mirror of
https://github.com/Richard-Sti/csiborgtools.git
synced 2024-12-22 13:48:02 +00:00
New matches (#69)
* Remove old file * Add velocity plotting * add smooth scale * Fix bug * Improve paths * Edit plotting * Add smoothed density * Update boundaries * Add basics * Further docs * Remove blank * Better catalog broadcasting * Update high res size * Update plotting routines * Update routine * Update plotting * Fix field saving name * Add better colormap for environemnt
This commit is contained in:
parent
73687fd8cc
commit
35ccfb5c67
9 changed files with 343 additions and 169 deletions
|
@ -305,7 +305,7 @@ class VelocityField(BaseField):
|
|||
vel *= mass.reshape(-1, 1) / mpart
|
||||
|
||||
for i in range(3):
|
||||
MASL.MA(pos, rho_vel[i], self.boxsize, self.MAS, W=vel[i, :],
|
||||
MASL.MA(pos, rho_vel[i], self.boxsize, self.MAS, W=vel[:, i],
|
||||
verbose=False)
|
||||
if end == nparts:
|
||||
break
|
||||
|
@ -417,11 +417,8 @@ class TidalTensorField(BaseField):
|
|||
Returns
|
||||
-------
|
||||
environment : 3-dimensional array of shape `(grid, grid, grid)`
|
||||
The environment of each grid cell. Possible values are:
|
||||
- 0: void
|
||||
- 1: sheet
|
||||
- 2: filament
|
||||
- 3: knot
|
||||
The environment of each grid cell. Possible values are 0 (void),
|
||||
1 (sheet), 2 (filament), 3 (knot).
|
||||
"""
|
||||
environment = numpy.full(eigvals.shape[:-1], numpy.nan,
|
||||
dtype=numpy.float32)
|
||||
|
|
|
@ -356,8 +356,8 @@ class Paths:
|
|||
fname = f"parts_{str(nsim).zfill(5)}.h5"
|
||||
return join(fdir, fname)
|
||||
|
||||
def field(self, kind, MAS, grid, nsim, in_rsp):
|
||||
"""
|
||||
def field(self, kind, MAS, grid, nsim, in_rsp, smooth_scale=None):
|
||||
r"""
|
||||
Path to the files containing the calculated density fields in CSiBORG.
|
||||
|
||||
Parameters
|
||||
|
@ -373,6 +373,8 @@ class Paths:
|
|||
IC realisation index.
|
||||
in_rsp : bool
|
||||
Whether the calculation is performed in redshift space.
|
||||
smooth_scale : float
|
||||
Smoothing scale in :math:`\mathrm{Mpc}/h`
|
||||
|
||||
Returns
|
||||
-------
|
||||
|
@ -387,6 +389,9 @@ class Paths:
|
|||
if in_rsp:
|
||||
kind = kind + "_rsp"
|
||||
fname = f"{kind}_{MAS}_{str(nsim).zfill(5)}_grid{grid}.npy"
|
||||
if smooth_scale is not None and smooth_scale > 0:
|
||||
smooth_scale = float(smooth_scale)
|
||||
fname = fname.replace(".npy", f"smooth{smooth_scale}.npy")
|
||||
return join(fdir, fname)
|
||||
|
||||
def halo_counts(self, simname, nsim):
|
||||
|
|
|
@ -1,76 +0,0 @@
|
|||
# Copyright (C) 2022 Richard Stiskalek
|
||||
# This program is free software; you can redistribute it and/or modify it
|
||||
# under the terms of the GNU General Public License as published by the
|
||||
# Free Software Foundation; either version 3 of the License, or (at your
|
||||
# option) any later version.
|
||||
#
|
||||
# This program is distributed in the hope that it will be useful, but
|
||||
# WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
|
||||
# Public License for more details.
|
||||
#
|
||||
# You should have received a copy of the GNU General Public License along
|
||||
# with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||
"""
|
||||
MPI script to calculate the density fields on CSiBORG simulations in the final
|
||||
snapshot.
|
||||
"""
|
||||
from argparse import ArgumentParser
|
||||
from datetime import datetime
|
||||
from distutils.util import strtobool
|
||||
|
||||
import numpy
|
||||
from mpi4py import MPI
|
||||
|
||||
try:
|
||||
import csiborgtools
|
||||
except ModuleNotFoundError:
|
||||
import sys
|
||||
sys.path.append("../")
|
||||
import csiborgtools
|
||||
|
||||
comm = MPI.COMM_WORLD
|
||||
rank = comm.Get_rank()
|
||||
nproc = comm.Get_size()
|
||||
verbose = nproc == 1
|
||||
|
||||
parser = ArgumentParser()
|
||||
parser.add_argument("--ics", type=int, nargs="+", default=None,
|
||||
help="IC realisations. If `-1` processes all simulations.")
|
||||
parser.add_argument("--kind", type=str, choices=["density", "velocity"],
|
||||
help="Calculate the density or velocity field?")
|
||||
parser.add_argument("--MAS", type=str, choices=["NGP", "CIC", "TSC", "PCS"],
|
||||
help="Mass assignment scheme.")
|
||||
parser.add_argument("--grid", type=int, help="Grid resolution.")
|
||||
parser.add_argument("--in_rsp", type=lambda x: bool(strtobool(x)),
|
||||
help="Calculate the density field in redshift space?")
|
||||
args = parser.parse_args()
|
||||
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
|
||||
mpart = 1.1641532e-10 # Particle mass in CSiBORG simulations.
