow in Quijote simulations from either
particles or FoF haloes and to also save the resulting smaller halo catalogues.
"""
import csiborgtools
import healpy as hp
import numpy as np
from csiborgtools.field import evaluate_cartesian_cic
from h5py import File
from tqdm import tqdm
def load_field(nsim, MAS, grid, paths):
"""Load the precomputed velocity field from the Quijote simulations."""
reader = csiborgtools.read.QuijoteField(nsim, paths)
return reader.velocity_field(MAS, grid)
def skymap_coordinates(nside, R):
"""Generate 3D pixel positions at a given radius."""
theta, phi = hp.pix2ang(nside, np.arange(hp.nside2npix(nside)), )
pos = R * np.vstack([np.sin(theta) * np.cos(phi),
np.sin(theta) * np.sin(phi),
np.cos(theta)]).T
# Quijote expects float32, otherwise it will crash
return pos.astype(np.float32)
def make_radvel_skymap(velocity_field, pos, observer, boxsize):
"""
Make a skymap of the radial velocity field at the given 3D positions which
correspond to the pixels.
"""
# Velocities on the shell
Vx, Vy, Vz = [evaluate_cartesian_cic(velocity_field[i], pos=pos / boxsize,
smooth_scales=None) for i in range(3)]
# Observer velocity
obs = np.asarray(observer).reshape(1, 3) / boxsize
Vx_obs, Vy_obs, Vz_obs = [evaluate_cartesian_cic(
velocity_field[i], pos=obs, smooth_scales=None)[0] for i in range(3)]
# Subtract observer velocity
Vx -= Vx_obs
Vy -= Vy_obs
Vz -= Vz_obs
# Radial velocity
norm_pos = pos - observer
norm_pos /= np.linalg.norm(norm_pos, axis=1).reshape(-1, 1)
Vrad = Vx * norm_pos[:, 0] + Vy * norm_pos[:, 1] + Vz * norm_pos[:, 2]
return Vrad
def main(nsims, observers, nside, ell_max, radii, boxsize, MAS, grid, fname):
"""Calculate the sky maps and C_ell."""
# 3D pixel positions at each radius in box units
map_pos = [skymap_coordinates(nside, R) for R in radii]
print(f"Writing to `{fname}`...")
f = File(fname, 'w')
f.create_dataset("ell", data=np.arange(ell_max + 1))
f.create_dataset("radii", data=radii)
f.attrs["num_simulations"] = len(nsims)
f.attrs["num_observers"] = len(observers)
f.attrs["num_radii"] = len(radii)
f.attrs["npix_per_map"] = hp.nside2npix(nside)
for nsim in tqdm(nsims, desc="Simulations"):
grp_sim = f.create_group(f"nsim_{nsim}")
velocity_field = load_field(nsim, MAS, grid, paths)
for n in range(len(observers)):
grp_observer = grp_sim.create_group(f"observer_{n}")
for i in range(len(radii)):
pos = map_pos[i] + observers[n]
skymap = make_radvel_skymap(velocity_field, pos, observers[n],
boxsize)
C_ell = hp.sphtfunc.anafast(skymap, lmax=ell_max)
grp_observer.create_dataset(f"skymap_{i}", data=skymap)
grp_observer.create_dataset(f"C_ell_{i}", data=C_ell)
print(f"Closing `{fname}`.")
f.close()
if __name__ == "__main__":
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
MAS = "PCS"
grid = 512
nside = 256
ell_max = 16
boxsize = 1000
Rmax = 200
radii = np.linspace(100, 150, 5)
fname = "/mnt/extraspace/rstiskalek/BBF/Quijote_Cell/C_ell_fiducial.h5"
nsims = list(range(50))
observers = csiborgtools.read.fiducial_observers(boxsize, Rmax)
main(nsims, observers, nside, ell_max, radii, boxsize, MAS, grid, fname)

View file

@ -0,0 +1,25 @@
#!/bin/bash
nthreads=1
memory=16
on_login=${1}
queue="berg"
env="/mnt/zfsusers/rstiskalek/csiborgtools/venv_csiborg/bin/python"
file="quijote_pecvel_covmat.py"
if [ "$on_login" != "1" ] && [ "$on_login" != "0" ]; then
echo "Invalid input: 'on_login' (1). Please provide 1 or 0."
exit 1
fi
pythoncm="$env $file"
if [ $on_login -eq 1 ]; then
echo $pythoncm
$pythoncm
else
cm="addqueue -q $queue -n $nthreads -m $memory $pythoncm"
echo "Submitting:"
echo $cm
echo
eval $cm
fi

