mirror of
https://github.com/Richard-Sti/csiborgtools.git
synced 2024-12-22 17:18:02 +00:00
Stacking p(zcosmo | ... ) (#124)
* Update nb * Add import * Add posterior stacking
This commit is contained in:
parent
24cab8555a
commit
380c2f8df0
3 changed files with 447 additions and 76 deletions
|
@ -18,4 +18,5 @@ from .flow_model import (DataLoader, radial_velocity_los, dist2redshift,
|
||||||
TF_PV_validation_model, radec_to_galactic, # noqa
|
TF_PV_validation_model, radec_to_galactic, # noqa
|
||||||
sample_prior, make_loss, get_model, # noqa
|
sample_prior, make_loss, get_model, # noqa
|
||||||
optimize_model_with_jackknife, distmodulus2dist, # noqa
|
optimize_model_with_jackknife, distmodulus2dist, # noqa
|
||||||
Observed2CosmologicalRedshift) # noqa
|
Observed2CosmologicalRedshift, # noqa
|
||||||
|
stack_pzosmo_over_realizations) # noqa
|
||||||
|
|
|
@ -1733,7 +1733,8 @@ class BaseObserved2CosmologicalRedshift(ABC):
|
||||||
|
|
||||||
class Observed2CosmologicalRedshift(BaseObserved2CosmologicalRedshift):
|
class Observed2CosmologicalRedshift(BaseObserved2CosmologicalRedshift):
|
||||||
"""
|
"""
|
||||||
Model to predict the cosmological redshift from the observed redshift.
|
Model to predict the cosmological redshift from the observed redshift in
|
||||||
|
the CMB frame.
|
||||||
|
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
|
@ -1836,3 +1837,63 @@ class Observed2CosmologicalRedshift(BaseObserved2CosmologicalRedshift):
|
||||||
posterior = jnp.nanmean(posterior, axis=0)
|
posterior = jnp.nanmean(posterior, axis=0)
|
||||||
|
|
||||||
return self._zcos_xrange, posterior
|
return self._zcos_xrange, posterior
|
||||||
|
|
||||||
|
|
||||||
|
def stack_pzosmo_over_realizations(n, obs2cosmo_models, loaders, zobs_catname,
|
||||||
|
pzcosmo_kwargs={}, verbose=True):
|
||||||
|
"""
|
||||||
|
Stack the posterior PDFs of `z_cosmo` for a given galaxy index `n` over
|
||||||
|
multiple constrained realizations.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
n : int
|
||||||
|
Galaxy index in the loaders' catalogue.
|
||||||
|
obs2cosmo_models : list
|
||||||
|
List of `Observed2CosmologicalRedshift` instances per realization.
|
||||||
|
loaders : list
|
||||||
|
List of DataLoader instances per realization.
|
||||||
|
zobs_catname : str
|
||||||
|
Name of the observed redshift column in the catalogue.
|
||||||
|
pzcosmo_kwargs : dict, optional
|
||||||
|
Additional keyword arguments to pass to `posterior_zcosmo`.
|
||||||
|
verbose : bool, optional
|
||||||
|
Verbosity flag.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
zcosmo : 1-dimensional array
|
||||||
|
Cosmological redshift at which the PDF is evaluated.
|
||||||
|
p_zcosmo : 1-dimensional array
|
||||||
|
Stacked posterior PDF.
|
||||||
|
"""
|
||||||
|
# Do some standard checks of inputs
|
||||||
|
if not isinstance(obs2cosmo_models, list):
|
||||||
|
raise ValueError("`obs2cosmo_models` 1must be a list.")
|
||||||
|
if not isinstance(loaders, list):
|
||||||
|
raise ValueError("`loaders` must be a list.")
|
||||||
|
if len(obs2cosmo_models) != len(loaders):
|
||||||
|
raise ValueError("The number of models and loaders must be equal.")
|
||||||
|
|
||||||
|
for i in trange(len(obs2cosmo_models), desc="Stacking",
|
||||||
|
disable=not verbose):
|
||||||
|
zobs = loaders[i].cat[zobs_catname][n]
|
||||||
|
RA = np.deg2rad(loaders[i].cat["RA"][n])
|
||||||
|
dec = np.deg2rad(loaders[i].cat["DEC"][n])
|
||||||
|
los_density = loaders[i].los_density[n]
|
||||||
|
los_velocity = loaders[i].los_radial_velocity[n]
|
||||||
|
|
||||||
|
x, y = obs2cosmo_models[i].posterior_zcosmo(
|
||||||
|
zobs, RA, dec, los_density, los_velocity, verbose=False,
|
||||||
|
**pzcosmo_kwargs)
|
||||||
|
|
||||||
|
if i == 0:
|
||||||
|
zcosmo = x
|
||||||
|
p_zcosmo = np.empty((len(loaders), len(x)), dtype=np.float32)
|
||||||
|
|
||||||
|
p_zcosmo[i] = y
|
||||||
|
|
||||||
|
# Stack the posterior PDFs
|
||||||
|
p_zcosmo = np.nanmean(p_zcosmo, axis=0)
|
||||||
|
|
||||||
|
return zcosmo, p_zcosmo
|
||||||
|
|
File diff suppressed because one or more lines are too long
Loading…
Reference in a new issue