|
||||
|
||||
if args.ics is None or args.ics[0] == -1:
|
||||
ics = paths.get_ics("csiborg")
|
||||
else:
|
||||
ics = args.ics
|
||||
|
||||
|
||||
for i in csiborgtools.fits.split_jobs(len(ics), nproc)[rank]:
|
||||
nsim = ics[i]
|
||||
print(f"{datetime.now()}: rank {rank} working on simulation {nsim}.",
|
||||
flush=True)
|
||||
|
||||
nsnap = max(paths.get_snapshots(nsim))
|
||||
box = csiborgtools.read.CSiBORGBox(nsnap, nsim, paths)
|
||||
parts = csiborgtools.read.read_h5(paths.particles(nsim))["particles"]
|
||||
|
||||
if args.kind == "density":
|
||||
gen = csiborgtools.field.DensityField(box, args.MAS)
|
||||
field = gen(parts, args.grid, in_rsp=args.in_rsp, verbose=verbose)
|
||||
else:
|
||||
gen = csiborgtools.field.VelocityField(box, args.MAS)
|
||||
field = gen(parts, args.grid, mpart, verbose=verbose)
|
||||
|
||||
fout = paths.field(args.kind, args.MAS, args.grid, nsim, args.in_rsp)
|
||||
print(f"{datetime.now()}: rank {rank} saving output to `{fout}`.")
|
||||
numpy.save(fout, field)
|
|
@ -40,7 +40,23 @@ from utils import get_nsims
|
|||
###############################################################################
|
||||
|
||||
|
||||
def density_field(nsim, parser_args):
|
||||
def density_field(nsim, parser_args, to_save=True):
|
||||
"""
|
||||
Calculate the density field in the CSiBORG simulation.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
nsim : int
|
||||
Simulation index.
|
||||
parser_args : argparse.Namespace
|
||||
Parsed arguments.
|
||||
to_save : bool, optional
|
||||
Whether to save the output to disk.
|
||||
|
||||
Returns
|
||||
-------
|
||||
field : 3-dimensional array
|
||||
"""
|
||||
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
|
||||
nsnap = max(paths.get_snapshots(nsim))
|
||||
box = csiborgtools.read.CSiBORGBox(nsnap, nsim, paths)
|
||||
|
@ -50,10 +66,47 @@ def density_field(nsim, parser_args):
|
|||
field = gen(parts, parser_args.grid, in_rsp=parser_args.in_rsp,
|
||||
verbose=parser_args.verbose)
|
||||
|
||||
if to_save:
|
||||
fout = paths.field("density", parser_args.MAS, parser_args.grid,
|
||||
nsim, parser_args.in_rsp)
|
||||
print(f"{datetime.now()}: saving output to `{fout}`.")
|
||||
numpy.save(fout, field)
|
||||
return field
|
||||
|
||||
|
||||
def density_field_smoothed(nsim, parser_args, to_save=True):
|
||||
"""
|
||||
Calculate the smoothed density field in the CSiBORG simulation. The
|
||||
unsmoothed density field must already be precomputed.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
nsim : int
|
||||
Simulation index.
|
||||
parser_args : argparse.Namespace
|
||||
Parsed arguments.
|
||||
to_save : bool, optional
|
||||
Whether to save the output to disk.
|
||||
|
||||
Returns
|
||||
-------
|
||||
smoothed_density : 3-dimensional array
|
||||
"""
|
||||
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
|
||||
nsnap = max(paths.get_snapshots(nsim))
|
||||
box = csiborgtools.read.CSiBORGBox(nsnap, nsim, paths)
|
||||
|
||||
# Load the real space overdensity field
|
||||
rho = numpy.load(paths.field("density", parser_args.MAS, parser_args.grid,
|
||||
nsim, in_rsp=False))
|
||||
rho = csiborgtools.field.smoothen_field(rho, parser_args.smooth_scale,
|
||||
box.boxsize, threads=1)
|
||||
if to_save:
|
||||
fout = paths.field("density", parser_args.MAS, parser_args.grid,
|
||||
nsim, parser_args.in_rsp, parser_args.smooth_scale)
|
||||
print(f"{datetime.now()}: saving output to `{fout}`.")
|
||||
numpy.save(fout, rho)
|
||||
return rho
|
||||
|
||||
|
||||
###############################################################################
|
||||
|
@ -61,9 +114,28 @@ def density_field(nsim, parser_args):
|
|||
###############################################################################
|
||||
|
||||
|
||||
def velocity_field(nsim, parser_args):
|
||||
def velocity_field(nsim, parser_args, to_save=True):
|
||||
"""
|
||||
Calculate the velocity field in the CSiBORG simulation.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
nsim : int
|
||||
Simulation index.
|
||||
parser_args : argparse.Namespace
|
||||
Parsed arguments.
|
||||
to_save : bool, optional
|
||||
Whether to save the output to disk.
|
||||
|
||||
Returns
|
||||
-------
|
||||
velfield : 4-dimensional array
|
||||
"""
|
||||
if parser_args.in_rsp:
|
||||
raise NotImplementedError("Velocity field in RSP is not implemented.")
|
||||
if parser_args.smooth_scale > 0:
|
||||
raise NotImplementedError(
|
||||
"Smoothed velocity field is not implemented.")
|
||||
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
|
||||
mpart = 1.1641532e-10 # Particle mass in CSiBORG simulations.
|
||||
nsnap = max(paths.get_snapshots(nsim))
|
||||
|
@ -73,10 +145,12 @@ def velocity_field(nsim, parser_args):
|
|||
gen = csiborgtools.field.VelocityField(box, parser_args.MAS)
|
||||
field = gen(parts, parser_args.grid, mpart, verbose=parser_args.verbose)
|
||||
|
||||
if to_save:
|
||||
fout = paths.field("velocity", parser_args.MAS, parser_args.grid,
|
||||
nsim, in_rsp=False)
|
||||
print(f"{datetime.now()}: saving output to `{fout}`.")