158
scripts/vrad_covariance.py Normal file
View file

@ -0,0 +1,158 @@
# Copyright (C) 2024 Richard Stiskalek
# This program is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3 of the License, or (at your
# option) any later version.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
# Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
"""
NOTE: The script is far from finished or written well.
"""
from os.path import join
import numpy as np
import csiborgtools
from h5py import File
from sklearn.neighbors import NearestNeighbors
from numba import jit
from scipy.stats import binned_statistic
###
def find_indxs(rtree, r, radius):
"""
Find the indices of points that are within a given radius of a given
point `r`.
"""
if isinstance(r, (int, float)):
r = np.array(r)
return rtree.radius_neighbors(
r.reshape(-1, 1), radius=radius, return_distance=False, )[0]
@jit(nopython=True)
def dot_product_norm(x1_norm, x2_norm):
"""Dot product of two normalised 1D vectors."""
return x1_norm[0] * x2_norm[0] + x1_norm[1] * x2_norm[1] + x1_norm[2] * x2_norm[2] # noqa
@jit(nopython=True)
def get_angdist_vrad_product(i_comb, j_comb, pos_norm, vrad, r, rbin_i, rbin_j):
# TODO: Add itself?
len_i = len(i_comb)
len_j = len(j_comb)
cos_angdist_values = np.full(len_i * len_j, np.nan)
vrad_product = np.full(len_i * len_j, np.nan)
weights = np.full(len_i * len_j, np.nan)
k = 0
for i in range(len_i):
pos_norm_i = pos_norm[i_comb[i]]
vrad_i = vrad[i_comb[i]]
w_i = (rbin_i / r[i_comb[i]])**2
for j in range(len_j):
cos_angdist_values[k] = dot_product_norm(pos_norm_i, pos_norm[j_comb[j]])
# Product of the peculiar velocities
vrad_product[k] = vrad_i * vrad[j_comb[j]]
# Weight the product
w = w_i * (rbin_j / r[j_comb[j]])**2
vrad_product[k] *= w
weights[k] = w
k += 1
return cos_angdist_values, vrad_product, weights
def main(out_summed_product, out_weights, ri, rj, angular_bins, pos, vel, observer, rmax):
# Centre the positions at the observer
pos = np.copy(pos) - observer
r = np.linalg.norm(pos, axis=1)
mask = r < rmax
# Select only the haloes within the radial range
pos = pos[mask]
vel = vel[mask]
r = r[mask]
# Create a KDTree for the radial positions
rtree = NearestNeighbors().fit(r.reshape(-1, 1))
# Calculate the radial velocity and the normalised position vector
pos_norm = pos / r[:, None]
vrad = np.sum(vel * pos_norm, axis=1)
# TODO: eventually here loop over the radii
# for ....
dr = 2.5
i_indxs = find_indxs(rtree, ri, radius=dr)
j_indxs = find_indxs(rtree, rj, radius=dr)
# Calculate the cosine of the angular distance and the product of the
# radial velocities for each pair of points.
cos_angdist, vrad_product, weights = get_angdist_vrad_product(
i_indxs, j_indxs, pos_norm, vrad, r, ri, rj)
out_summed_product += binned_statistic(
cos_angdist, vrad_product, bins=angular_bins, statistic="sum")[0]
out_weights += binned_statistic(
cos_angdist, weights, bins=angular_bins, statistic="sum")[0]
return out_summed_product, out_weights
if __name__ == "__main__":
fdir = "/mnt/extraspace/rstiskalek/BBF/Quijote_C_ij"
rmax = 150
nradial = 20
nangular = 40
ncatalogue = 1
# NOTE check this
radial_bins = np.linspace(0, rmax, nradial + 1)
angular_bins = np.linspace(-1, 1, nangular + 1)
summed_product = np.zeros(nangular)
weights = np.zeros(nangular)
fiducial_observers = csiborgtools.read.fiducial_observers(1000, rmax)
ri = 100
rj = 120
# for i in trange(ncatalogue, desc="Catalogues"):
for i in [30]:
cat = csiborgtools.read.QuijoteCatalogue(i)
for j in range(len(fiducial_observers)):
# Loop over all the fiducial observers in this simulation
observer = fiducial_observers[j]
summed_product, weights = main(
summed_product, weights, ri, rj, angular_bins,
cat["cartesian_pos"], cat["cartesian_vel"], observer, rmax)
# TODO: Save
fname = join(fdir, "test.h5")
print(f"Saving to `{fname}`.")
with File(fname, 'w') as f:
f.create_dataset("summed_product", data=summed_product)
f.create_dataset("weights", data=weights)
f.create_dataset("angular_bins", data=angular_bins)