|
||||
numpy.save(fout, field)
|
||||
return field
|
||||
|
||||
|
||||
###############################################################################
|
||||
|
@ -84,7 +158,23 @@ def velocity_field(nsim, parser_args):
|
|||
###############################################################################
|
||||
|
||||
|
||||
def potential_field(nsim, parser_args):
|
||||
def potential_field(nsim, parser_args, to_save=True):
|
||||
"""
|
||||
Calculate the potential field in the CSiBORG simulation.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
nsim : int
|
||||
Simulation index.
|
||||
parser_args : argparse.Namespace
|
||||
Parsed arguments.
|
||||
to_save : bool, optional
|
||||
Whether to save the output to disk.
|
||||
|
||||
Returns
|
||||
-------
|
||||
potential : 3-dimensional array
|
||||
"""
|
||||
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
|
||||
nsnap = max(paths.get_snapshots(nsim))
|
||||
box = csiborgtools.read.CSiBORGBox(nsnap, nsim, paths)
|
||||
|
@ -93,6 +183,9 @@ def potential_field(nsim, parser_args):
|
|||
density_gen = csiborgtools.field.DensityField(box, parser_args.MAS)
|
||||
rho = numpy.load(paths.field("density", parser_args.MAS, parser_args.grid,
|
||||
nsim, in_rsp=False))
|
||||
if parser_args.smooth_scale > 0:
|
||||
rho = csiborgtools.field.smoothen_field(rho, parser_args.smooth_scale,
|
||||
box.boxsize, threads=1)
|
||||
rho = density_gen.overdensity_field(rho)
|
||||
# Calculate the real space potentiel field
|
||||
gen = csiborgtools.field.PotentialField(box, parser_args.MAS)
|
||||
|
@ -102,10 +195,12 @@ def potential_field(nsim, parser_args):
|
|||
parts = csiborgtools.read.read_h5(paths.particles(nsim))["particles"]
|
||||
field = csiborgtools.field.field2rsp(field, parts=parts, box=box,
|
||||
verbose=parser_args.verbose)
|
||||
if to_save:
|
||||
fout = paths.field(parser_args.kind, parser_args.MAS, parser_args.grid,
|
||||
nsim, parser_args.in_rsp)
|
||||
nsim, parser_args.in_rsp, parser_args.smooth_scale)
|
||||
print(f"{datetime.now()}: saving output to `{fout}`.")
|
||||
numpy.save(fout, field)
|
||||
return field
|
||||
|
||||
|
||||
###############################################################################
|
||||
|
@ -113,9 +208,28 @@ def potential_field(nsim, parser_args):
|
|||
###############################################################################
|
||||
|
||||
|
||||
def radvel_field(nsim, parser_args):
|
||||
def radvel_field(nsim, parser_args, to_save=True):
|
||||
"""
|
||||
Calculate the radial velocity field in the CSiBORG simulation.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
nsim : int
|
||||
Simulation index.
|
||||
parser_args : argparse.Namespace
|
||||
Parsed arguments.
|
||||
to_save : bool, optional
|
||||
Whether to save the output to disk.
|
||||
|
||||
Returns
|
||||
-------
|
||||
radvel : 3-dimensional array
|
||||
"""
|
||||
if parser_args.in_rsp:
|
||||
raise NotImplementedError("Radial vel. field in RSP not implemented.")
|
||||
if parser_args.smooth_scale > 0:
|
||||
raise NotImplementedError(
|
||||
"Smoothed radial vel. field not implemented.")
|
||||
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
|
||||
nsnap = max(paths.get_snapshots(nsim))
|
||||
box = csiborgtools.read.CSiBORGBox(nsnap, nsim, paths)
|
||||
|
@ -124,11 +238,12 @@ def radvel_field(nsim, parser_args):
|
|||
nsim, parser_args.in_rsp))
|
||||
gen = csiborgtools.field.VelocityField(box, parser_args.MAS)
|
||||
field = gen.radial_velocity(vel)
|
||||
|
||||
if to_save:
|
||||
fout = paths.field("radvel", parser_args.MAS, parser_args.grid,
|
||||
nsim, parser_args.in_rsp)
|
||||
print(f"{datetime.now()}: saving output to `{fout}`.")
|
||||
numpy.save(fout, field)
|
||||
return field
|
||||
|
||||
|
||||
###############################################################################
|
||||
|
@ -136,7 +251,23 @@ def radvel_field(nsim, parser_args):
|
|||
###############################################################################
|
||||
|
||||
|
||||
def environment_field(nsim, parser_args):
|
||||
def environment_field(nsim, parser_args, to_save=True):
|
||||
"""
|
||||
Calculate the environmental classification in the CSiBORG simulation.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
nsim : int
|
||||
Simulation index.
|
||||
parser_args : argparse.Namespace
|
||||
Parsed arguments.
|
||||
to_save : bool, optional
|
||||
Whether to save the output to disk.
|
||||
|
||||
Returns
|
||||
-------
|
||||
env : 3-dimensional array
|
||||
"""
|
||||
if parser_args.in_rsp:
|
||||
raise NotImplementedError("Env. field in RSP not implemented.")
|
||||
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
|
||||
|
@ -150,6 +281,9 @@ def environment_field(nsim, parser_args):
|
|||
print(f"{datetime.now()}: loading density field.")
|
||||
rho = numpy.load(paths.field("density", parser_args.MAS, parser_args.grid,
|
||||
nsim, in_rsp=False))
|
||||
if parser_args.smooth_scale > 0:
|
||||
rho = csiborgtools.field.smoothen_field(rho, parser_args.smooth_scale,
|
||||
box.boxsize, threads=1)
|
||||
rho = density_gen.overdensity_field(rho)
|
||||
# Calculate the real space tidal tensor field, delete overdensity.
|
||||
if parser_args.verbose:
|
||||
|
@ -157,12 +291,16 @@ def environment_field(nsim, parser_args):
|
|||
tensor_field = gen(rho)
|
||||
del rho
|
||||
collect()
|
||||
|
||||
# TODO: Optionally drag the field to RSP.
|
||||
|
||||
# Calculate the eigenvalues of the tidal tensor field, delete tensor field.
|
||||
if parser_args.verbose:
|
||||
print(f"{datetime.now()}: calculating eigenvalues.")
|
||||
eigvals = gen.tensor_field_eigvals(tensor_field)
|
||||
del tensor_field
|
||||
collect()
|
||||
|
||||
# Classify the environment based on the eigenvalues.
|
||||
if parser_args.verbose:
|
||||
print(f"{datetime.now()}: classifying environment.")
|
||||
|
@ -170,10 +308,12 @@ def environment_field(nsim, parser_args):
|
|||
del eigvals
|
||||
collect()
|
||||
|
||||
if to_save:
|
||||
fout = paths.field("environment", parser_args.MAS, parser_args.grid,
|
||||
nsim, parser_args.in_rsp)
|
||||
nsim, parser_args.in_rsp, parser_args.smooth_scale)
|
||||
print(f"{datetime.now()}: saving output to `{fout}`.")
|
||||
numpy.save(fout, env)
|
||||
return env
|
||||
|
||||
|
||||
###############################################################################
|
||||
|
@ -194,6 +334,7 @@ if __name__ == "__main__":
|
|||
parser.add_argument("--grid", type=int, help="Grid resolution.")
|
||||
parser.add_argument("--in_rsp", type=lambda x: bool(strtobool(x)),
|
||||
help="Calculate in RSP?")
|
||||
parser.add_argument("--smooth_scale", type=float, default=0)
|
||||
parser.add_argument("--verbose", type=lambda x: bool(strtobool(x)),
|
||||
help="Verbosity flag for reading in particles.")
|
||||
parser_args = parser.parse_args()
|
||||
|
@ -203,6 +344,9 @@ if __name__ == "__main__":
|
|||
|
||||
def main(nsim):
|
||||
if parser_args.kind == "density":
|
||||
if parser_args.smooth_scale > 0:
|
||||
density_field_smoothed(nsim, parser_args)
|
||||
else:
|
||||
density_field(nsim, parser_args)
|
||||
elif parser_args.kind == "velocity":
|
||||
velocity_field(nsim, parser_args)
|
||||
|
|
|
@ -119,7 +119,6 @@ def collect_dist(args, paths):
|
|||
out = data["counts"]
|
||||
else:
|
||||
out += data["counts"]
|
||||
|
||||
remove(fname)
|
||||
|
||||
fout = paths.cross_nearest(args.simname, args.run, "tot_counts",
|
||||
|
|
|
@ -19,7 +19,6 @@ nbins_marks: 10
|
|||
- totpartmass
|
||||
- group_mass
|
||||
min: 12.4
|
||||
max: 12.8
|
||||
islog: true
|
||||
|
||||
"mass002":
|
||||
|
@ -28,7 +27,6 @@ nbins_marks: 10
|
|||
- totpartmass
|
||||
- group_mass
|
||||
min: 12.6
|
||||
max: 13.0
|
||||
islog: true
|
||||
|
||||
"mass003":
|
||||
|
@ -37,7 +35,6 @@ nbins_marks: 10
|
|||
- totpartmass
|
||||
- group_mass
|
||||
min: 12.8
|
||||
max: 13.2
|
||||
islog: true
|
||||
|
||||
"mass004":
|
||||
|
@ -46,7 +43,6 @@ nbins_marks: 10
|
|||
- totpartmass
|
||||
- group_mass
|
||||
min: 13.0
|
||||
max: 13.4
|
||||
islog: true
|
||||
|
||||
"mass005":
|
||||
|
@ -55,7 +51,6 @@ nbins_marks: 10
|
|||
- totpartmass
|
||||
- group_mass
|
||||
min: 13.2
|
||||
max: 13.6
|
||||
islog: true
|
||||
|
||||
"mass006":
|
||||
|
@ -64,7 +59,6 @@ nbins_marks: 10
|
|||
- totpartmass
|
||||
- group_mass
|
||||
min: 13.4
|
||||
max: 13.8
|
||||
islog: true
|
||||
|
||||
"mass007":
|
||||
|
@ -73,7 +67,6 @@ nbins_marks: 10
|
|||
- totpartmass
|
||||
- group_mass
|
||||
min: 13.6
|
||||
max: 14.0
|
||||
islog: true
|
||||
|
||||
"mass008":
|
||||
|
@ -82,7 +75,6 @@ nbins_marks: 10
|
|||
- totpartmass
|
||||
- group_mass
|
||||
min: 13.8
|
||||
max: 14.2
|
||||
islog: true
|
||||
|
||||
"mass009":
|
||||
|
|
|
@ -165,6 +165,8 @@ def open_catalogues(args, config, paths, comm):
|
|||
if args.verbose and rank == 0:
|
||||
print(f"{datetime.now()}: opening catalogues.", flush=True)
|
||||
|
||||
# We first load all catalogues on the zeroth rank and broadcast their
|
||||
# names.
|
||||
if rank == 0:
|
||||
cats = {}
|
||||
if args.simname == "csiborg":
|
||||
|
@ -182,12 +184,27 @@ def open_catalogues(args, config, paths, comm):
|
|||
name = paths.quijote_fiducial_nsim(nsim, nobs)
|
||||
cat = ref_cat.pick_fiducial_observer(nobs, rmax=args.Rmax)
|
||||
cats.update({name: cat})
|
||||
|
||||
names = list(cats.keys())
|
||||
if nproc > 1:
|
||||
for i in range(1, nproc):
|
||||
comm.send(cats, dest=i, tag=nproc + i)
|
||||
comm.send(names, dest=i, tag=nproc + i)
|
||||
else:
|
||||
cats = comm.recv(source=0, tag=nproc + rank)
|
||||
names = comm.recv(source=0, tag=nproc + rank)
|
||||
|
||||
comm.Barrier()
|
||||
# We then broadcast the catalogues to all ranks, one-by-one as MPI can
|
||||
# only pass messages smaller than 2GB.
|
||||
if nproc == 1:
|
||||
return cats
|
||||
|
||||
if rank > 0:
|
||||
cats = {}
|
||||
for name in names:
|
||||
if rank == 0:
|
||||
for i in range(1, nproc):
|
||||
comm.send(cats[name], dest=i, tag=nproc + i)
|
||||
else:
|
||||
cats.update({name: comm.recv(source=0, tag=nproc + rank)})
|
||||
return cats
|
||||
|
||||
|
||||
|
|
|
@ -16,6 +16,7 @@
|
|||
from os.path import join
|
||||
from argparse import ArgumentParser
|
||||
|
||||
import matplotlib as mpl
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy
|
||||
import healpy
|
||||
|
@ -209,8 +210,8 @@ def plot_hmf(pdf=False):
|
|||
plt.close()
|
||||
|
||||
|
||||
def load_field(kind, nsim, grid, MAS, in_rsp=False):
|
||||
"""
|
||||
def load_field(kind, nsim, grid, MAS, in_rsp=False, smooth_scale=None):
|
||||
r"""
|
||||
Load a single field.
|
||||
|
||||
Parameters
|
||||
|
@ -225,13 +226,16 @@ def load_field(kind, nsim, grid, MAS, in_rsp=False):
|
|||
Mass assignment scheme.
|
||||
in_rsp : bool, optional
|
||||
Whether to load the field in redshift space.
|
||||
smooth_scale : float, optional
|
||||
Smoothing scale in :math:`\mathrm{Mpc} / h`.
|
||||
|
||||
Returns
|
||||
-------
|
||||
field : n-dimensional array
|
||||
"""
|
||||
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
|
||||
return numpy.load(paths.field(kind, MAS, grid, nsim, in_rsp=in_rsp))
|
||||
return numpy.load(paths.field(kind, MAS, grid, nsim, in_rsp=in_rsp,
|
||||
smooth_scale=smooth_scale))
|
||||
|
||||
|
||||
###############################################################################
|
||||
|
@ -239,9 +243,9 @@ def load_field(kind, nsim, grid, MAS, in_rsp=False):
|
|||
###############################################################################
|
||||
|
||||
|
||||
def plot_projected_field(kind, nsim, grid, in_rsp, MAS="PCS",
|
||||
def plot_projected_field(kind, nsim, grid, in_rsp, smooth_scale, MAS="PCS",
|
||||
highres_only=True, slice_find=None, pdf=False):
|
||||
"""
|
||||
r"""
|
||||
Plot the mean projected field, however can also plot a single slice.
|
||||
|
||||
Parameters
|
||||
|
@ -254,6 +258,8 @@ def plot_projected_field(kind, nsim, grid, in_rsp, MAS="PCS",
|
|||
Grid size.
|
||||
in_rsp : bool
|
||||
Whether to load the field in redshift space.
|
||||
smooth_scale : float
|
||||
Smoothing scale in :math:`\mathrm{Mpc} / h`.
|
||||
MAS : str, optional
|
||||
Mass assignment scheme.
|
||||
highres_only : bool, optional
|
||||
|
@ -273,11 +279,16 @@ def plot_projected_field(kind, nsim, grid, in_rsp, MAS="PCS",
|
|||
box = csiborgtools.read.CSiBORGBox(nsnap, nsim, paths)
|
||||
|
||||
if kind == "overdensity":
|
||||
field = load_field("density", nsim, grid, MAS=MAS, in_rsp=in_rsp)
|
||||
field = load_field("density", nsim, grid, MAS=MAS, in_rsp=in_rsp,
|
||||
smooth_scale=smooth_scale)
|
||||
density_gen = csiborgtools.field.DensityField(box, MAS)
|
||||
field = density_gen.overdensity_field(field) + 2
|
||||
field = density_gen.overdensity_field(field) + 1
|
||||
else:
|
||||
field = load_field(kind, nsim, grid, MAS=MAS, in_rsp=in_rsp)
|
||||
field = load_field(kind, nsim, grid, MAS=MAS, in_rsp=in_rsp,
|
||||
smooth_scale=smooth_scale)
|
||||
|
||||
if kind == "velocity":
|
||||
field = field[0, ...]
|
||||
|
||||
if highres_only:
|
||||
csiborgtools.field.fill_outside(field, numpy.nan, rmax=155.5,
|
||||
|
@ -286,10 +297,11 @@ def plot_projected_field(kind, nsim, grid, in_rsp, MAS="PCS",
|
|||
end = round(field.shape[0] * 0.73)
|
||||
field = field[start:end, start:end, start:end]
|
||||
|
||||
if kind != "environment":
|
||||
cmap = "viridis"
|
||||
if kind == "environment":
|
||||
cmap = mpl.colors.ListedColormap(
|
||||
['red', 'lightcoral', 'limegreen', 'khaki'])
|
||||
else:
|
||||
cmap = "brg"
|
||||
cmap = "viridis"
|
||||
|
||||
labels = [r"$y-z$", r"$x-z$", r"$x-y$"]
|
||||
with plt.style.context(plt_utils.mplstyle):
|
||||
|
@ -309,12 +321,15 @@ def plot_projected_field(kind, nsim, grid, in_rsp, MAS="PCS",
|
|||
else:
|
||||
ax[i].imshow(img, vmin=vmin, vmax=vmax, cmap=cmap)
|
||||
|
||||
if not highres_only:
|
||||
frad = 155.5 / 677.7
|
||||
if not highres_only and 0.5 - frad < slice_find < 0.5 + frad:
|
||||
theta = numpy.linspace(0, 2 * numpy.pi, 100)
|
||||
rad = 155.5 / 677.7 * grid
|
||||
z = (slice_find - 0.5) * grid
|
||||
R = 155.5 / 677.7 * grid
|
||||
rad = R * numpy.sqrt(1 - z**2 / R**2)
|
||||
ax[i].plot(rad * numpy.cos(theta) + grid // 2,
|
||||
rad * numpy.sin(theta) + grid // 2,
|
||||
lw=plt.rcParams["lines.linewidth"], zorder=1,
|
||||
lw=0.75 * plt.rcParams["lines.linewidth"], zorder=1,
|
||||
c="red", ls="--")
|
||||
ax[i].set_title(labels[i])
|
||||
|
||||
|
@ -343,17 +358,32 @@ def plot_projected_field(kind, nsim, grid, in_rsp, MAS="PCS",
|
|||
(xticks * size / ncells - size / 2).astype(int))
|
||||
ax[i].set_xlabel(r"$x_j ~ [\mathrm{Mpc} / h]$")
|
||||
|
||||
cbar_ax = fig.add_axes([1.0, 0.1, 0.025, 0.8])
|
||||
cbar_ax = fig.add_axes([0.982, 0.155, 0.025, 0.75],
|
||||
transform=ax[2].transAxes)
|
||||
if slice_find is None:
|
||||
clabel = "Mean projected field"
|
||||
else:
|
||||
clabel = "Sliced field"
|
||||
|
||||
if kind == "environment":
|
||||
bounds = [0, 1, 2, 3, 4]
|
||||
norm = mpl.colors.BoundaryNorm(bounds, cmap.N)
|
||||
cbar = fig.colorbar(
|
||||
mpl.cm.ScalarMappable(cmap=cmap, norm=norm), cax=cbar_ax,
|
||||
ticks=[0.5, 1.5, 2.5, 3.5])
|
||||
cbar.ax.set_yticklabels(["knot", "filament", "sheet", "void"],
|
||||
rotation=90, va="center")
|
||||
else:
|
||||
fig.colorbar(im, cax=cbar_ax, label=clabel)
|
||||
|
||||
fig.tight_layout(h_pad=0, w_pad=0)
|
||||
for ext in ["png"] if pdf is False else ["png", "pdf"]:
|
||||
fout = join(plt_utils.fout,
|
||||
f"field_{kind}_{nsim}_rsp{in_rsp}.{ext}")
|
||||
fout = join(
|
||||
plt_utils.fout,
|
||||
f"field_{kind}_{nsim}_rsp{in_rsp}_hres{highres_only}.{ext}")
|
||||
if smooth_scale is not None and smooth_scale > 0:
|
||||
smooth_scale = float(smooth_scale)
|
||||
fout = fout.replace(f".{ext}", f"_smooth{smooth_scale}.{ext}")
|
||||
print(f"Saving to `{fout}`.")
|
||||
fig.savefig(fout, dpi=plt_utils.dpi, bbox_inches="tight")
|
||||
plt.close()
|
||||
|
@ -404,8 +434,8 @@ def get_sky_label(kind, volume_weight):
|
|||
return label
|
||||
|
||||
|
||||
def plot_sky_distribution(kind, nsim, grid, nside, MAS="PCS", plot_groups=True,
|
||||
dmin=0, dmax=220, plot_halos=None,
|
||||
def plot_sky_distribution(kind, nsim, grid, nside, smooth_scale, MAS="PCS",
|
||||
plot_groups=True, dmin=0, dmax=220, plot_halos=None,
|
||||
volume_weight=True, pdf=False):
|
||||
r"""
|
||||
Plot the sky distribution of a given field kind on the sky along with halos
|
||||
|
@ -425,6 +455,8 @@ def plot_sky_distribution(kind, nsim, grid, nside, MAS="PCS", plot_groups=True,
|
|||
Grid size.
|
||||
nside : int
|
||||
Healpix nside of the sky projection.
|
||||
smooth_scale : float
|
||||
Smoothing scale in :math:`\mathrm{Mpc} / h`.
|
||||
MAS : str, optional
|
||||
Mass assignment scheme.
|
||||
plot_groups : bool, optional
|
||||
|
@ -445,11 +477,13 @@ def plot_sky_distribution(kind, nsim, grid, nside, MAS="PCS", plot_groups=True,
|
|||
box = csiborgtools.read.CSiBORGBox(nsnap, nsim, paths)
|
||||
|
||||
if kind == "overdensity":
|
||||
field = load_field("density", nsim, grid, MAS=MAS, in_rsp=False)
|
||||
field = load_field("density", nsim, grid, MAS=MAS, in_rsp=False,
|
||||
smooth_scale=smooth_scale)
|
||||
density_gen = csiborgtools.field.DensityField(box, MAS)
|
||||
field = density_gen.overdensity_field(field) + 2
|
||||
field = density_gen.overdensity_field(field) + 1
|
||||
else:
|
||||
field = load_field(kind, nsim, grid, MAS=MAS, in_rsp=False)
|
||||
field = load_field(kind, nsim, grid, MAS=MAS, in_rsp=False,
|
||||
smooth_scale=smooth_scale)
|
||||
|
||||
angpos = csiborgtools.field.nside2radec(nside)
|
||||
dist = numpy.linspace(dmin, dmax, 500)
|
||||
|
@ -519,7 +553,22 @@ if __name__ == "__main__":
|
|||
if True:
|
||||
kind = "environment"
|
||||
grid = 256
|
||||
smooth_scale = 0
|
||||
# plot_projected_field("overdensity", 7444, grid, in_rsp=True,
|
||||
# highres_only=False)
|
||||
plot_projected_field(kind, 7444, grid, in_rsp=False,
|
||||
slice_find=0.5, highres_only=False)
|
||||
smooth_scale=smooth_scale, slice_find=0.5,
|
||||
highres_only=False)
|
||||
|
||||
if False:
|
||||
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
|
||||
|
||||
d = csiborgtools.read.read_h5(paths.particles(7444))["particles"]
|
||||
|
||||
plt.figure()
|
||||
plt.hist(d[:100000, 4], bins="auto")
|
||||
|
||||
plt.tight_layout()
|
||||
plt.savefig("../plots/velocity_distribution.png", dpi=450,
|
||||
bbox_inches="tight")
|
||||
|
||||
|
|
|
@ -648,7 +648,32 @@ def plot_significance(simname, runs, nsim, nobs, kind, kwargs, runs_to_mass):
|
|||
plt.close()
|
||||
|
||||
|
||||
def plot_significance_vs_mass(simname, runs, nsim, nobs, kind, kwargs):
|
||||
def make_binlims(run, runs_to_mass):
|
||||
"""
|
||||
Make bin limits for the 1NN distance runs, corresponding to the first half
|
||||
of the log-mass bin.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
run : str
|
||||
Run name.
|
||||
runs_to_mass : dict
|
||||
Dictionary mapping run names to total halo mass range.
|
||||
|
||||
Returns
|
||||
-------
|
||||
xmin, xmax : floats
|
||||
"""
|
||||
xmin, xmax = runs_to_mass[run]
|
||||
xmax = xmin + (xmax - xmin) / 2
|
||||
xmin, xmax = 10**xmin, 10**xmax
|
||||
if run == "mass009":
|
||||
xmax = numpy.infty
|
||||
return xmin, xmax
|
||||
|
||||
|
||||
def plot_significance_vs_mass(simname, runs, nsim, nobs, kind, kwargs,
|
||||
runs_to_mass):
|
||||
"""
|
||||
Plot significance of the 1NN distance as a function of the total mass.
|
||||
|
||||
|
@ -667,6 +692,8 @@ def plot_significance_vs_mass(simname, runs, nsim, nobs, kind, kwargs):
|
|||
(Kolmogorov-Smirnov p-value).
|
||||
kwargs : dict
|
||||
Nearest neighbour reader keyword arguments.
|
||||
runs_to_mass : dict
|
||||
Dictionary mapping run names to total halo mass range.
|
||||
|
||||
Returns
|
||||
-------
|
||||
|
@ -686,8 +713,12 @@ def plot_significance_vs_mass(simname, runs, nsim, nobs, kind, kwargs):
|
|||
y = make_kl(simname, run, nsim, nobs, kwargs)
|
||||
else:
|
||||
y = numpy.log10(make_ks(simname, run, nsim, nobs, kwargs))
|
||||
xs.append(x)
|
||||
ys.append(y)
|
||||
|
||||
xmin, xmax = make_binlims(run, runs_to_mass)
|
||||
mask = (x >= xmin) & (x < xmax)
|
||||
xs.append(x[mask])
|
||||
ys.append(y[mask])
|
||||
|
||||
xs = numpy.concatenate(xs)
|
||||
ys = numpy.concatenate(ys)
|
||||
|
||||
|
@ -715,7 +746,7 @@ def plot_significance_vs_mass(simname, runs, nsim, nobs, kind, kwargs):
|
|||
plt.close()
|
||||
|
||||
|
||||
def plot_kl_vs_ks(simname, runs, nsim, nobs, kwargs):
|
||||
def plot_kl_vs_ks(simname, runs, nsim, nobs, kwargs, runs_to_mass):
|
||||
"""
|
||||
Plot Kullback-Leibler divergence vs Kolmogorov-Smirnov statistic p-value.
|
||||
|
||||
|
@ -731,6 +762,8 @@ def plot_kl_vs_ks(simname, runs, nsim, nobs, kwargs):
|
|||
Fiducial Quijote observer index. For CSiBORG must be set to `None`.
|
||||
kwargs : dict
|
||||
Nearest neighbour reader keyword arguments.
|
||||
runs_to_mass : dict
|
||||
Dictionary mapping run names to total halo mass range.
|
||||
|
||||
Returns
|
||||
-------
|
||||
|
@ -741,9 +774,16 @@ def plot_kl_vs_ks(simname, runs, nsim, nobs, kwargs):
|
|||
|
||||
xs, ys, cs = [], [], []
|
||||
for run in runs:
|
||||
cs.append(reader.read_single(simname, run, nsim, nobs)["mass"])
|
||||
xs.append(make_kl(simname, run, nsim, nobs, kwargs))
|
||||
ys.append(make_ks(simname, run, nsim, nobs, kwargs))
|
||||
c = reader.read_single(simname, run, nsim, nobs)["mass"]
|
||||
x = make_kl(simname, run, nsim, nobs, kwargs)
|
||||
y = make_ks(simname, run, nsim, nobs, kwargs)
|
||||
|
||||
cmin, cmax = make_binlims(run, runs_to_mass)
|
||||
mask = (c >= cmin) & (c < cmax)
|
||||
xs.append(x[mask])
|
||||
ys.append(y[mask])
|
||||
cs.append(c[mask])
|
||||
|
||||
xs = numpy.concatenate(xs)
|
||||
ys = numpy.log10(numpy.concatenate(ys))
|
||||
cs = numpy.log10(numpy.concatenate(cs))
|
||||
|
@ -768,7 +808,7 @@ def plot_kl_vs_ks(simname, runs, nsim, nobs, kwargs):
|
|||
plt.close()
|
||||
|
||||
|
||||
def plot_kl_vs_overlap(runs, nsim, kwargs):
|
||||
def plot_kl_vs_overlap(runs, nsim, kwargs, runs_to_mass):
|
||||
"""
|
||||
Plot KL divergence vs overlap for CSiBORG.
|
||||
|
||||
|
@ -780,6 +820,8 @@ def plot_kl_vs_overlap(runs, nsim, kwargs):
|
|||
Simulation index.
|
||||
kwargs : dict
|
||||
Nearest neighbour reader keyword arguments.
|
||||
runs_to_mass : dict
|
||||
Dictionary mapping run names to total halo mass range.
|
||||
|
||||
Returns
|
||||
-------
|
||||
|
@ -802,12 +844,15 @@ def plot_kl_vs_overlap(runs, nsim, kwargs):
|
|||
prob_nomatch = prob_nomatch[mask]
|
||||
mass = mass[mask]
|
||||
|
||||
kl = make_kl("csiborg", run, nsim, nobs=None, kwargs=kwargs)
|
||||
|
||||
xs.append(kl)
|
||||
ys1.append(1 - numpy.mean(prob_nomatch, axis=1))
|
||||
ys2.append(numpy.std(prob_nomatch, axis=1))
|
||||
cs.append(numpy.log10(mass))
|
||||
x = make_kl("csiborg", run, nsim, nobs=None, kwargs=kwargs)
|
||||
y1 = 1 - numpy.mean(prob_nomatch, axis=1)
|
||||
y2 = numpy.std(prob_nomatch, axis=1)
|
||||
cmin, cmax = make_binlims(run, runs_to_mass)
|
||||
mask = (mass >= cmin) & (mass < cmax)
|
||||
xs.append(x[mask])
|
||||
ys1.append(y1[mask])
|
||||
ys2.append(y2[mask])
|
||||
cs.append(numpy.log10(mass[mask]))
|
||||
|
||||
xs = numpy.concatenate(xs)
|
||||
ys1 = numpy.concatenate(ys1)
|
||||
|
@ -877,7 +922,7 @@ if __name__ == "__main__":
|
|||
delete_disk_caches_for_function(func)
|
||||
|
||||
# Plot 1NN distance distributions.
|
||||
if False:
|
||||
if True:
|
||||
for i in range(1, 10):
|
||||
run = f"mass00{i}"
|
||||
for pulled_cdf in [True, False]:
|
||||
|
@ -886,12 +931,12 @@ if __name__ == "__main__":
|
|||
plot_dist(run, "pdf", neighbour_kwargs, runs_to_mass)
|
||||
|
||||
# Plot 1NN CDF differences.
|
||||
if False:
|
||||
if True:
|
||||
runs = [f"mass00{i}" for i in range(1, 10)]
|
||||
for pulled_cdf in [True, False]:
|
||||
plot_cdf_diff(runs, neighbour_kwargs, pulled_cdf=pulled_cdf,
|
||||
runs_to_mass=runs_to_mass)
|
||||
if False:
|
||||
if True:
|
||||
runs = [f"mass00{i}" for i in range(1, 9)]
|
||||
for kind in ["kl", "ks"]:
|
||||
plot_significance("csiborg", runs, 7444, nobs=None, kind=kind,
|
||||
|
@ -902,12 +947,14 @@ if __name__ == "__main__":
|
|||
runs = [f"mass00{i}" for i in range(1, 10)]
|
||||
for kind in ["kl", "ks"]:
|
||||
plot_significance_vs_mass("csiborg", runs, 7444, nobs=None,
|
||||
kind=kind, kwargs=neighbour_kwargs)
|
||||
kind=kind, kwargs=neighbour_kwargs,
|
||||
runs_to_mass=runs_to_mass)
|
||||
|
||||
if False:
|
||||
if True:
|
||||
runs = [f"mass00{i}" for i in range(1, 10)]
|
||||
plot_kl_vs_ks("csiborg", runs, 7444, None, kwargs=neighbour_kwargs)
|
||||
plot_kl_vs_ks("csiborg", runs, 7444, None, kwargs=neighbour_kwargs,
|
||||
runs_to_mass=runs_to_mass)
|
||||
|
||||
if False:
|
||||
if True:
|
||||
runs = [f"mass00{i}" for i in range(1, 10)]
|
||||
plot_kl_vs_overlap(runs, 7444, neighbour_kwargs)
|
||||
plot_kl_vs_overlap(runs, 7444, neighbour_kwargs, runs_to_mass)
|
||||
|
|
Loading…
Reference in a new issue